Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳裕庭zh_TW
dc.contributor.advisorYu-Ting Chenen
dc.contributor.author吳岱錡zh_TW
dc.contributor.authorDai-Chi Wuen
dc.date.accessioned2024-08-16T17:39:28Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAlexander Aue, Gregory Rice, and Ozan Sönmez. Detecting and dating structural breaks in functional data without dimension reduction. J. R. Statist. Soc. B, 80 (3):509–529, 2018.
Edward Austin, Gaetano Romano, Idris A. Eckley, and Paul Fearnhead. Online non-parametric changepoint detection with application to monitoring operational performance of network devices. Computational Statistics and Data Analysis, 177, 2023.
István Berkes, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Detecting changes in the mean of functional observations. J. R. Statist. Soc. B, 71(5):927–946, 2009.
Yang Cao and Yao Xie. Robust sequential change-point detection by convex optimization. In IEEE International Symposium on Information Theory (ISIT), 2017.
Yang Cao, Liyan Xie, Yao Xie, and Huan Xu. Sequential change-point detection via online convex optimization. Entropy, 20(2), 2018.
Yang Cao, Andrew Thompson, Meng Wang, and Yao Xie. Sketching for sequential change-point detection. Journal on Advances in Signal Processing, 42, 2019.
Hao Chen. Sequential change-point detection based on nearest neighbors. The Annals of Statistics, 47(3):1381–1407, 2019.
Hao Chen and Lynna Chu. Graph-based change-point analysis. Annual Review of Statistics and Its Application, 10:475–499, 2023.
Nan Chen, Xuemin Zi, and Changliang Zou. A distribution-free multivariate control chart. Technometrics, 58(4):448–459, 2016.
Yudong Chen, Tengyao Wang, and Richard J. Samworth. High-dimensional and multiscale online changepoint detection. J. R. Statist. Soc. B, 84(1):234–266, 2022.
Yudong Chena, TengyaoWang, and Richard J. Samworth. Inference in highdimensional online changepoint detection. Journal of the American Statistical Association, 0(0):1–12, 2023.
Jeng-Min Chiou, Yu-Ting Chen, and Tailen Hsing. Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation. The Annals of Applied Statistics, 13(3):1430–1463, 2019.
Lynna Chu and Hao Chen. Sequential change-point detection for high-dimensional and non-euclidean data. IEEE Transactions on Signal Processing, 70, 2022.
Georgios Fellouris, Erhan Bayraktar, and Lifeng Lai. Efficient byzantine sequential change detection. IEEE Transactions on Information Theory, 64(5), 2018.
André Ferrari, Cédric Richard, Anthony Bourrier, and Ikram Bouchikhi. Online change-point detection with kernels. Pattern Recognition, 133, 2023.
Jun Geng, Bingwen Zhang, Lauren M. Huie, and Lifeng Lai. Online change-point detection of linear regression models. IEEE Transactions on Signal Processing, 67(12):3316–3329, 2019.
Lingzhe Guo and Reza Modarres. Two multivariate online change detection models. Journal of Applied Statistics, 49(2):427–448, 2022.
Josua G¨osmann, Christina Stoehr, Johannes Heiny, and Holger Dette. Sequential change point detection in high dimensional time series. Electronic Journal of Statistics, 16:3608–3671, 2022.
GáborJ.Székely and MariaL.Rizzo. Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference, 143(8):1249–1272, 2013.
Trevor Harris, Bo Li, and J. Derek Tucker. Scalable multiple changepoint detection for functional data sequences. Environmetrics, 33:509–529, 2020.
Lajos Horvath, Piotr Kokoszka, and Shixuan Wang. Monitoring for a change point in a sequence of distributions. The Annals of Statistics, 49(4):2271–2291, 2021.
Huang Huang and Ying Sun. A decomposition of total variation depth for understanding functional outliers. Technometrics, 61(4):445–458, 2019.
Siegfried Hörmann and Piotr Kokoszka. Weakly dependent functional data. The Annals of Statistics, 38(3):1845–1884, 2010.
Mehmet Necip Kurt, Yasin Yılmaz, and Xiaodong Wang. Real-time nonparametric anomaly detection in high-dimensional settings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7), 2021.
Tze Leung Lai. Sequential changepoint detection in quality control and dynamical systems. J. R. Statist. Soc. B, 57(4):613–658, 1995.
Lingjun Li and Jun Li. Online change-point detection in high-dimensional covariance structure with application to dynamic networks. The Journal of Machine Learning Research, 24(1):2144–2187, 2023.
Shuang Li, Yao Xie, Hanjun Dai, and Le Song. Scan b-statistic for kernel changepoint detection. Sequential Analysis, 38(4):503–544, 2019.
Sen Lin, Gianmarco Mengaldo, and Romit Maulik. Online data-driven changepoint detection for high-dimensional dynamical systems. Chaos, 33(10), 2023.
James P. Long and Yao Xie. A study of functional depths. In arXiv preprint arXiv:1506.01332v3, 2016.
Sara López-Pintado and Juan Romo. On the concept of depth for functional data. Journal of the American Statistical Association, 104(486):718–734, 2009.
Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, and Gonzalo Mateos. Online change point detection for weighted and directed random dot product graphs. IEEE Transactions on Signal and Information Processing over Networks, 8:144–159, 2022.
Yajun Mei. Sequential change-point detection when unknown parameters are present in the pre-change distribution. The Annals of Statistics, 34(1):92–122, 2006.
