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摘要

函數性數據，例如醫學領域中的心電圖 (ECG) 信號，或氣象領域中隨時間

記錄的天氣變量，通常以連續且無限維度的曲線形式呈現，已成為當今最常見的

數據形式之一。然而，儘管其重要性日益增加，針對這類數據的線上轉折點偵測

(OCPD) 方法在現有文獻中的討論相對有限。相比之下，多變量數據則擁有許多

已發展成熟的 OCPD 方法。因此，我們在仔細審視現有文獻後，決定將四種無分

配假設的多變量 OCPD 方法延伸應用至函數性數據，希望能有效地檢測出連續數

據流中的異常。模擬實驗中，我們使用兩個常用的基準——平均運行長度和平均

檢測延遲——來評估這些方法的表現，並通過這兩個指標來驗證其可靠性和效率。

最後，我們通過比較這些改進方法之間的效能差異，並進一步探討導致這些差異

的可能因素。這項研究不僅為函數性數據的線上監控系統的發展作出了貢獻，也

為實時分析函數性數據提供了有價值的見解和一些潛在可行的方法。

關鍵字：函數型數據、線上轉折點分析
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Abstract

Functional data, such as Electrocardiogram (ECG) signals in the medical field,

or weather-related variables recorded over time in the meteorological field, are often

presented as continuous and infinite-dimensional curves, and have become a com-

mon form of data. However, despite its relevance, online change point detection

(OCPD) for this datatype has received limited attention in the existing literature.

On the other hand, multivariate data have plenty of its own OCPD methods; there-

fore, after a thorough survey, we decided to extend four nonparametric multivariate

OCPD methods to accommodate functional data characteristics, aiming to success-

fully detect those anomalies in continuous data streams. Eventually, we evaluate the

performance of these adapted methods against two benchmarks commonly employed

in online settings: average run length and average detection delay. These metrics

provide insights into the reliability and efficiency of these methods. Our work com-

pares the performance between the extended methods and native functional data

OCPD techniques via simulations, and further discusses the differences. This re-

search contributes to the ongoing development of robust online monitoring tools for

functional data, and offers valuable perspectives for potential method candidates

and practical implementations in real-time analysis for functional data.

Keywords: Functional data, Online Change-Point Detection
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Chapter 1 Introduction

The ubiquity of online change point analysis in data streams has become a focal

point in modern statistical research due to the dynamic nature of countless real-time

data acquisitions nowadays. For instance, in the field of environmental monitoring,

data are continuously collected from sensors based on various indicators, such as air

quality or water pollution levels. Detecting change points in those collected data

can alert people to investigate the reasons behind the sudden shifts in environmental

conditions, which further enables prompt responses to prevent potential hazards.

However, the inherent feature of functional data, which often involve high-

dimensional structures and complex dependencies, pose significant challenges to the

development of Online Change Point Detection (OCPD) methods within this do-

main. The intricacies of these data require sophisticated algorithms that can handle

the continuous arrival of information and identify changes in real-time without sig-

nificant delays. Furthermore, the fact that current OCPD methods available for

functional data are scarce reflects the difficulty of designing tools that are both ef-

ficient and reliable in such settings. Thus, we aim to derive an effective method for

functional data on the foundation of multivariate data counterparts.

1
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1.1 Online VS. Offline

First, we contrast the core objectives of online and offline change point analysis.

Online change point detection is operated in real-time, which means data are pro-

cessed sequentially as soon as they become available. Therefore, those circumstances

required an immediate response, such as anomaly detection in manufacturing pro-

cesses or intrusion detection in network security. As stated above, one main focus

of online detection is its need to take actions promptly, which is often assessed by

expected detection delay (EDD). Nevertheless, another emphasis is on false alarm

rate, which needs to be controlled in terms of average run length (ARL).

Offline change point detection, on the other hand, analyzes a complete set of

data retrospectively. This approach is used in situations where precision is more

critical than immediacy, such as analyzing historical climate data or conducting

market research. Offline methods often utilize the entire dataset to identify change

points, allowing for more complex computations and thorough analysis, with the

main goal being the accurate detection of these change points.

1.2 ARL & EDD

Average Run Length (ARL) refers to the average number of observations taken

between false alarms, which occurs when a algorithm alerts to a change that did

not happened. Essentially, it reflects the algorithm’s ability to avoid false alarms

under the assumption that no change is present. In other words, a higher ARL

indicates a lower false alarm rate, suggesting that the detection method is less prone

2

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

to misinterpret small fluctuations in the data as changes. This metric is crucial for

maintaining the credibility of the detection system, since frequent false alarms can

simultaneously break user trust and lead to inefficiency.

On the other hand, Expected Detection Delay (EDD) measures how quickly a

detection method identifies a change point after it occurs. It is typically defined as

the average number of observations required from the actual change point to the

moment the change is detected by the algorithm. A shorter EDD indicates a more

responsive detection system, capable of rapidly responding to changes in the data

stream, which is vital in scenarios where a swift response to changes is critical.

1.3 Review of methods

As mentioned above, there are quite a few offline methods for functional data,

e.g., those addressing At Most One Change (AMOC) issues, such as the CUSUM

test suggested in Berkes et al. (2009) on the constancy of the mean function for

independent functional data and the extension of the previous test to weakly de-

pendent functional data by Hörmann and Kokoszka (2010), and a fully functional

procedure revealing mean breaks without the application of dimension reduction

techniques in Aue et al. (2018). Additionally, for multiple change point problems,

for instance, Chiou et al. (2019) introduced the Dynamic Segmentation and Back-

ward Elimination (DSBE) algorithm to find the optimal set of change points in the

mean functions, and Harris et al. (2020) combined robust segmentation through an

augmented fused lasso procedure with optimal detection via a powerful cumulative

sum (CUSUM) statistic. On the contrary, there is not much available for the online

3
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setting.

As a result, we surveyed a variety of multivariate OCPD techniques, in hopes

that through some straightforward modifications, they could accommodate the in-

trinsic continuity and complexities of functional observations, i.e., could be extended

to the realm of functional data. Our work aims to provide some intuitive thoughts

for extending OCPD methods designed for multivariate data to functional data, by

standing on the shoulders of giants.

Through our investigations, we found that numerous methods have been de-

signed for specific types of change. For example, Chen et al. (2022) and Chena

et al. (2023) addressed changes in the mean of a p-variate Gaussian data streams.

Other scenarios include changes in linear regression models (Geng et al., 2019), in

high-dimensional covariance structure (Li and Li, 2023), in sequences of distribu-

tions (Horvath et al., 2021), in sensor networks under adversarial attacks (Fellouris

et al., 2018), and in situations where both the pre-change and post-change distri-

butions involve unknown parameters (Mei, 2006). In addition, some methods have

been proposed to cope with certain data types; for instance, Xie and Siegmund

(2013) developed a mixture procedure to monitor parallel data streams for a change

point which affects only a subset of them, often sparsely. Several other methods

address different variants of data or topics, such as G¨osmann et al. (2022), which

concentrates on high-dimensional time series, and Lin et al. (2023), which deals

with high-dimensional dynamic systems; moreover, topics like social networks were

explored in Raginsky et al. (2012). Moving forward, we will primarily focus on more

general methods that are not tailored to specific task, aiming to identify method

candidates that could potentially be extended to function data.

4
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CUSUM, as a classic approach first introduced by Page Page (1954), relies on

the log-likelihood ratio between two known distributions: one for the control and

one for the anomaly. Since its introduction, plenty of methods have been developed

on this foundation. For instance, Cao and Xie (2017) formed a CUSUM procedure

after solving a convex optimization problem to identify appropriate parameters for

pre- and post-change distributions. Xie et al. (2020) proposed Subspace-CUSUM,

Kurt et al. (2021) provided a CUSUM anomaly detection algorithm based on some

univariate summary statistics without any restrictive model assumptions on both

the high-dimensional data stream and the extracted summary statistics. Rauhameri

et al. (2022) discussed the multivariate Max-CUSUM algorithm and proposed Matrix

Form CUSUM algorithm, which significantly shortens computation time. Lastly,

Window-Limited CUSUM was suggested in Xie et al. (2023).

Another classic approach is the Generalized Likelihood Ratio (GLR) statistic-

based procedure, which finds the maximum likelihood estimate (MLE) of the post-

change parameter and inserts it back into the likelihood ratio to form the test

statistic. For instance, Cao et al. (2018) developed an online mirror descent-based

GLR procedure to update the estimate of the unknown post-change parameter with

arriving data, and Cao et al. (2019) used GLR statistics to form linear sketches

for high-dimensional data, where sketching is a common strategy for reducing data

dimensionality.

Aside from the nonparametric algorithm (Kurt et al., 2021) above, there still are

many types of distribution-free change detection technique developed with various

tools. For example, Austin et al. (2023) introduced Non-Parametric UNbounded

Changepoint (NUNC) testing for a change in the empirical cumulative distribution

5
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function (eCDF) within a rolling window. Recently, they have further improved the

non-parametric procedure NUNC by building a GLR test for it. In Ferrari et al.

(2023), a kernel-based OCPD method namely NOUGAT (Nonparametric Online

chanGepoint detection AlgoriThm) is built on direct estimation of the density ratio

over consecutive time intervals. Additionally, Guo and Modarres (2022) proposed

two nonparametric algorithms consisting of energy statistic and Mahalanobis depth,

where the former is applied using a sliding window algorithm with efficient training

and updating procedures, and the latter is combined with an algorithm-determined

threshold that offers the desired protective ability against false alarms. Last but

not least, Chen et al. (2016) construct a series of conditionally distribution-free test

statistics to monitor the location parameters.

In Wang and Xie (2023), Xie et al. (2021), and Lai (1995), numerous classical

sequential OCPD methods were reviewed; for instance, all three cover procedures

like CUSUM, Shiryaev-Roberts, GLR, and Shewhart chart. While Xie et al. (2021)

surveyed a wide array of extensions and modern applications of sequential CPD,

and Wang and Xie (2023) discussed the trade-off between computation and sta-

tistical power, more importantly, both provide insights into previous studies on

nonparametric multivariate OCPD methods that don’t require explicit distribution

assumptions. These approaches might meet our needs, such as the scan B−statistic

formed via kernel maximum mean discrepancy (MMD) in Li et al. (2019).

On the other hand, similarity graph is also a useful strategy in the category of

distribution-free methods. For example, Chen (2019) and Chu and Chen (2022) pro-

posed a K-nearest-neighbors-based statistic to detect changes in sequences of multi-

variate observations or non-Euclidean data objects, such as network data. Marenco

6
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et al. (2022) integrates the directed and weighted Random Dot Product Graphs

(RDPG) models for OCPD, and Chen and Chu (2023) reviewed a nonparamet-

ric change point analysis framework that utilizes graphs to represent the similarity

between observations.

1.4 Organization

The rest of the article is organized as follows: In Section 2, we propose four

adapted detection procedures, and the modifications that need to be made before

implementation. Simulation settings and method comparisons are presented in Sec-

tion 3. The paper is concluded in Section 4.

7
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Chapter 2 Adapted Methods

As suggested in Section 1, we surveyed a variety of existing multivariate OCPD

methods. Next, we consider some of these methods in hopes of extending them to

functional data. The results in Section 3 show that even though these methods are

not specifically designed for functional data, they can still be applicable with certain

modifications.

In Section 2.1, we first consider a straightforward method—the control chart

—by directly treating our functional data as multivariate inputs. From Section 2.2

to Section 2.4, we explore methods closely related to distance metrics to distinguish

dissimilarities. Specifically, Section 2.2 and Section 2.3 are based on kNN graphs ,

while Section 2.4 utilizes a distance-based statistic to signal a change. As for the

distance measure, owing to the better performance of Meng et al. (2018) over Eu-

clidean distance in our simulation results of Section 2.2, we believe this derivative

information-inspired distance metric can better capture the characteristics of func-

tional data. Thus, we adopt the distance concept from Meng et al. (2018) for the

methods following this approach, with definitions provided in Section 2.2.

Apart from the control chart method in Section 2.1, other methods follow the

same problem settings, which can be formulated as follows: Denote the functional

8
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data sequence by {Xi}∞
i=1, we consider the null and alternative hypotheses:

H0 : Xi ∼ F0 for i = 1, 2, . . . ,

H1 : Xi ∼ F0 for i < τ, and Xi ∼ F1 for i ≥ τ

where F0, F1 are different probability measures, and τ is the location of the change

point.

Throughout these methods, for the sake of comparison, the parameter settings

are all adjusted to achieve the same in-control run length (ICRL) level. The specific

settings will be elaborated on in their respective methodologies.

2.1 Control Chart

First of all, when each of the functional data in the sequence is observed at the

same time points, we can simply view the data set as multivariate data. And since

we’re seeking methods that can handle high-dimensional data (p > n), the most

intuitive approach is to use a control chart for our OCPD problem. Particularly

in this technique, we manage our potential high-dimensional data by sequentially

applying conditionally distribution-free two-sample tests to construct a monitoring

system.

Consider a slightly different change point model with historical observations

X1, . . . , XN0 in R
p, p ≥ 1; the ith observation, Xi = (X1i, . . . , Xpi)T , follows the

9
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multivariate location change point model:

Xi
iid∼


F0(x;µ0) for i = 1, . . . , τ,

F1(x;µ1) for i = τ + 1, . . . ,

where µ0 = (µ10, . . . , µp0)T and µ1 = (µ11, . . . , µp1)T are location parameters, and

τ is the unknown change point. When the (N0 + n)th observation is collected,

we can then construct a location test. Denote X n
k,j = {Xjk, . . . , Xjn} as the jth

component of the segment from index k to n. A charting statistic can be constructed

as Tn(w, λ) = ∑p
j=1 T

2
jn(w, λ), where

Tjn(w, λ) =
n∑

i=n−w+1
(1− λ)n−i Rjni − w (N0 + n+ 1) /2√

w (N0 + n+ 1) (N0 + n− w) /12

Here, w is the window size, and λ is the smoothing parameter, chosen to balance

robustness to nonnormality and detection ability for various shift magnitudes. Rjni

is the rank of Xji among all current observations XN0+n
1,j . Naturally, a large Tn(w, λ)

value will lead to the rejection of H0. Essentially, Tjn(w, λ) is a weighted version of

the two-sample Wilcoxon rank-sum statistic for testing the equality of the locations

of the sample XN0+n−w
1,j and XN0+n

N0+n−w+1,j. Different rank observations in Tjn(w, λ) are

weighted as in a common exponentially weighted moving average (EWMA) chart,

meaning more recent observations receive greater weight, which decays exponentially

over time.

Meanwhile, the control limits Hn(α)’s are determined by solving the equation:

Pr
(
Tn(w, λ) > Hn(α) | Ti(w, λ) < Hi(α),max{1, n− w + 1} ≤ i < n, F̂n

)
= α

10

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

where α is the pre-specified false alarm rate and F̂n(t) = (N0+n)−1∑N0+n
i=1 1(Xi ≤ t)

is the empirical CDF. The algorithm is then provided as follows:

Algorithm 1: Distribution-Free Exponetially Weighted Moving Average

(DFEWMA)
Data: Dataset {X1, . . . ,XN0}, parameters w, λ, b, α
Result: Threshold values Ĥ1(α), . . . , Ĥn(α)

1 for n = 1 do
2 Generate a random permutation of {1, . . . , N0}, say {i1, . . . , iN0}.
3 Obtain the corresponding T ν

1 (w, λ) based on permuted samples
{Xi1 , . . . ,XiN0

}.
4 Repeat this procedure b times to obtain T 1

1 (w, λ), . . . , T b
1 (w, λ).

5 Find the threshold value, Ĥ1(α), by the (1−α) empirical quantile from
samples T v

1 (w, λ), v = 1, . . . , b.
6 for n > 1 do
7 while number of valid T ν

k (w, λ) samples < b do
8 Generate a random permutation and calculate the test statistics

T ν
k (w, λ), max{1, n− w + 1} ≤ k < n.

9 Determine the control limit Hk(α) by solving
Pr
(

T ν
k (w, λ) > Hk(α) | Ti(w, λ) < Hi(α), max{1, k − w + 1} ≤ i < k, F̂k

)
= α

10 if T ν
k (w, λ) < Hk(α) then

11 Calculate T ν
n (w, λ).

12 else
13 Discard this permutation.

14 Find the limit Ĥn(α) as the (1− α) empirical quantile from samples
T v

n (w, λ), v = 1, . . . , b.
15 if Tn(w, λ) ≥ Ĥn(α) then
16 Stop the iteration and declare a change at t = n.

Since the ICRL distribution of DFEWMA follows a Geometric distribution,

the average run length of the proposed chart is 1/α when there is no change. For

instance, if the desired ICRL is 500, the false alarm rate α should be set to 0.002.

Although primarily designed for detecting location changes, this method can be

adapted to other scenarios, as demonstrated by our simulations.

Instead of directly using the entire dataset as the algorithm’s input, we also

11
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considered performing functional principal component analysis (FPCA) on the his-

torical functional data beforehand and transforming the upcoming data using the

initially obtained eigenfunctions. In this way, we successfully use the FPC scores,

which is of the form of multivariate data, as proxies for the original functional data.

However, possibly due to the different weights in these FPC estimates, when they

are treated as general multivariate input and ranks are computed accordingly, the

results appear unsatisfactory. Thus, this approach proved unsuitable for this control

chart technique.

Additionally, since the core concept involves combining the ranks of different

components, we recall that functional data have a wide variety of depth measures

designed for different scenarios, which can be unified to create different ranks. Since

no single notion of functional depth consistently outperforms the others in all situa-

tions, we strive to utilize all the information gathered from these various data depths.

Thus, we ultimately chose five functional data depths to transform the original data

points into a new dataset, which yielded viable results. These depths include ex-

tremal depth (ED) (Narisetty and Nair, 2016), linfinity depth (L∞D) (Long and

Xie, 2016), modified band depth (MBD) (López-Pintado and Romo, 2009), projec-

tion depth (PD) (Zuo and Serfling, 2000), and total variation depth (TVD) (Huang

and Sun, 2019), with their corresponding definitions provided in the appendix. By

integrating the strengths of these various depths, we aim to detect online change

points more effectively than with the original algorithm.

In this variant, we first input the algorithm with the respective data depths of

the nominal dataset. Each time a new observation arrives, we update the data depths

of the entire current data and compute their ranks accordingly. This approach yields

12
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superior results compared to the original DFEWMA control chart.

2.2 Graph-Based Method

As mentioned in previous section, distribution-free methods, such as graph-

based methods, are an effective strategy to describe the dissimilarities between ob-

servations. Therefore, we will consider the methods described in Chen (2019) and

Chu and Chen (2022) in the following adapted method.

Denote the functional data sequence as X1,X2, . . . ,Xn, . . ., where Xn represents

the observation at time n. It is assumed that there are N0 historical observations

with no change point. To introduce the main stopping rule from Chen (2019), we

focus on the L most recent observations: Xn−L+1, . . . ,Xn, and refer to the number

of edges in the k nearest neighbors between two observations as edge-counts.

That is, for i, j ∈ nL ≜ {n − L + 1, . . . , n}, we let A+
nL,ij = ∑k

r=1 A
(r)
nL,ij, where

A
(r)
nL,ij = 1(Xj is the rth NN of Xi among observations Xn−L+1, . . . , Xn). And the

between-sample edge-count is defined as

RL(t, n) =
∑

i,j∈nL

(
A+

nL,ij + A+
nL,ji

)
Bij (t, nL)

with Bij (t, nL) = bPnL
(i)PnL

(j)(t), where bij(t, n) = I((i ≤ t, t < j ≤ n) or (t < i ≤

n, j ≤ t)) and PnL
(·) is a random permutation among indices {n − L + 1, . . . , n}.

RL(t, n) quantifies the number of connections between two observations when they
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are each other’s top k nearest neighbors, yet they belong to different groups. Let

ZL|x(t, n) = −RL(t, n)− E (RL(t, n))√
Var (RL(t, n) | x)

Therefore, a large value of RL(t, n) suggests a substantial number of edge-counts

between two groups, implying that the disparity between the historical observations

and the recent L observations is not particularly significant. This, in return, would

lead to a smaller value of ZL|x(t, n). We then use it to construct the stopping rule:

TZ (bZ) = inf
{
n−N0 :

(
max

n−n1≤t≤n−n0
ZL|x(t, n)

)
> bZ , n ≥ N0

}

where n0, n1 and L are pre-specified values. Specifically, n0 is set to be small to detect

the change as soon as possible, but not too small to avoid the high fluctuations at

the very ends. n1 is set to L−n0 as suggested by the paper. While bZ is chosen such

that, given the stopping rule TZ(bZ), the average run length E∞(TZ(BZ)) meets

a pre-specified value, i.e., the false discovery rate is controlled at a predetermined

level. Here, E∞(·) denotes the average run length determined by the stopping rule

under the assumption of no change.

However, ZL|x(t, n) may fail to function properly when facing certain circum-

stances. Hence, Chu and Chen (2022) suggested three new stopping rules, with still

using the concept of directed nearest neighbor graphs from Chen (2019) to construct

the three improved two-sample test statistics, namely SL|x(t, n) from the General-

ized Edge-Count Test (S), WL|x(t, n) from the Weighted Edge-Count Test (W) and

ML|x(t, n) from the Max-Type Edge-Count Test (M). While SL|x(t, n) is designed

to capture the deviation in the within-sample edge-counts from its null expectation,
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WL|x(t, n) is the standardized value of the weighted combinations of the within-

sample edge-counts R1,L(t, n) and R2,L(t, n). On the other hand, ML|x(t, n) is the

maximum between ξWL|x(t, n) (ξ ≥ 0, a predetermined value), and the standardized

value of the difference between R1,L(t, n) and R2,L(t, n). Their respective stopping

threshold bS, bW and bM are also computed analytically to ensure that the ARL for

each stopping rule is controlled at a given value.

Essentially, SL|x(t, n) and ML|x(t, n) are designed to address the problem of

curse-of-dimensionality, while WL|x(t, n) resolves the issue of increased detection

delay resulting from a variance boosting problem. The rest of the detailed definition

is in Chu and Chen (2022). In addition, ML|x(t, n) is expected to perform best among

these statistics, as it can cope with location and scale changes simultaneously and

offers a more accurate analytical expression for the ARL for false discovery control.

Since the essence of this graph-based method lies in calculating the dissimilari-

ties between observation xi and xj to define nearest neighbors, we propose adapting

this approach to functional data by implementing distance measures particularly

established for functional samples, rather than relying on the default L2 distance

d (xi, xj) =
√∫

(xi(t)− xj(t))2dt.

First, we utilize a novel distance measure proposed by Meng et al. (2018),

defined as

d(xi(t), xj(t)) =
√∫

T
(xi(t)− xj(t))2dt+

∫
T
(Dxi(t)−Dxj(t))2dt (2.1)

which serves as the similarity metric between two functional samples xi(t) and xj(t),

where the Dxi(t) represents the first-order derivative of the ith functional sample.
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The distance metric above incorporates derivative information from the func-

tional curves, which intuitively corresponds to the shape of these functional sam-

ples. Therefore, this measure is expected to outperform the original L2 distance, as

demonstrated in Section 3.

2.3 GEM Statistics

The third method from Kurt et al. (2021) involves extracting Geometric En-

tropy Minimization (GEM)-based summary statistics from the collected data for

anomaly detection. Anomalies are identified as persistent outliers in these univari-

ate summary statistics, which accumulate over time to indicate a change, falling

outside the acceptance region defined by α.

The GEM method relies on bipartite kNN graphs derived from the dataset.

It distinguishes anomalous data by comparing the nearest neighbor statistics of

nominal data with newly arrived data. Given a nominal dataset X of size N0 and

a chosen significance level α, the dataset is uniformly partitioned into two subsets,

S1 and S2, with sizes N1 and N2 = N0 −N1, respectively.

For each observation xj ∈ S2, the kNNs among set S1 are determined. Denoting

the distance obtained using equation (2.1) from xj to its ith nearest neighbor in S1

by ej(i), the sum of distances from xj to its kNNs is computed as follows:

dj ≜
k∑

i=1
ej(i) (2.2)

After collecting {dj : xj ∈ S2}, these distances are sorted in ascending order, and

the largest α fraction of dj’s corresponds to the reject region. Whenever a new
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data point xt arrives, its sum of distances to its kNNs among S1, denoted by dt, is

compared to the smallest (1 − α) fraction of dj’s. The point xt is then considered

an outlier if: ∑
xj∈S2 1{dt > dj}

N2
> 1− α

where 1{·} is an indicator function.

For online change point detection, we seek to declare an anomaly if such outliers

are consistently detected. Consequently, we denote p̂t as the fraction of nominal

summary statistics {dj : xj ∈ S2} greater than dt. If p̂t < α, xt is considered an

outlier at the pre-specified significance level α. Finally, let:

ŝt ≜ log(α
p̂t

)

Hence, if xt is an outlier, we have st > 0, and for a non-outlier xt, st ≤ 0. The

GEM-statistics CUSUM change point detection algorithm is then formulated as

follows:

Γ = inf{t : gt ≥ h}, g0 = 0, gt = max{0, gt−1 + ŝt}.

Pseudo code is then:
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Algorithm 2: GEM-Based Real-Time Nonparametric Anomaly Detection
Offline Phase:

1 Uniformly randomly partition the nominal dataset X into two subsets S1

and S2 with sizes N1 and N2, respectively.
2 for j : xj ∈ S2 do
3 Search for the kNNs of xj among the set S1.
4 Compute dj using equation (2.2).
5 end
6 Sort {dj : xj ∈ S2} in ascending order.

Online Detection Phase:
7 Initialization: t← 0, g0 ← 0.
8 while gt < h do
9 t← t+ 1. Obtain the new data point xt.

10 Search for the kNNs of xt among the set S1 and compute dt using
equation (2.2).

11 p̂t ← 1
N2

∑
xj∈S2 1{dj > dt}.

12 ŝt ← log(α/p̂t).
13 gt ← max{0, gt−1 + ŝt}.
14 end
15 Declare an anomaly and stop the procedure.

The algorithm shows that if the sequentially acquired data consistently deviate

from the nominal data, it is likely that an anomaly has occurred. The statistic g

accumulates the measure of outlierness, and a change is thereby declared when g

surpasses a certain threshold h.

For the test threshold h, we use the analytical solution under the assumption

that N2 → ∞, meaning the nominal dataset is sufficiently large. Here, A is the

pre-specified ARL level:

h = log(A/g(α))
1−W (αg(α))/g(α)

,

where W (c) denotes the Lambert-W function providing solution z to the equation

zez = c; while the values of g(α) are derived from the Monte Carlo simulation results

in Kurt et al. (2021). In this case, with α = 0.2, g(α) is determined to be 10.1.

18

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

This method is not only easy to compute—since dj values need to be calculated

only once—but it also claimed to have a relative low expected detection delay.

2.4 Energetic Statistic

Next, we consider a nonparametric two-sample method presented in Guo and

Modarres (2022), which incorporates a sliding window algorithm with the energetic

statistic proposed in GáborJ.Székely and MariaL.Rizzo (2013). The core concept is

to utilize the sliding window to perform homogeneity tests over the Baseline window

B and the Current window Ct, with the statistic based on interpoint distances

designed to process high-dimensional data.

Suppose {Xi}n
i=1 is a data stream of independent random vectors in Rd. The

baseline window B contains the first N0 historical observations, i.e. B = {Xi}N0
i=1,

while the current window contains the latest NC observations, i.e., Ct = {Xi}t+NC−1
i=t ,

for t = N0 + 1, N0 + 2, . . ..
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Algorithm 3: Sliding-Window Algorithm

Input: {Xi}∞
i=1 with baseline window width N0, the current window width

NC .
Output: The locations of the change points in the original data stream

τ1, τ2, τ3, . . ., s = 1, τ0 = 0.
1 while not at end of the data stream do
2 t = 0 B ← {X1, . . . , XN0}
3 do
4 t = t+ 1;
5 Ct ← [XN0+t, . . . , XN0+t+NC−1]
6 Calculate the statistic L(B,Ct) based on B and Ct

7 until L(B,Ct) > h;
8 A change point is detected and recorded as τs = τs−1 +N0 + t

9 Discard the observations before XN0+t+NC
and re-index the

observations XN0+t+NC
, XN0+t+NC+1, . . . by 1, 2, 3, . . .

10 end
11 return τ1, τ2, τ3, . . .

Most importantly, the homogeneity of B and Ct is tested with the energy

statistic

Lt = L(B,Ct) = 2µ̂BC − µ̂BB − µ̂CC ,

where

µ̂BC = (N0NC)−1
N0∑
i=1

N0+t+NC−1∑
j=N0+t

∥Xi −Xj∥,

µ̂BB =
(
N0

2

)
N0−1∑
i=1

N0∑
j=i+1

∥Xi −Xj∥,

µ̂CC =
(
NC

2

)
N0+t+NC−2∑

i=N0+t

N0+t+NC−1∑
j=i+1

∥Xi −Xj∥.

These are the averages of interpoint distances between and within two groups, mea-

sured with the derivative information-inspired distance metric; therefore, Lt assesses

whether the discrepancy between the baseline and current window is more signifi-

cant than the variation within both groups. The greater this difference is, the more

likely a change point exists. Furthermore, the statistic Lt is updated by a itera-

20

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

tive formula, with details provided in Guo and Modarres (2022), which significantly

reduces the computing complexity.

Concerning the estimation of the threshold h, the criterion used in the refer-

enced paper—based on the ”Protective ability against false alarms (RLα)”, which

represents the αth quantile of the ICRL—does not align with the evaluation stan-

dards used in our other methods. Therefore, we adopt a different procedure to find

the threshold based on ICRL as follows:

We start by setting the initial threshold h to 100, based on empirical knowledge.

We then bootstrap the historical observations to somewhat exceed the desired ARL,

for instance, by adding 100 to the desired ARL. This additional 100 allows some

buffer for the run length to be greater than the desired ARL, as we can’t directly

assume the run length is equal to the desired ARL if we only have exactly that

many samples. Next, we execute our algorithm on the generated samples 20 times

to obtain empirical average run lengths.

We then employ a learning rate method to iteratively adjust the threshold.

Specifically, we compare the empirical ARL to the target ARL level. If the former

moderately surpasses the latter (by 20 to 50), we report the current h as our final

threshold to ensure it is sufficiently conservative. However, if the empirical ARL

significantly exceeds the desired ARL, indicating that the threshold is too conser-

vative, we adjust the threshold downwards by 10; otherwise, we adjust it upwards

by 10.

21

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

Chapter 3 Simulations

As stated in Section 1.2, the performance of a change point detection procedure

with stopping time T is evaluated by the average stopping time after a change,

subject to a false alarm constraint. Let Eτ be the expectation under the hypothesis

that the true change point occurs at τ , with τ = ∞ indicating no change. To be

precise, the expected detection delay, representing the algorithm’s ability to detect

a change as soon as possible, is defined as:

EDD(T ) := Eτ [T − τ |T ≥ τ ],

which represents the conditional expectation of the lag between the stopping time

and the actual change location, subjecting to a fixed average run length, or in-control

run length (IC-RL)

ARL(T ) := E∞[T ] ≥ γ

for some large constant γ > 0. Here, E∞[T ] is the expectation under the hypothesis

of no change.

In this section, we compare our three proposed modified methods against two

benchmark procedure, which includes performing control chart and its variant on

the functional samples. The evaluation would be based on their power and EDD.
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3.1 Simulation Settings

In the subsequent simulations, we adopt the function data settings used in

Chiou et al. (2019). With N as our functional data sequence length, the random

functions Yi(t) are generated by the basis expansion:

Yi(t) = ψ(t) +
B∑

ℓ=0

√
λℓγi,ℓϕℓ(t), i = 1, . . . , N,

where ψ(t) is the mean function, (λℓ, ϕℓ(·)) are predetermined eigenvalue–eigenfunc-

tion pairs, and {γi,ℓ : i = 1, . . . , N}, ℓ = 0, . . . , B, are random coefficients. The

sequence {Yi(t)} depends on the sequence of these random coefficients. For each

ℓ, the coefficients {γi,ℓ : i = 1, . . . , N} are generated by an AR(1) model such that

γi,ℓ = ργi−1,ℓ + εi,ℓ, with εi,ℓ being the standard normal random variate. The auto-

correlation parameter ρ is set to 0.2, indicating low dependence scenario throughout

the simulation. Then we set B = 150, N = 200, λℓ = 0.7 × 2−ℓ, time grid points

t = (0.001, 0.002, · · · , 1), and we assume the change occurs at i = 150, correspond-

ing to the third quartile of the observations. The mean function ψ(t) is chosen as

ψ(t) = 0.5− 100(t− 0.1)(t− 0.3)(t− 0.5)(t− 0.9) + 0.8sin(1 + 10πt). And the eigen-

functions {ϕℓ(t) : ℓ = 1, . . . , B} are selected as the Fourier basis
√

2 sin(2πkt − π)

for ℓ = 2k − 1 and
√

2 cos(2πkt − π) for ℓ = 2k, k = 1, . . . , B/2, with ϕ0(t) = 1, a

constant that ensures
∫

T ϕ
2
0(t)dt = 1.

In another case, we set N = 150 and assume the change occurs at i = 100,

while keeping the other parameter settings unchanged. In both change scenarios,

the number of historical observations, N0, is set to 75. The former scenario simulates

a change taking place after the algorithm has process some data in the online phase
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(denote as case A), whereas the latter simulates a change arising shortly after the

online phase begins (denote as case B).

We then assess the performance of all methods under various types of changes: a

change in mean function ψi(t), a scale change represented by the size of the multiplier

for the random error εi,ℓ in γi,ℓ, and a covariance structure change interpreted by

the distribution difference in the εi,ℓ’s.

Our detection criterion for success rate in all our methods is established as

follows: If the algorithm signals a change shortly after the real change point, specif-

ically by triggering the alert at N = 150 ∼ 200 in case A, or at N = 100 ∼ 150 in

case B, we recognize it as a successful detection. Our power is represented by the

success rate over 100 replications. Additionally, we calculate the expected detection

delay of these successful detections for further comparisons.

3.2 Parameter Settings

Throughout our 100 simulation runs, the ARL is set to 500, 1000, and 1500 to

represent different level of false discovery rate control. The detection threshold in

our methods is selected accordingly.

For the control chart settings in Chen et al. (2016), α is suggested to be 1/ARL0

to achieve the desired false alarm rate. The number of historical observations N0

is set to 75. The smoothing parameter λ is chosen as the recommended value of

0.05, while the window size is set to at least 5 to produce sufficient distinct values

of T ∗
n(w, λ) for small n. And the number of permutations required is set to 500.
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In the kNN based method settings in Chen (2019) and Chu and Chen (2022),

for simplicity of comparison, we set k to 3, as only large changes are of interest. We

specify the number of historical observations without any change point as N0 = 75,

set the window size to L = 50, and determine the prespecified values in the stopping

rules, n0, n1, to be 0.2L and L − n0 = 0.8L, as recommended by the reference

manual.

Regarding the GEM statistic method in Kurt et al. (2021), we use the analytical

solution as our test threshold h:

h = log(A/g(α))
1−W (αg(α))/g(α)

Based on the Monte Carlo simulation results, with α = 0.2, g(α) is 10.1. Here, the

size of S1, N1, is set to 25, and thus the size of S2, N2 = N0 − N1, is 50. Since we

are capturing the local interactions between points, we chose a moderate value of k

to be 4.

Lastly, for the settings in the energy statistic method (GáborJ.Székely and Mar-

iaL.Rizzo, 2013), the baseline window width, embodying the historical observation

amount, N0 is set to 75, while the current window width NC is set to 10. The

threshold h is obtained via a learning rate method mentioned in the 2.4, with an

initial value of h = 100 and using 50 runs to get the empirical ARL.

For the method names in the following performance tables: ”Graph+Eucli”

refers to the graph-based method using Euclidean distance, and ”Graph+Deriv”

denotes the graph-based method using derivative distance. ”Energy” represents the

energy statistic method, ”GEM” refers to the GEM statistic method, ”DFEWMA”
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stands for the DFEEMA control chart method, and ”CC+Depth” denotes the con-

trol chart method variant with functional depth transformation.

3.3 Mean Change

This denotes a change in the mean function ψi(t). The initial mean function is

given by: ψ(t) = 0.5− 100(t− 0.1)(t− 0.3)(t− 0.5)(t− 0.9) + 0.8sin(1 + 10πt), and

it changes to ψ(t) = 1 + 3t2 − 5t3 when the change occurs.

Figure 3.1: Visualization of Mean Change (case A)

As shown in Table 3.1, energy statistic method has only an outcome. This

is due to its time-consuming threshold finding process and its underwhelming re-

sults. Although it is an intuitive technique for examining the differences between

the nominal dataset and the current window dataset, its drawbacks prevent us from

implementing it. Therefore, we will not consider this technique for the following

simulations other than the specific case of case A and ARL=500.

We can observe that as ARL rises, all methods generally achieve more successful
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Table 3.1: Success rate comparison under Mean Change - Success rate, (·) indicates
instances where the algorithm failed to detect any change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 0.60(0) 0.78(0) 0.82(0) 0.79(0) 0.89(0) 0.93(0)

Graph+Eucli(W) 0.61(0) 0.83(0) 0.90(0) 0.82(0) 0.94(0) 0.95(0)

Graph+Eucli(S) 0.65(0) 0.82(0) 0.87(0) 0.87(0) 0.93(0) 0.95(0)

Graph+Deriv(Z) 0.41(0) 0.57(0) 0.71(0) 0.66(0) 0.81(0) 0.83(1)

Graph+Deriv(W) 0.44(0) 0.65(0) 0.72(0) 0.65(1) 0.81(0) 0.83(1)

Graph+Deriv(S) 0.52(0) 0.69(0) 0.72(0) 0.67(0) 0.85(0) 0.90(1)

Energy 0.73(0)

GEM 0.85(0) 0.91(0) 0.93(0) 0.97(0) 0.99(0) 0.98(0)

DFEWMA 0.41(0) 0.41(0) 0.54(0) 0.68(0) 0.78(0) 0.83(0)

CC + Depth 0.73(0) 0.83(0) 0.76(0) 0.88(3) 0.93(3) 0.86(6)

detections. However, although the DFEWMA control chart with functional depth

outperforms most other methods, its success count in both case A and case B drops

slightly when moving from ARL=1000 to ARL=1500. Additionally, in case B, it

experiences more failures where no change is detected at all when ARL reaches 1500.

This indicates that the threshold has become stricter for the algorithm to signal a

change.

From the failure count provided in Table 3.1, we can see that most detection

failures are attributed to false early detection by the algorithm. This suggests that

the asymptotic threshold obtained analytically might be loose and causing these

false alarms.

On the whole, all methods perform better in case B, as there is less chance of

getting a false alarm when the change occurs shortly after the online phase starts.

Besides, the GEM statistic method has the best performance among all. Not only
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does it excel in case A, where the change occurs a while after the algorithm starts,

but it also captures almost all anomalies in case B.

Table 3.2: EDD comparison under Mean Change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 10.35 10.962 10.829 9.962 10.18 10.817

Graph+Eucli(W) 11.016 11.639 11.556 10.793 10.872 11.632

Graph+Eucli(S) 10.785 11.39 11.253 10.885 10.71 11.179

Graph+Deriv(Z) 6.244 6.193 7.127 5.712 6.321 6.88

Graph+Deriv(W) 6.068 6.015 6.917 5.538 6.21 6.651

Graph+Deriv(S) 6.25 6.261 7.25 6.179 6.459 6.933

Energy 8.082

GEM 3.847 4.549 4.71 3.784 4.707 4.673

DFEWMA 9.561 8.829 8.463 9.309 9.41 10.133

CC + Depth 8.082 8.735 8.566 9.045 9.28 9.477

As stated in 2.3, Table 3.2 shows that the GEM statistic attains the lowest

expected detection delay among all methods. In contrast, all the graph-based meth-

ods using the Euclidean distance measure to form kNN graphs have the longest

expected detection delay in this circumstance. Furthermore, although Section 2.2

claims that WL|y(t, n) would resolve the increased detection delay issue of the origi-

nal statistic ZL|y(t, n), it appears to have the same performance as ZL|y(t, n), even

in its recommended scenario, where there is only a locational change.

3.4 Scale Change

This refers to a change in the scale of the random error εi,ℓ in γi,ℓ, where the

multiplier changes from 1 to 2 when the change occurs.
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Figure 3.2: Visualization of Scale Change (case A)

Table 3.3: Success rate comparison under Scale Change - Success rate, (·) indicates
instances where the algorithm failed to detect any change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 0.54(0) 0.51(1) 0.58(4) 0.77(1) 0.76(1) 0.75(0)

Graph+Eucli(W) 0.57(0) 0.54(1) 0.54(4) 0.82(1) 0.72(1) 0.63(0)

Graph+Eucli(S) 0.63(0) 0.69(0) 0.73(0) 0.87(1) 0.87(1) 0.84(0)

Graph+Deriv(Z) 0.42(1) 0.49(0) 0.62(0) 0.73(0) 0.77(2) 0.83(0)

Graph+Deriv(W) 0.47(0) 0.54(2) 0.57(0) 0.74(0) 0.74(2) 0.78(0)

Graph+Deriv(S) 0.54(0) 0.64(0) 0.68(0) 0.81(0) 0.79(0) 0.89(0)

Energy 0.11(0)

GEM 0.92(0) 0.92(0) 0.96(0) 0.96(0) 0.99(0) 0.98(0)

DFEWMA 0.30(7) 0.33(12) 0.45(9) 0.61(7) 0.67(17) 0.62(19)

CC + Depth 0.72(0) 0.79(0) 0.82(0) 0.93(0) 0.95(0) 0.92(0)

In Table 3.3, besides achieving similar results in the mean change scenario,

where all methods perform better in case B than in case A, the GEM statistic also

proves its effectiveness in the scale change scenario, with only a few failures due to

early detection. In comparison, the control chart with functional data depth not only

secures the second place in overall results but also shows a significant performance
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improvement from case A to case B. This indicates that it is more suitable for online

scenarios where changes happen frequently.

Table 3.4: EDD comparison under Scale Change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 16.148 14.745 16.017 13.688 16.066 17.227

Graph+Eucli(W) 22.316 21.519 23.222 19.293 22.875 23.222

Graph+Eucli(S) 13.397 13.173 13.698 11.966 13.276 14.643

Graph+Deriv(Z) 13.738 14.673 16.596 13.274 14.636 16.398

Graph+Deriv(W) 21.979 23.241 25.754 21.622 23.338 26.359

Graph+Deriv(S) 13.019 12.672 14.088 12.099 12.608 13.326

Energy 2.091

GEM 4.217 5 5.094 4.479 5.081 5.367

DFEWMA 19.667 20.697 19.511 19.361 19.403 17.597

CC + Depth 6.444 6.405 6.939 6.452 6.789 6.88

From the results in Table 3.4, we can observe that detecting a change in scale

often requires more iterations. Since the control chart is originally designed for

capturing locational changes, it sometimes fails to detect scale changes, resulting in

a large number of undetected changes. However, in this scenario, the control chart

variant with functional data depth exhibits a relatively low expected detection delay

compared to the other methods. This improvement might result from the functional

depths chosen in Section 2.1, such as TVD and MBD, which are effective in detecting

magnitude changes.

Last but not least, the GEM statistic method once again achieves the lowest

expected detection delay, proving its superiority over the other techniques.

On the other hand, WL|y(t, n) attains the longest expected detection delay
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among all methods, which is due to the fact that it is specifically designed for

locational changes.

3.5 Mean & Scale Change

This indicates that when the change occurs, both situations described in the

previous scenarios take place.

Figure 3.3: Visualization of Mean & Scale Change (case A)

As shown in Table 3.5, the graph-based methods with two different distance

measures yield similar results, with the Euclidean distance performing slightly bet-

ter. Moreover, in case A, the control chart method variant has almost twice the

number of successful detections compared to its counterparts, further proving the

effectiveness of applying functional data depth.

In addition, as stated in the paper, SL|y(t, n) performs slightly better than the

other two statistics in this general change circumstance.

In Table 3.6, the graph-based method with the derivative information distance
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Table 3.5: Success rate comparison under Mean & Scale Change - Success rate, (·)
indicates instances where the algorithm failed to detect any change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 0.54(0) 0.67(1) 0.72(0) 0.83(0) 0.89(0) 0.93(0)

Graph+Eucli(W) 0.60(0) 0.74(1) 0.75(0) 0.85(0) 0.87(0) 0.92(0)

Graph+Eucli(S) 0.65(0) 0.73(1) 0.76(0) 0.87(0) 0.87(0) 0.91(0)

Graph+Deriv(Z) 0.43(5) 0.57(1) 0.75(0) 0.72(0) 0.85(1) 0.87(1)

Graph+Deriv(W) 0.48(1) 0.66(1) 0.71(0) 0.73(0) 0.87(1) 0.89(1)

Graph+Deriv(S) 0.56(1) 0.69(1) 0.74(0) 0.81(0) 0.91(1) 0.90(1)

Energy 0.03(0)

GEM 0.90(0) 0.98(0) 0.98(0) 0.97(0) 0.99(0) 1.00(0)

DFEWMA 0.31(0) 0.39(0) 0.43(2) 0.83(0) 0.83(1) 0.75(2)

CC + Depth 0.73(0) 0.86(0) 0.74(0) 0.94(0) 0.92(0) 0.94(0)

Table 3.6: EDD comparison under Mean & Scale Change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 10.889 11.94 12.333 11 12.135 12.505

Graph+Eucli(W) 13.6 14.905 16.36 13.671 15.598 15.761

Graph+Eucli(S) 11.077 11.548 11.566 10.678 11.506 12.055

Graph+Deriv(Z) 6.744 6.912 7.627 6.639 7.282 7.655

Graph+Deriv(W) 6.812 7.242 7.577 6.986 7.414 7.831

Graph+Deriv(S) 7.089 7.231 7.824 7.099 7.67 7.9

Energy 0.333

GEM 3.867 4.684 4.908 3.897 4.657 4.75

DFEWMA 11.516 13.564 14.116 12.217 13.229 13.293

CC + Depth 5.767 6.233 6.216 5.894 6.141 6.245

measure has a lower expected detection delay compared to the Euclidean distance

across all cases. This indicates its superior performance in capturing the attributes

of functional data when dealing with general changes.
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Furthermore, the GEM statistic again achieves the lowest expected detection

delay, indicating its ability to handle general changes effectively. Similarly, the

control chart method with functional depth also performs well in detecting general

changes.

3.6 Covariance Structure Change

This indicates a change in the distribution of the random error εi,ℓ from a

standard normal distribution N(0, 1) to an exponential distribution Exp(1) when

the change occurs, which also involves a shift in the mean, as shown in the figure.

Figure 3.4: Visualization of Covariance Structure Change (case A)

Surprisingly, in Table 3.7, the control chart method variant shows a large num-

ber of detection failures, primarily due to no detection at all. Furthermore, the

increasing failures from ARL=1000 to ARL=1500 in both cases indicate that the

threshold is already too high for the algorithm to detect a change.

As shown in Table 3.8, although the average run length between methods does
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Table 3.7: Success rate comparison under Covariance Structure Change - Success
rate, (·) indicates instances where the algorithm failed to detect any change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 0.54(0) 0.73(0) 0.79(0) 0.75(0) 0.87(0) 0.91(0)

Graph+Eucli(W) 0.61(0) 0.73(0) 0.81(0) 0.82(0) 0.90(0) 0.90(0)

Graph+Eucli(S) 0.67(0) 0.72(0) 0.82(0) 0.84(0) 0.90(0) 0.88(0)

Graph+Deriv(Z) 0.44(0) 0.63(0) 0.68(1) 0.76(1) 0.75(0) 0.91(0)

Graph+Deriv(W) 0.53(0) 0.72(0) 0.71(1) 0.81(1) 0.76(0) 0.91(0)

Graph+Deriv(S) 0.60(0) 0.79(0) 0.72(1) 0.81(1) 0.78(0) 0.92(0)

Energy 0.57(5)

GEM 0.92(0) 0.95(0) 0.92(0) 1.00(0) 0.95(0) 0.98(0)

DFEWMA 0.31(0) 0.58(0) 0.54(0) 0.69(0) 0.82(0) 0.84(0)

CC + Depth 0.68(4) 0.83(3) 0.68(13) 0.80(13) 0.78(16) 0.64(31)

Table 3.8: EDD comparison under Covariance Structure Change

case A (τ = 150) case B (τ = 100)

In-Control RL 500 1000 1500 500 1000 1500

Graph+Eucli(Z) 9.315 9.89 10.241 9.227 10.184 10.264

Graph+Eucli(W) 9.246 10.096 10.358 9.305 10.056 10.178

Graph+Eucli(S) 9.642 10.222 10.317 9.452 10.189 10.239

Graph+Deriv(Z) 7.705 8.302 8.515 7.5 8.693 9.121

Graph+Deriv(W) 7.642 8.417 8.408 7.457 8.539 8.868

Graph+Deriv(S) 8.267 8.468 8.639 8 8.731 8.891

Energy 11.088

GEM 8.152 9.453 10.489 7.73 9.811 9.418

DFEWMA 6.032 6.069 6.352 6.116 6.366 6.726

CC + Depth 12.338 13.012 12.971 13.363 15.218 12.656

not differ significantly, the GEM statistic method does not have the lowest average

run length in this scenario. Instead, the original control chart method achieves the

lowest average run length. Despite its unsatisfactory results in case A, it outperforms
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its variant in terms of detection power and detection delay in B.

All in all, although the graph-based method with derivative information-inspired

distance measure generally performs slightly worse or comparably to its Euclidean

distance counterpart, its expected detection delay (EDD) tends to be lower. This

might result from the newly considered shape information in the functional sam-

ples, which magnifies the random variation in the distance matrix. Consequently,

the chances of false detections increases, yet the EDD becomes lower.

3.7 Verification of respective ARLs

In this section, aside from the lack of an analytical threshold for the energy

statistic method, we will test whether the recommended thresholds h for the other

three methods can achieve the nominal run length claimed in their respective papers.

Assume nominal ARL=500.

For the graph-based method, the prespecified ARL is provided in the official

package. Therefore, we simply generate a sufficient number of data points and test

the algorithm by setting the ARL parameter in the function accordingly. In 50

runs, we obtained an empirical ARL of 235.6, indicating the threshold is too loose

for detecting changes.

For the GEM CUSUM method, we modify the algorithm to generate data with

no change distribution as the newly arrived data points. If the algorithm stops at a

certain time t, this time point is considered its run length. In 50 runs, we obtained an

empirical ARL of 996.04, indicating the threshold is too strict for detecting changes.
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Lastly, for the control chart method, we test it by setting IC-RL= 1
α

and then

using a dataset with no change point to run 50 times to determine its average run

length. We obtained an empirical ARL of 158.28, indicating the threshold is too

loose for detecting changes as well.

3.8 Remark

In section 2.2, with a minor modification, we can expand the functionality from

merely reporting the alert locations to estimating the location of the change. This is

achieved by identifying the location where the test statistics reach their maximum,

namely by adding n − n1 − 1 to the alert locations. For instance, we can check

whether the algorithm alerts consecutively for a certain number of times, suggesting

a strong signal.

To illustrate, suppose we first check if there are alerts for three consecutive

observations. When verifying the change point locations, if we notice that these

alerts consistently point to nearly the same location (say A), then we can report that

a change has occurred at position A. This method helps ensure that the identified

change point is accurate.

Thus, if we want to pinpoint the exact time event that causes the algorithm to

signal a change, the graph-based method proves to be valuable. By cross-referencing

the alert patterns with the estimated change point locations, we can enhance the

reliability of our change detection process.

Given the underwhelming power of the energy statistic method in the scale

change and mean & scale change scenarios as shown in Fig.3.5, we further examined
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the estimated change point locations and found that most of the change points are

actually relatively close to the real change (i = 150). Thus, we can improve the

algorithm by adjusting the threshold-finding algorithm to yield a more conservative

threshold, namely a bigger h.

(a) Scale Change (case A) (b) Mean & Scale Change (case A)

Figure 3.5: Estimated Change Point Locations (red line as the True Change Point)

On the other hand, the GEM statistics method in section 2.3 provides a solution

with a much lower expected detection delay, proving itself to be the best in terms of

EDD and power. Consequently, if we need to respond to general changes as quickly

as possible, this method would be the best choice.

Furthermore, the control chart method not only provides an intuitive approach

to dealing with functional data, but also performs better in most cases when the

functional samples is summarized using functional data depth. In the future, we can

research which combination of these functional data depth yields the best result.

The approximate execution times for each method under 100 replications are as

follows: the original DFEWMA control chart takes about 1 to 3 hours; the functional

depth variant of control chart method takes 15 to 30 minutes. The graph-based

method usually takes 5 to 10 minutes. The Gem statistic method has the shortest

runtime of 1 to 3 minutes. The most time-consuming is the energy statistic method,

37

http://dx.doi.org/10.6342/NTU202403079


doi:10.6342/NTU202403079

which takes around 5 to 10 hours depending on the scenario.
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Chapter 4 Conclusion

Our motivation is that there doesn’t seem to be any online change point detec-

tion method solely designed for functional data. Therefore, we identified some fea-

sible existing nonparametric techniques for multivariate data and made appropriate

modifications to apply them to our scenario. Moreover, the promising performance

obtained from the control chart with data depth indicates a potential path for future

OCPD methods on functional data.

Given the inconsistency between the empirical ARL and nominal ARL, future

work should focus on reducing this gap. This difference may stem from the dif-

ferent autocorrelation settings in our simulation compared to the papers’ settings,

where the assumption is an independent case. For the energetic method, tuning the

threshold training algorithm or increasing the number of runs under a prespecified

IC-RL, while addressing the time-consuming issue, would be beneficial for achieving

more satisfactory results.

While using the graph-based method, we might consider the results from the

new derivative distance metric when determining the threshold in the future. Be-

sides, we could try to improve the power while keeping the EDD low by making a

few adjustments to the distance function or altering it to other concepts, such as
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optimal L2. Regarding the GEM statistic method, future research could explore us-

ing other statistics that are more applicable to functional data or applying different

stopping rules besides CUSUM to signal a change.

Additionally, our research only considers the autocorrelation parameter ρ as 0.2,

indicating a low dependence scenario. It would be valuable to also consider scenarios

with ρ = 0 (independent case) and scenarios with strong dependence (ρ = 0.5) to

obtain a comprehensive understanding of these methods’ overall performance. In the

independent case (ρ = 0), the methods are expected to perform well, as they gener-

ally assume independence between data points. Moreover, our simulation settings

are relatively ideal, which further contributes to their expected strong performance

in the independent scenario.

Future research could consider more realistic conditions, such as functional data

collected on inconsistent time grids. This would better reflect real-world scenarios

and provide insights into how these methods perform under less ideal conditions.

In such scenarios, it may be necessary to employ techniques like interpolation and

smoothing to standardize the data. However, smoothing can introduce its own chal-

lenges, such as measurement errors, which need to be carefully managed. By incor-

porating these additional scenarios and complexities, we can gain a more thorough

understanding of the robustness and applicability of the proposed methods.

Regarding the composition of the depth measures in the control chart method

variant, we have only tested one combination, based on the intuitive idea of con-

solidating their strengths. However, there is potential to experiment with various

different combinations of these measures in future research. By exploring various
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configurations, we can better understand their individual and collective contribu-

tions to the overall performance and possibly identify more effective combinations.

In conclusion, our approach is not merely about applying existing methods but

rather about carefully considering the unique characteristics of functional data. For

instance, we incorporated a distance metric that includes first-order derivatives to

account for shape variations, which are not considered in multivariate data. On

top of that, we applied functional data depths to the control chart, combining the

various information summarized by these different depth measures, which also turns

out to be the second best method in our simulations. These thoughtful integrations

ensure that the nuances of functional data are captured, leading to more accurate

and effective online change point detection.
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Appendix A — Depth definitions

In terms of the corresponding definitions of the selected depths used in 2.1:

Extremal depth (ED) Narisetty and Nair (2016): Before defining ED, we first

illustrate how its left-tail stochastic ordering works. Let S := {f1(t), f2(t), . . . , fn(t)}

be a collection of n functional observations with t ∈ [0, 1], and g(t) be a given

function that may or may not be a member of S. For each fixed t ∈ [0, 1], define

the pointwise depth of g(t) with respect to S as

Dg(t, S) := 1−
∣∣∣∣∣ 1n

n∑
i=1

[1{fi(t) < g(t)} − 1{fi(t) > g(t)}]
∣∣∣∣∣ ,

and let Φg(·) be the cumulative distribution function (CDF) of the distinct values

taken by Dg(t, S) as t varies in [0, 1]. Supposed having two functions g and h with

depth CDFs Φg and Φh. Let 0 ≤ d1 < . . . < dM ≤ 1 be the ordered elements of their

depth levels combined. If Φh(d1) > Φg(d1), then h ≺ g, meaning h is more extreme

than g, and vice versa. If Φh(d1) = Φg(d1), we move to d2 and make a similar

comparison. This process is repeated until the tie is broken. If for all i = 1, . . . ,M ,

Φh(di) = Φg(di), the two functions are viewed as equivalent in terms of depth and

are denoted as g ∼ h. Finally, we have ED of a function g with respect to the sample
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functions S = {f1, . . . , fn} defined as:

ED(g, S) = #{i : g ⪰ fi}
n

.

where g ⪰ fi if either g ≻ fi or g ∼ fi.

Linfinity depth (L∞D) Long and Xie (2016): This depth is simply the general-

ization of the Lp multivariate depth to functional case. Let I be some compact inter-

val of R and C(I) be the set of continuous functions on I. Let X = {X(t) : t ∈ I}

be a process in C(I) with distribution P . For any functions g, h ∈ C(I), define

∥g − h∥∞ = supt∈C(I) |g(t)− h(t)|. The L∞ depth for functional data is then

L∞D(x, P ) = (1 + E[∥x−X∥∞])−1.

Modified band depth (MBD) López-Pintado and Romo (2009): This is a more

flexible version of band depth by measuring the set where the function is inside the

corresponding band. For any of the functions f in f1, . . . , fn and for 2 ≤ j ≤ n,

let Aj(f) be the set in the interval I where the function f is in the band deter-

mined by the functions fi1 , . . . , fij
. If λ is the Lebesgue measure on I, λr(Aj(f)) =

λ(Aj(f))/λ(I) stands for the ”proportion of time” that f is in the band. Now,

MBD(j)
n (f) =

(
n

j

)−1 ∑
1≤i1<i2<···<ij≤n

λr(A(f ; fi1 , fi2 , . . . , fij
)), 2 ≤ j ≤ n.

Let J be a fixed value with 2 ≤ j ≤ n. For functions f1, . . . , fn, the MBD of any of

these curves f is

MBDn,J(f) =
J∑

j=2
MBD(j)

n (f).
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Projection depth (PD) Zuo and Serfling (2000): Suppose a set of data points

X = (x1, . . . , xn) and let P be the empirical probability measure of X. The d − 1

dimensional unit sphere in Rd is denoted by Sd−1. The PD is given by:

DP (z | X) = min
P∈Sd−1

(
1 + |⟨z,P⟩ −med(⟨X,P⟩)|

MAD(⟨X,P⟩)

)−1

,

where ⟨X,P⟩ is the univariate data set obtained by projecting each point of X on

P, med is the univariate median, and MAD is the median absolute deviation from

the median.

Total variation depth (TVD) Huang and Sun (2019): Let X be a real-valued

stochastic process on T with distribution FX , where T is an interval in R. Denote f

as a function, and f(t) as the functional value at a given t. Define Rf (t) = 1{X(t) ≤

f(t)}. Therefore, we have pf (t) = E[Rf (t)] = P(X(t) ≤ f(t)), which represents the

relative position of f(t) w.r.t. X(t). For a given function f(t) at each fixed t,

we introduce the pointwise TVD of f(t) as Df (t) = var(Rf (t)) = pf (t)(1 − pf (t)).

Eventually, we define the functional TVD for the given function f(t) on T as:

TVD(f) =
∫

T
w(t)Df (t)dt,

where w(t) is a weight function defined on T .
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