請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94672完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 李湘怡 | zh_TW |
| dc.contributor.author | Hsiang-Yi Li | en |
| dc.date.accessioned | 2024-08-16T17:26:44Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | 李奕慧. 碳源對 Pantoea vagans M17 表面移行及生物膜形成的影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣, 2023.
吳奕蓉. 探討 Pantoea spp. 對截切香瓜品質影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣, 2021. 鄧婷云. Pantoea vagans 之表面移行及生物膜生成能力對截切香瓜品質之影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣, 2022. 廖婕伶. 探討 Luteibacter sp. PcI1001 耐受鎵、銦和鉈之特性分析. 國立臺灣大學生物資源暨農學院農業化學系碩士論文. 臺北, 臺灣, 2021. 劉佳容. 移動性對 Pseudomonas sp. XP1-6 生物膜形成與定殖於番茄根部之影響. 國立臺灣大學生物資源暨農學院農業化學系碩士論文. 臺北, 臺灣, 2022. Aslam, M.; Pei, P.; Ye, P.; Li, T.; Liang, H.; Zhang, Z.; Ke, X.; Chen, W.; Du, H. Unraveling the diverse profile of N-acyl homoserine lactone signals and their role in the regulation of biofilm formation in Porphyra haitanensis-associated Pseudoalteromonas galatheae. Microorganisms. 2023, 11(9). Bönemann, G.; Pietrosiuk, A.; Diemand, A.; Zentgraf, H.; Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type Ⅵ protein secretion. Embo J. 2009, 28(4), 315-325. Bai, A. J.; Rai, V. R. Bacterial quorum sensing and food industry. Compr. Rev. Food Sci. Food Saf. 2011, 10(3), 183-193. Bai, X.; Nakatsu, C. H.; Bhunia, A. K. Bacterial biofilms and their implications in pathogenesis and food safety. Foods. 2021, 10(9), 2117. Beck von Bodman, S.; Farrand, S. K. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 1995, 177(17), 5000-5008. Brackman, G.; Risseeuw, M.; Celen, S.; Cos, P.; Maes, L.; Nelis, H. J.; Van Calenbergh, S.; Coenye, T. Synthesis and evaluation of the quorum sensing inhibitory effect of substituted triazolyldihydrofuranones. Bioorg. Med. Chem. 2012, 20(15), 4737-4743. Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 2008, 31(6-8), 447-460. Brady, C. L.; Venter, S. N.; Cleenwerck, I.; Engelbeen, K.; Vancanneyt, M.; Swings, J.; Coutinho, T. A. Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int. J. Syst. Evol. Microbiol. 2009, 59(9), 2339-2345. Braun-Kiewnick, A.; Jacobsen, B. J.; Sands, D. C. Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology. 2000, 90(4), 368-375. Carlier, A.; Burbank, L.; von Bodman, S. B. Identification and characterization of three novel EsaI/EsaR quorum-sensing controlled stewartan exopolysaccharide biosynthetic genes in Pantoea stewartii ssp. stewartii. Mol. Microbiol. 2009, 74(4), 903-913. Chalupowicz, L.; Manulis-Sasson, S.; Itkin, M.; Sacher, A.; Sessa, G.; Barash, I. Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 2008, 21(8), 1094-1105. Chan, K.-G.; Cheng, H. J.; Chen, J. W.; Yin, W.-F.; Ngeow, Y. F. Tandem mass spectrometry detection of quorum sensing activity in multidrug resistant clinical isolate Acinetobacter baumannii. Sci. World J. 2014, 2014, 891041. Cho, J. S.; Yang, D.; Prabowo, C. P. S.; Ghiffary, M. R.; Han, T.; Choi, K. R.; Moon, C. W.; Zhou, H.; Ryu, J. Y.; Kim, H. U.; Lee, S. Y. Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs. Nat. Commun. 2023, 14(1), 2359. Déziel, E.; Lépine, F.; Milot, S.; Villemur, R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology. 2003, 149(Pt 8), 2005-2013. Dal Bello, F.; Zorzi, M.; Aigotti, R.; Medica, D.; Fanelli, V.; Cantaluppi, V.; Amante, E.; Orlandi, V. T.; Medana, C. Targeted and untargeted quantification of quorum sensing signalling molecules in bacterial cultures and biological samples via HPLC-TQ MS techniques. Anal. Bioanal. Chem.. 2021, 413(3), 853-864. Daniels, R.; Vanderleyden, J.; Michiels, J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 2004, 28(3), 261-289. Datsenko, K. A.; Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 2000, 97(12), 6640-6645. Davies, D. G.; Parsek, M. R.; Pearson, J. P.; Iglewski, B. H.; Costerton, J. W.; Greenberg, E. P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998, 280(5361), 295-298. de Kievit, T. R. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 2009, 11(2), 279-288. De Maayer, P.; Venter, S. N.; Kamber, T.; Duffy, B.; Coutinho, T. A.; Smits, T. H. Comparative genomics of the type Ⅵ secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 2011, 12, 576. Defoirdt, T.; Benneche, T.; Brackman, G.; Coenye, T.; Sorgeloos, P.; Scheie, A. A. A quorum sensing-disrupting brominated thiophenone with a promising therapeutic potential to treat luminescent vibriosis. PLoS One. 2012, 7(7), e41788. Dixit, S.; Dubey, R. C.; Maheshwari, D. K.; Seth, P. K.; Bajpai, V. K. Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation. Braz. J. Microbiol. 2017, 48(4), 815-821. Domka, J.; Lee, J.; Wood, T. K. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. Microbiol. 2006, 72(4), 2449-2459. Dong, Y. H.; Wang, L. Y.; Zhang, L. H. Quorum-quenching microbial infections: Mechanisms and implications. Philos. Trans. R. Soc., B. 2007, 362(1483), 1201-1211. Donlan, R. M. Biofilms: Microbial life on surfaces. Emerging Infect. Dis. 2002, 8(9), 881-890. Douzi, B.; Brunet, Y. R.; Spinelli, S.; Lensi, V.; Legrand, P.; Blangy, S.; Kumar, A.; Journet, L.; Cascales, E.; Cambillau, C. Structure and specificity of the type Ⅵ secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci. Rep. 2016, 6(1), 34405. Dutkiewicz, J.; Mackiewicz, B.; Kinga Lemieszek, M.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part Ⅲ. Deleterious effects: Infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016, 23(2), 197-205. Eberl, L.; Molin, S.; Givskov, M. Surface motility of Serratia liquefaciens MG1. J. Bacteriol. 1999, 181(6), 1703-1712. Enos-Berlage, J. L.; Guvener, Z. T.; Keenan, C. E.; McCarter, L. L. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 2005, 55(4), 1160-1182. Förster, A.; Planamente, S.; Manoli, E.; Lossi, N. S.; Freemont, P. S.; Filloux, A. Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC, and the accessory protein TagJ/HsiE1 distinguishes type Ⅵ secretion classes. J. Biol. Chem. 2014, 289(47), 33032-33043. Feng, Y.; Shen, D.; Song, W. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 2006, 100(5), 938-945. Filutowicz, M.; Jonczyk, P. Essential role of the gyrB gene product in the transcriptional event coupled to dnaA-dependent initiation of Escherichia coli chromosome replication. Mol. Gen. Genet. 1981, 183(1), 134-138. Filutowicz, M.; Jonczyk, P. The gyrB gene product functions in both initiation and chain polymerization of Escherichia coli chromosome replication: Suppression of the initiation deficiency in gyrB-ts mutants by a class of rpoB mutations. Mol. Gen. Genet. 1983, 191(2), 282-287. Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176(2), 269-275. Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin, S.; Steinberg, P. D.; Kjelleberg, S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 1996, 178(22), 6618-6622. Green, E. R.; Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectrum. 2016, 4(1). Hancock, V.; Klemm, P. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect. Immun. 2007, 75(2), 966-976. Hanzelka, B. L.; Stevens, A. M.; Parsek, M. R.; Crone, T. J.; Greenberg, E. P. Mutational analysis of the Vibrio fischeri LuxI polypeptide: Critical regions of an autoinducer synthase. J. Bacteriol. 1997, 179(15), 4882-4887. Hayek, M.; Baraquet, C.; Lami, R.; Blache, Y.; Molmeret, M. The marine bacterium Shewanella woodyi produces C(8)-HSL to regulate bioluminescence. Microb. Ecol. 2020, 79(4), 865-881. Hense, B. A.; Schuster, M. Core principles of bacterial autoinducer systems. Microbiol. Mol. Biol. Rev. 2015, 79(1), 153-169. Hentzer, M.; Wu, H.; Andersen, J. B.; Riedel, K.; Rasmussen, T. B.; Bagge, N.; Kumar, N.; Schembri, M. A.; Song, Z.; Kristoffersen, P.; Manefield, M.; Costerton, J. W.; Molin, S.; Eberl, L.; Steinberg, P.; Kjelleberg, S.; Høiby, N.; Givskov, M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J. 2003, 22(15), 3803-3815. Herrera, C. M.; Koutsoudis, M. D.; Wang, X.; von Bodman, S. B. Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize. Mol. Plant-Microbe Interact. 2008, 21(10), 1359-1370. Heydorn, A.; Ersbøll, B.; Kato, J.; Hentzer, M.; Parsek, M. R.; Tolker-Nielsen, T.; Givskov, M.; Molin, S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 2002, 68(4), 2008-2017. Huang, W. M. Bacterial diversity based on type Ⅱ DNA topoisomerase genes. Annu. Rev. Genet. 1996, 30, 79-107. Huson, D. H.; Rupp, R.; Scornavacca, C. Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press: Cambridge, 2010. Janssens, J. C.; Steenackers, H.; Robijns, S.; Gellens, E.; Levin, J.; Zhao, H.; Hermans, K.; De Coster, D.; Verhoeven, T. L.; Marchal, K.; Vanderleyden, J.; De Vos, D. E.; De Keersmaecker, S. C. Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 2008, 74(21), 6639-6648. Jatt, A. N.; Tang, K.; Liu, J.; Zhang, Z.; Zhang, X.-H. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiol. Ecol. 2014, 91(2), 1-13. Jiang, J.; Wu, S.; Wang, J.; Feng, Y. AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic Microbiol. 2015, 55(5), 607-616. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 2010, 8(9), 634-644. Kher, H. L.; Krishnan, T.; Letchumanan, V.; Hong, K. W.; How, K. Y.; Lee, L. H.; Tee, K. K.; Yin, W. F.; Chan, K. G. Characterization of quorum sensing genes and N-acyl homoserine lactones in Citrobacter amalonaticus strain YG6. Gene. 2019, 684, 58-69. Kjelleberg, S.; Steinberg, P. D.; Holmstrom, C.; Back, A. Inhibition of Gram positive bacteria. Google Patents, 2006. Korber, D. R.; Lawrence, J. R.; Sutton, B.; Caldwell, D. E. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot− Pseudomonas fluorescens. Microb. Ecol. 1989, 18(1), 1-19. Koutsoudis, M. D.; Tsaltas, D.; Minogue, T. D.; von Bodman, S. B. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(15), 5983-5988. Lade, H.; Paul, D.; Kweon, J. H. Quorum quenching mediated approaches for control of membrane biofouling. Int. J. Biol. Sci. 2014, 10(5), 550-565. Landini, P.; Antoniani, D.; Burgess, J. G.; Nijland, R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol. 2010, 86(3), 813-823. Laue, B. E.; Jiang, Y.; Chhabra, S. R.; Jacob, S.; Stewart, G. S.; Hardman, A.; Downie, J. A.; O’Gara, F.; Williams, P. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology. 2000, 146(10), 2469-2480. Lesic, B.; Starkey, M.; He, J.; Hazan, R.; Rahme, L. G. Quorum sensing differentially regulates Pseudomonas aeruginosa type Ⅵ secretion locus Ⅰ and homologous loci Ⅱ and Ⅲ, which are required for pathogenesis. Microbiology. 2009, 155(Pt 9), 2845-2855. Li, S.; Liang, H.; Wei, Z.; Bai, H.; Li, M.; Li, Q.; Qu, M.; Shen, X.; Wang, Y.; Zhang, L. An osmoregulatory mechanism operating through OmpR and LrhA controls the motile-sessile switch in the plant growth-promoting bacterium Pantoea alhagi. Appl. Environ. Microbiol. 2019, 85(10). Li, X. T.; Thomason, L. C.; Sawitzke, J. A.; Costantino, N.; Court, D. L. Positive and negative selection using the tetA-sacB cassette: Recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res. 2013, 41(22), e204. Li, Y. H.; Lau, P. C.; Lee, J. H.; Ellen, R. P.; Cvitkovitch, D. G. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 2001, 183(3), 897-908. Liu, G. Y.; Guo, B. Q.; Chen, W. N.; Cheng, C.; Zhang, Q. L.; Dai, M. B.; Sun, J. R.; Sun, P. H.; Chen, W. M. Synthesis, molecular docking, and biofilm formation inhibitory activity of 5‐substituted 3, 4‐dihalo‐5H‐furan‐2‐one derivatives on Pseudomonas aeruginosa. Chem. Biol. Drug Des. 2012, 79(5), 628-638. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001, 25(4), 402-408. Lv, L.; Luo, J.; Ahmed, T.; Zaki, H. E. M.; Tian, Y.; Shahid, M. S.; Chen, J.; Li, B. Beneficial effect and potential risk of Pantoea on rice production. Plants. 2022, 11(19). Maeda, T.; García-Contreras, R.; Pu, M.; Sheng, L.; Garcia, L. R.; Tomás, M.; Wood, T. K. Quorum quenching quandary: Resistance to antivirulence compounds. Isme J. 2012, 6(3), 493-501. Manefield, M.; Rasmussen, T. B.; Henzter, M.; Andersen, J. B.; Steinberg, P.; Kjelleberg, S.; Givskov, M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 2002, 148(Pt 4), 1119-1127. Mani, S.; Nair, J. Pantoea infections in the neonatal intensive care unit. Cureus. 2021, 13(2), e13103. Maphosa, S.; Moleleki, L. N.; Motaung, T. E. Bacterial secretion system functions: Evidence of interactions and downstream implications. Microbiology. 2023, 169(4). Martins, M. L.; Pinto, U. M.; Riedel, K.; Vanetti, M. C.; Mantovani, H. C.; de Araújo, E. F. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk. Braz J. Microbiol. 2014, 45(3), 1039-1046. Martins, M. L.; Pinto, U. M.; Riedel, K.; Vanetti, M. C. D. Quorum sensing and spoilage potential of psychrotrophic Enterobacteriaceae isolated from milk. BioMed Res. Int. 2018, 2018, 2723157. McClean, K. H.; Winson, M. K.; Fish, L.; Taylor, A.; Chhabra, S. R.; Camara, M.; Daykin, M.; Lamb, J. H.; Swift, S.; Bycroft, B. W.; Stewart, G.; Williams, P. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. 1997, 143 ( Pt 12), 3703-3711. McLean, R. J. C.; Whiteley, M.; Stickler, D. J.; Fuqua, W. C. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 1997, 154(2), 259-263. Merighi, M.; Majerczak, D. R.; Stover, E. H.; Coplin, D. L. The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Mol. Plant-Microbe Interact. 2003, 16(3), 238-248. Morohoshi, T.; Nakamura, Y.; Yamazaki, G.; Ishida, A.; Kato, N.; Ikeda, T. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J. Bacteriol. 2007, 189(22), 8333-8338. Mougous, J. D.; Cuff, M. E.; Raunser, S.; Shen, A.; Zhou, M.; Gifford, C. A.; Goodman, A. L.; Joachimiak, G.; Ordoñez, C. L.; Lory, S.; Walz, T.; Joachimiak, A.; Mekalanos, J. J. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006, 312(5779), 1526-1530. Muñoz-Cázares, N.; Castillo-Juárez, I.; García-Contreras, R.; Castro-Torres, V. A.; Díaz-Guerrero, M.; Rodríguez-Zavala, J. S.; Quezada, H.; González-Pedrajo, B.; Martínez-Vázquez, M. A brominated furanone inhibits Pseudomonas aeruginosa quorum sensing and type Ⅲ secretion, attenuating its virulence in a murine cutaneous abscess model. Biomedicines. 2022, 10(8). Nadarasah, G.; Stavrinides, J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiology. 2014, 160. Nasser, W.; Bouillant, M. L.; Salmond, G.; Reverchon, S. Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N‐acyl‐homoserine lactone signal molecules. Mol. Microbiol. 1998, 29(6), 1391-1405. Nybo, K. qPCR efficiency calculations. Biotechniques. 2011, 51(6), 401-402. O'Toole, G. A.; Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998, 30(2), 295-304. Ortori, C. A.; Dubern, J.-F.; Chhabra, S. R.; Cámara, M.; Hardie, K.; Williams, P.; Barrett, D. A. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal. Bioanal. Chem. 2011, 399(2), 839-850. Otton, L. M.; da Silva Campos, M.; Meneghetti, K. L.; Corção, G. Influence of twitching and swarming motilities on biofilm formation in Pseudomonas strains. Arch. Microbiol. 2017, 199(5), 677-682. Ou, B.; Lv, H.; Ge, H.; Fu, D.; Lin, X.; Huang, S.; Chen, X.; Liu, Y.; Li, S.; Liu, W.; Huang, L.; Yang, Y.; Zhang, M. Deletion of the cheZ gene results in the loss of swimming ability and the decrease of adhesion ability to Caco-2 cells in Escherichia coli Nissle 1917. Folia Microbiol. 2022. Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol. 2020, 104(5), 1871-1881. Pan, Y.; Zhao, Y.; Zeng, H. R.; Wu, J. Q.; Song, Y. Y.; Rao, Y. H.; Li, G. Q.; Jin, L. Reference genes for expression analyses by qRT-PCR in Enterobacter cancerogenus. Microorganisms. 2024, 12(5). Papenfort, K.; Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14(9), 576-588. Parsek, M. R.; Schaefer, A. L.; Greenberg, E. P. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol. 1997, 26(2), 301-310. Partridge, J. D.; Harshey, R. M. Swarming: Flexible roaming plans. J. Bacteriol. 2013, 195(5), 909-918. Patel, N. M.; Moore, J. D.; Blackwell, H. E.; Amador-Noguez, D. Identification of unanticipated and novel N-acyl L-homoserine lactones (AHLs) using a sensitive non-targeted LC-MS/MS method. PLoS One. 2016, 11(10), e0163469. Pearson, J. P.; Gray, K. M.; Passador, L.; Tucker, K. D.; Eberhard, A.; Iglewski, B. H.; Greenberg, E. P. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U. S. A. 1994, 91(1), 197-201. Pearson, J. P.; Passador, L.; Iglewski, B. H.; Greenberg, E. P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 1995, 92(5), 1490-1494. Pelicic, V.; Reyrat, J. M.; Gicquel, B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J. Bacteriol. 1996, 178(4), 1197-1199. Pena, R. T.; Blasco, L.; Ambroa, A.; González-Pedrajo, B.; Fernández-García, L.; López, M.; Bleriot, I.; Bou, G.; García-Contreras, R.; Wood, T. K.; Tomás, M. Relationship between quorum sensing and secretion systems. Front. Microbiol. 2019, 10, 1100. Pinto, U. M.; de Souza Viana, E.; Martins, M. L.; Vanetti, M. C. D. Detection of acylated homoserine lactones in Gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control. 2007, 18(10), 1322-1327. Ponnusamy, K.; Paul, D.; Sam Kim, Y.; Kweon, J. H. 2(5H)-furanone: A prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Braz. J. Microbiol. 2010, 41(1), 227-234. Purevdorj, B.; Costerton, J. W.; Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 2002, 68(9), 4457-4464. Rahman, M. R. T.; Lou, Z.; Zhang, J.; Yu, F.; Timilsena, Y. P.; Zhang, C.; Zhang, Y.; Bakry, A. M. Star anise (Illicium verum Hook. F.) as quorum sensing and biofilm formation inhibitor on foodborne bacteria: Study in milk. J. Food Prot. 2017, 80(4), 645-653. Ramamurthy, T.; Ghosh, A.; Chowdhury, G.; Mukhopadhyay, A. K.; Dutta, S.; Miyoshi, S. I. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 952491. Ren, D.; Bedzyk, L. A.; Ye, R. W.; Thomas, S. M.; Wood, T. K. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. B iotechnol. Bioeng. 2004, 88(5), 630-642. Ren, D.; Sims, J. J.; Wood, T. K. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 2001, 3(11), 731-736. Ren, D.; Sims, J. J.; Wood, T. K. Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett. Appl. Microbiol. 2002, 34(4), 293-299. Riedel, C. U.; Monk, I. R.; Casey, P. G.; Waidmann, M. S.; Gahan, C. G. M.; Hill, C. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 2009, 71(5), 1177-1189. Sana, T. G.; Hachani, A.; Bucior, I.; Soscia, C.; Garvis, S.; Termine, E.; Engel, J.; Filloux, A.; Bleves, S. The second type Ⅵ secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J. Biol. Chem. 2012, 287(32), 27095-27105. Sana, T. G.; Soscia, C.; Tonglet, C. M.; Garvis, S.; Bleves, S. Divergent control of two type Ⅵ secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One. 2013, 8(10), e76030. Sauer, K.; Camper, A. K.; Ehrlich, G. D.; Costerton, J. W.; Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 2002, 184(4), 1140-1154. Schäfer, A.; Tauch, A.; Jäger, W.; Kalinowski, J.; Thierbach, G.; Pühler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994, 145(1), 69-73. Schmittgen, T. D.; Livak, K. J. Analyzing real-time PCR data by the comparative Ct method. Nat. Protoc. 2008, 3(6), 1101-1108. Shadel, G. S.; Young, R.; Baldwin, T. O. Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: Identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744. J. Bacteriol. 1990, 172(7), 3980-3987. Sheng, L.; Olsen, S. A.; Hu, J.; Yue, W.; Means, W. J.; Zhu, M. J. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC "top-six" non-O157 Shiga toxin producing E. coli. Int. J. Food Microbiol. 2016, 229, 24-32. Shetye, G. S.; Singh, N.; Gao, X.; Bandyopadhyay, D.; Yan, A.; Luk, Y.-Y. Structures and biofilm inhibition activities of brominated furanones for Escherichia coli and Pseudomonas aeruginosa. MedChemComm. 2013, 4(7), 1079-1084. Shrout, J. D.; Chopp, D. L.; Just, C. L.; Hentzer, M.; Givskov, M.; Parsek, M. R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 2006, 62(5), 1264-1277. Shyntum, D. Y.; Theron, J.; Venter, S. N.; Moleleki, L. N.; Toth, I. K.; Coutinho, T. A. Pantoea ananatis utilizes a type Ⅵ secretion system for pathogenesis and bacterial competition. Mol. Plant-Microbe Interact. 2015, 28(4), 420-431. Sikdar, R.; Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert Rev. Anti-Infect. Ther. 2020, 18(12), 1221-1233. Singh, R. P.; Kumari, K. Bacterial type Ⅵ secretion system (T6SS): An evolved molecular weapon with diverse functionality. Biotechnol. Lett. 2023, 45(3), 309-331. Smits, T. H.; Rezzonico, F.; Kamber, T.; Blom, J.; Goesmann, A.; Ishimaru, C. A.; Frey, J. E.; Stockwell, V. O.; Duffy, B. Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1. PLoS One. 2011, 6(7), e22247. Smits, T. H. M.; Rezzonico, F.; Pelludat, C.; Goesmann, A.; Frey, J. E.; Duffy, B. Genomic and phenotypic characterization of a nonpigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530-kb megaplasmid pPag3. FEMS Microbiol. Lett. 2010, 308(1), 48-54. Sperandio, V.; Li, C. C.; Kaper, J. B. Quorum-sensing Escherichia coli regulator A: A regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect. Immun. 2002, 70(6), 3085-3093. Stevens, A. M.; Queneau, Y.; Soulère, L.; von Bodman, S.; Doutheau, A. Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem. Rev. 2011, 111(1), 4-27. Stickler, D. J.; Morris, N. S.; McLean, R. J.; Fuqua, C. Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbiol. 1998, 64(9), 3486-3490. Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M. W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9-16. Swift, S.; Karlyshev, A. V.; Fish, L.; Durant, E. L.; Winson, M. K.; Chhabra, S. R.; Williams, P.; Macintyre, S.; Stewart, G. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 1997, 179(17), 5271-5281. Teschler, J. K.; Jiménez-Siebert, E.; Jeckel, H.; Singh, P. K.; Park, J. H.; Pukatzki, S.; Nadell, C. D.; Drescher, K.; Yildiz, F. H. Vxrb influences antagonism within biofilms by controlling competition through extracellular matrix production and type 6 secretion. mBio. 2022, 13(4), e0188522. Tiwari, R.; Karthik, K.; Rana, R.; Malik, Y.; Dhama, K.; Joshi, S. Quorum sensing inhibitors / antagonists countering food spoilage bacteria – need molecular and pharmaceutical intervention for protecting current issues of food safety. Int. J. Pharmacol. 2016, 12. Vicario, J. C.; Dardanelli, M. S.; Giordano, W. Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiol. Lett. 2015, 362(2), 1-6. von Bodman, S. B.; Majerczak, D. R.; Coplin, D. L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. U. S. A. 1998, 95(13), 7687-7692. Wang, D.; Chen, H.; Li, J.; Li, T.; Ren, L.; Liu, J.; Shen, Y. Screening and validation of quorum quenching enzyme PF2571 from Pseudomonas fluorescens strain PF08 to inhibit the spoilage of red sea bream filets. Int. J. Food Microbiol. 2022, 362, 109476. Wang, L.; Hashimoto, Y.; Tsao, C. Y.; Valdes, J. J.; Bentley, W. E. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J. Bacteriol. 2005, 187(6), 2066-2076. Whitehead, N. A.; Barnard, A. M. L.; Slater, H.; Simpson, N. J. L.; Salmond, G. P. C. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 2001, 25(4), 365-404. Williams, P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007, 153(Pt 12), 3923-3938. Worlitzer, V. M.; Jose, A.; Grinberg, I.; Bär, M.; Heidenreich, S.; Eldar, A.; Ariel, G.; Be'er, A. Biophysical aspects underlying the swarm to biofilm transition. Sci. Adv. 2022, 8(24), eabn8152. Wu, H. Y.; Chung, P. C.; Shih, H. W.; Wen, S. R.; Lai, E. M. Secretome analysis uncovers an Hcp-family protein secreted via a type Ⅵ secretion system in Agrobacterium tumefaciens. J. Bacteriol. 2008, 190(8), 2841-2850. Yan, S.; Wu, G. Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa? Front. Microbiol. 2019, 10, 1582. Yang, J.; Sun, B.; Huang, H.; Jiang, Y.; Diao, L.; Chen, B.; Xu, C.; Wang, X.; Liu, J.; Jiang, W.; Yang, S. High-efficiency scarless genetic modification in Escherichia coli by using lambda Red recombination and I-sceI cleavage. Appl. Environ. Microbiol. 2014, 80(13), 3826-3834. Yao, B.; Huang, R.; Zhang, Z.; Shi, S. Diverse virulence attributes of Pantoea alfalfae sp. nov. CQ10 responsible for bacterial leaf blight in alfalfa revealed by genomic analysis. Int. J. Mol. Sci. 2023, 24(9). Yates, E. A.; Philipp, B.; Buckley, C.; Atkinson, S.; Chhabra, S. R.; Sockett, R. E.; Goldner, M.; Dessaux, Y.; Cámara, M.; Smith, H.; Williams, P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 2002, 70(10), 5635-5646. Yu, D.; Ellis, H. M.; Lee, E. C.; Jenkins, N. A.; Copeland, N. G.; Court, D. L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(11), 5978-5983. Yunos, N. Y.; Tan, W. S.; Mohamad, N. I.; Tan, P. W.; Adrian, T. G.; Yin, W. F.; Chan, K. G. Discovery of Pantoea rodasii strain ND03 that produces N-(3-oxo-hexanoyl)-L-homoserine lactone. Sensors. 2014, 14(5), 9145-9152. Zaghlool, M.; Al-Khayyat, S. In silico structural analysis of quorum sensing genes in Vibrio fischeri. Mol. Biol. Res. Commun. 2015, 4(3), 115-124. Zhang, N.; He, J.; Muhammad, A.; Shao, Y. CRISPR/CAS9-mediated genome editing for Pseudomonas fulva, a novel Pseudomonas species with clinical, animal, and plant-associated isolates. Int. J. Mol. Sci. 2022, 23(10). Zhang, W.; Xu, S.; Li, J.; Shen, X.; Wang, Y.; Yuan, Z. Modulation of a thermoregulated type Ⅵ secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol. 2011, 193(5), 351-363. Zhao, X.; Gao, L.; Ali, Q.; Yu, C.; Yuan, B.; Huang, H.; Long, J.; Gu, Q.; Wu, H.; Gao, X. A type Ⅵ secretion system effector TseG of Pantoea ananatis is involved in virulence and antibacterial activity. Mol. Plant. Pathol. 2024, 25(3), e13442. Zhao, Y.; Chen, P.; Nan, W.; Zhi, D.; Liu, R.; Li, H. The use of (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone for controlling acid mine drainage through the inhibition of Acidithiobacillus ferrooxidans biofilm formation. Bioresour. Technol. 2015, 186, 52-57. Zheng, J.; Ho, B.; Mekalanos, J. J. Genetic analysis of anti-amoebae and anti-bacterial activities of the type Ⅵ secretion system in Vibrio cholerae. PLoS One. 2011, 6(8), e23876. Zheng, L.; Wang, S.; Ling, M.; Lv, Z.; Lin, S. Salmonella enteritidis Hcp distribute in the cytoplasm and regulate TNF signaling pathway in BHK-21 cells. 3 Biotech. 2020, 10(7), 301. Zhou, G.; Li, L. J.; Shi, Q. S.; Ouyang, Y. S.; Chen, Y. B.; Hu, W. F. Effects of nutritional and environmental conditions on planktonic growth and biofilm formation of Citrobacter werkmanii BF-6. J Microbiol. Biotechnol. 2013, 23(12), 1673-1682. Zhou, G.; Peng, H.; Wang, Y. S.; Huang, X. M.; Xie, X. B.; Shi, Q. S. Complete genome sequence of Citrobacter werkmanii strain BF-6 isolated from industrial putrefaction. BMC Genomics. 2017, 18(1), 765. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94672 | - |
| dc.description.abstract | 群體感應 (quorum sensing, QS) 允許細菌感知自誘導劑的變化,在細菌間溝通並因應環境變動。自誘導劑的濃度反映族群密度,細菌據以調節基因表現並展現特定集體行為,包含生物膜生成與表面移行。這兩個表型可能促進細菌導致食品腐敗。研究表示 Pantoea spp. 的 QS 系統以 N-酰基-L-高絲氨酸內酯 (N-acyl-L-homoserine lactones, AHLs) 作為自誘導劑。實驗室先前從腐敗香瓜中篩選出 Pantoea vagans M17,具明顯生物膜生成與表面移行能力。為探討 P. vagans M17 的 QS 系統,本研究先利用多重序列比對確認 P. vagans M17 的合成酶 PagI 及受體 PagR 序列,與 P. vagans C9-1 的序列高度相似,且含有保守胺基酸。同時,以 HPLC-MS/MS 鑑定 P. vagans M17 產生的 QS 自誘導劑為 N-butyryl-L-homoserine lactone (BHL),並添加 BHL 與潛在的 QS 抑制劑 2(5H)-呋喃酮。在 P. vagans M17 的培養液中,BHL 濃度隨著培養時間增加而上升。添加 40 - 140 ppm 的 BHL 雖不影響 P. vagans M17 生長,但可以提升 24 小時的生物膜生成。添加 8 - 40 mM 的範圍之 2(5H)-呋喃酮減緩 P. vagans M17 生長,而當濃度達 32 mM 以上則會抑制生物膜生成。添加 BHL 與 2(5H)-呋喃酮於養分較缺乏之 M9 培養基,可以分別促進與降低 P. vagans M17 表面移行的能力。此外,在第 6 與 24 小時,BHL 與 2(5H)-呋喃酮抑制 pagI 的表現。pagR 與鞭毛蛋白基因 fliC2 的表現情況不受兩者改變。2(5H)-呋喃酮會抑制並延後生物膜調節基因 bssS1 的表達。這些結果顯示,P. vagans M17 的 QS 對生物膜生成及表面移行的調控具有重要性,但其效果會受到環境中營養成分等因素影響。後續研究可以探討 QS 與環境的交互作用對細菌的適應性之貢獻,以及 QS 對生物膜及表面移行的其他重要因子之影響。對 QS 系統更深入的了解,有助於未來尋找合適的方法進行抑制,以減緩細菌導致的食品腐敗並促進食品安全。 | zh_TW |
| dc.description.abstract | Quorum sensing (QS) is used by bacteria to detect changes in the concentration of autoinducers, communicate with each other, and respond to environmental variations. The concentration of autoinducers reflects population density, enabling bacteria to regulate gene expression and exhibit specific collective behaviors including biofilm formation and swarming motility. These two phenotypes may contribute to food spoilage. Studies have shown that the QS system of Pantoea spp. utilizes N-acyl-L-homoserine lactones (AHLs) as autoinducers. Previously, Pantoea vagans M17, isolated from spoiled cantaloupe, was found to have strong biofilm formation and swarming motility. To investigate the QS system of P. vagans M17, we used multiple sequence alignment to confirm that the sequences of AHL synthase PagI and receptor PagR in P. vagans M17 were highly similar to those in P. vagans C9-1 and contained conserved amino acids. Using HPLC-MS/MS, the autoinducer produced by P. vagans M17 was identified as N-butyryl-L-homoserine lactone (BHL). BHL and the potential QS inhibitor 2(5H)-furanone were further added to observe their impact. Concentration of BHL in the culture medium of P. vagans M17 increased with cultivation time. Exogenous addition of 40 to 140 ppm of BHL did not affect the growth of P. vagans M17 but enhanced 24-hour biofilm formation. 2(5H)-furanone suppressed growth within the range of 8 to 40 mM, and inhibited biofilm formation above 32 mM. Addition of BHL and 2(5H)-furanone to the nutrient-deficient M9 medium significantly promoted and diminished the swarming motility of P. vagans M17, respectively. Furthermore, BHL and 2(5H)-furanone reduced the expression of pagI at 6 and 24 hours. The expression of pagR and the flagellin gene fliC2 were not affected by either compound. 2(5H)-furanone decreased and postponed the expression of the biofilm regulatory gene bssS1. These findings suggest that QS is pivotal in governing biofilm formation and swarming motility in P. vagans M17, while other factors such as environmental nutrients may influence the regulation. Future research can investigate the contribution of interactions between QS and the environment to bacterial adaptability. Besides, the effects of QS on other key factors in biofilm formation and swarming motility are worth further study. A comprehensive understanding of QS is expected to aid in devising strategies to mitigate food spoilage caused by bacteria and enhance food safety. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:26:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:26:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Graphic abstract vi 目次 vii 圖次 x 表次 xi 附錄次 xii 第一章、前言 1 第二章、文獻回顧 2 第一節、Pantoea spp. 2 第二節、群體感應與其調控之相關表型 4 一、群體感應功能與機制 4 二、群體感應系統之特性分析 6 三、生物膜與表面移行 8 四、第六型分泌系統 11 第三節、群體淬滅 14 第四節、群體感應與生物膜形成及表面移行之關係 16 第三章、研究目的與實驗架構 18 第四章、材料與方法 20 第一節、實驗材料 20 一、實驗菌株 20 二、藥品 20 三、質體、引子與限制酵素 22 四、藥品原液、培養基與溶劑之配製 23 第二節、儀器設備與套裝軟體 28 一、儀器與設備 28 二、套裝軟體 30 第三節、實驗方法 31 一、菌株群體感應蛋白質序列比對 31 二、菌株群體感應基因刪除 31 三、菌株自誘導劑鑑定 34 四、菌株表型分析 36 五、基因表現量分析 38 第五章、實驗結果與討論 44 第一節、P. vagans M17 中群體感應蛋白質之鑑定 44 第二節、P. vagans M17 群體感應基因刪除突變株之建構 52 一、帶有基因上、下游同源片段的重組質體建構 52 二、sacB 的無標記基因刪除 53 第三節、P. vagans M17 中自誘導劑定性與定量 55 一、P. vagans M17 主要產生之自誘導劑為 BHL 55 二、P. vagans M17 分泌之 BHL 含量隨著培養時間增加而上升 65 第四節、群體感應對 P. vagans M17 生長、生物膜生成與表面移行之影響 68 一、群體感應抑制劑減緩 P. vagans M17 之生長 68 二、P. vagans M17 之生物膜生成受到群體感應調控 73 三、群體感應對 P. vagans M17 表面移行之影響 81 第五節、群體感應對 P. vagans M17 基因表現之影響 90 一、引子效率與專一性 90 二、BHL 與 2(5H)-呋喃酮減少 P. vagans M17 中 pagI 之表現 94 三、2(5H)-呋喃酮減少且延後 P. vagans M17 中 bssS1 之表現 98 四、BHL 與 2(5H)-呋喃酮會調節 P. vagans M17 中 hcp1 與 clpV1 之表現 102 第六章、結論與展望 106 第七章、參考文獻 107 第八章、附錄 127 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 群體感應 | zh_TW |
| dc.subject | 自誘導劑 | zh_TW |
| dc.subject | Pantoea vagans M17 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 表面移行 | zh_TW |
| dc.subject | biofilm | en |
| dc.subject | quorum sensing | en |
| dc.subject | autoinducer | en |
| dc.subject | motility | en |
| dc.subject | Pantoea vagans M17 | en |
| dc.title | Pantoea vagans M17 之群體感應調節對運動性和生物膜形成的影響 | zh_TW |
| dc.title | Impact of quorum sensing regulation on the motility and biofilm formation of Pantoea vagans M17 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林旭陽;李月嘉;王如邦;林乃君 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Yang Lin;Yue-Jia Lee;Reu-Ben Wang;Nai-Chun Lin | en |
| dc.subject.keyword | 群體感應,自誘導劑,Pantoea vagans M17,生物膜,表面移行, | zh_TW |
| dc.subject.keyword | quorum sensing,autoinducer,Pantoea vagans M17,biofilm,motility, | en |
| dc.relation.page | 165 | - |
| dc.identifier.doi | 10.6342/NTU202402835 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