Yinfeng Meng, Jiye Liang, Fuyuan Cao, and Yijun He. A new distance with derivative information for functional k-means clustering algorithm. Information Sciences, page 166–185, 2018.
Naveen N. Narisetty and Vijayan N. Nair. Extremal depth for functional data and applications. Journal of the American Statistical Association, 111(516):1705–1714, 2016.
E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.
Maxim Raginsky, Rebecca M. Willett, Corinne Horn, Jorge Silva, and Roummel F.Marcia. Sequential anomaly detection in the presence of noise and limited feedback. IEEE Transactions on Information Theory, 58(8):5544–5562, 2012.
Anton Rauhameri, Katri Salminen, Jussi Rantala, Timo Salpavaara, Jarmo Verho, Veikko Surakka, Jukka Lekkala, Antti Vehkaoja, and Philipp Müller. A comparison of online methods for change point detection in ion-mobility spectrometry data. Array, 14, 2022.
Haoyun Wang and Yao Xie. Sequential change-point detection: Computation versus statistical performance. In arXiv preprint arXiv:2210.05181v3, 2023.
Liyan Xie, Yao Xie, and George V. Moustakides. Sequential subspace change point detection. Sequential Analysis, 39(3):307–335, 2020.
Liyan Xie, Shaofeng Zou, Yao Xie, and Venugopal V. Veeravalli. Sequential (quickest) change detection: Classical results and new directions. IEEE Journal on Selected Areas in Information Theory, 2:494–514, 2021.
Liyan Xie, George V. Moustakides, Life Senior, and Yao Xie. Window-limited cusum for sequential change detection. IEEE Transactions on Information Theory, 69 (9), 2023.
Yao Xie and David Siegmund. Sequential multi-sensor change-point detection. The Annals of Statistics, 41(2):670–692, 2013.
Yijun Zuo and Robert Serfling. General notions of statistical depth function. The Annals of Statistics, 28(2):461–482, 2000.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94710-
dc.description.abstract函數性數據,例如醫學領域中的心電圖 (ECG) 信號,或氣象領域中隨時間記錄的天氣變量,通常以連續且無限維度的曲線形式呈現,已成為當今最常見的數據形式之一。然而,儘管其重要性日益增加,針對這類數據的線上轉折點偵測 (OCPD) 方法在現有文獻中的討論相對有限。相比之下,多變量數據則擁有許多已發展成熟的 OCPD 方法。因此,我們在仔細審視現有文獻後,決定將四種無分配假設的多變量 OCPD 方法延伸應用至函數性數據,希望能有效地檢測出連續數據流中的異常。模擬實驗中,我們使用兩個常用的基準——平均運行長度和平均檢測延遲——來評估這些方法的表現,並通過這兩個指標來驗證其可靠性和效率。最後,我們通過比較這些改進方法之間的效能差異,並進一步探討導致這些差異的可能因素。這項研究不僅為函數性數據的線上監控系統的發展作出了貢獻,也為實時分析函數性數據提供了有價值的見解和一些潛在可行的方法。zh_TW
dc.description.abstractFunctional data, such as Electrocardiogram (ECG) signals in the medical field, or weather-related variables recorded over time in the meteorological field, are often presented as continuous and infinite-dimensional curves, and have become a common form of data. However, despite its relevance, online change point detection (OCPD) for this datatype has received limited attention in the existing literature. On the other hand, multivariate data have plenty of its own OCPD methods; therefore, after a thorough survey, we decided to extend four nonparametric multivariate OCPD methods to accommodate functional data characteristics, aiming to successfully detect those anomalies in continuous data streams. Eventually, we evaluate the performance of these adapted methods against two benchmarks commonly employed in online settings: average run length and average detection delay. These metrics provide insights into the reliability and efficiency of these methods. Our work compares the performance between the extended methods and native functional data OCPD techniques via simulations, and further discusses the differences. This research contributes to the ongoing development of robust online monitoring tools for functional data, and offers valuable perspectives for potential method candidates and practical implementations in real-time analysis for functional data.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:39:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:39:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents iv
Chapter 1 Introduction 1
1.1 Online VS. Offline 2
1.2 ARL & EDD 2
1.3 Review of methods 3
1.4 Organization 7
Chapter 2 Adapted Methods 8
2.1 Control Chart 9
2.2 Graph-Based Method 13
2.3 GEM Statistics 16
2.4 Energetic Statistic 19
Chapter 3 Simulations 22
3.1 Simulation Settings 23
3.2 Parameter Settings 24
3.3 Mean Change 26
3.4 Scale Change 28
3.5 Mean & Scale Change 31
3.6 Covariance Structure Change 33
3.7 Verification of respective ARLs 35
3.8 Remark 36
Chapter 4 Conclusion 39
References 42
Appendix A — Depth definitions 48
-
dc.language.isoen-
dc.title從多變量方法延伸至函數型數據的線上轉折點偵測zh_TW
dc.titleOnline Change Point Detection in Function Data: An Extension from Multivariate Techniquesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李百齡;楊鈞澔zh_TW
dc.contributor.oralexamcommitteePai-Ling Li;Chun-Hao Yangen
dc.subject.keyword函數型數據,線上轉折點分析,zh_TW
dc.subject.keywordFunctional data,Online Change-Point Detection,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202403079-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept統計與數據科學研究所-
顯示於系所單位:統計與數據科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf878.05 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved