Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94620Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李培芬 | zh_TW |
| dc.contributor.advisor | Pei-Fen Lee | en |
| dc.contributor.author | 陳柏熏 | zh_TW |
| dc.contributor.author | Bo-Xun Chen | en |
| dc.date.accessioned | 2024-08-16T17:07:58Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Amano, T., Székely, T., Sandel, B., Nagy, S., Mundkur, T., Langendoen, T., Blanco, D., Soykan, C. U. & Sutherland, W. J. (2018). Successful conservation of global waterbird populations depends on effective governance. Nature, 553, 199-202.
Amano, T., Székely, T., Wauchope, H. S., Sandel, B., Nagy, S., Mundkur, T., Langendoen, T., Blanco, D., Michel, N. L. & Sutherland, W. J. (2020). Responses of global waterbird populations to climate change vary with latitude. Nature Climate Change, 10, 959-964. Amat, J. A., & Green, A. J. (2010). Waterbirds as bioindicators of environmental conditions. Conservation Monitoring in Freshwater Habitats: A Practical Guide and Case Studies, 45-52. Amores, M. J., Verones, F., Raptis, C., Juraske, R., Pfister, S., Stoessel, F., Anton, A., Castells, F. & Hellweg, S. (2013). Biodiversity impacts from salinity increase in a coastal wetland. Environmental Science & Technology, 47, 6384-6392. Behara, A., Vinayachandran, P., & Shankar, D. (2019). Influence of rainfall over eastern Arabian Sea on its salinity. Journal of Geophysical Research: Oceans, 124, 5003-5020. Cadena, C. D., Kozak, K. H., Gómez, J. P., Parra, J. L., McCain, C. M., Bowie, R. C., Carnaval, A. C., Moritz, C., Rahbek, C., Roberts, T. E., Sanders, N. J., Schneider, C. J., VanDerWal, J., Zamudio, K. R. & Graham, C. H. (2012). Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences, 279, 194-201. Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148-159. Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65, 934-941. Debata, S. (2019). Impact of cyclone Fani on the breeding success of sandbar-nesting birds along the Mahanadi River in Odisha, India. Journal of Threatened Taxa, 11, 14895-14898. Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. Dixon, M., Loh, J., Davidson, N., Beltrame, C., Freeman, R., & Walpole, M. (2016). Tracking global change in ecosystem area: The Wetland Extent Trends index. Biological Conservation, 193, 27-35. Fong, C. R., Gaynus, C. J., & Carpenter, R. C. (2020). Extreme rainfall events pulse substantial nutrients and sediments from terrestrial to nearshore coastal communities: a case study from French Polynesia. Scientific Reports, 10, 2955. https://doi.org/10.1038/s41598-020-59807-5 Gallo-Cajiao, E., Morrison, T. H., Woodworth, B. K., Lees, A. C., Naves, L. C., Yong, D. L., Choi, C., Mundkur, T., Bird, J., Jain, A., Klokov, K., Syroechkovskiy, E., Chowdhury, S. U., Fu, V., Watson, J. E.M. & Fuller, R. A. (2020). Extent and potential impact of hunting on migratory shorebirds in the Asia-Pacific. Biological Conservation, 246, 108582.https://doi.org/10.1016/j.biocon.2020.108582 Garcia, L. C., Szabo, J. K., de Oliveira Roque, F., Pereira, A. d. M. M., da Cunha, C. N., Damasceno-Júnior, G. A., Morato, R, G., Tomas, W. M., Libonati, R. & Ribeiro, D. B. (2021). Record-breaking wildfires in the world's largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. Journal of Environmental Management, 293, 112870. https://doi.org/10.1016/j.jenvman.2021.112870 Gawlik, D. E. (2002). The effects of prey availability on the numerical response of wading birds. Ecological Monographs, 72, 329-346. Gosper, C. R., Watson, S. J., Fox, E., Burbidge, A. H., Craig, M. D., Douglas, T. K., Fitzsimons, J. A., McNee, S., Nicholls, A. O., O'connor, J., Prober, S. M., Watson, D. M. & Yates, C. J. (2019). Fire‐mediated habitat change regulates woodland bird species and functional group occurrence. Ecological Applications, 29, e01997. https://doi.org/10.1002/eap.1997 Green, A. J., & Elmberg, J. (2014). Ecosystem services provided by waterbirds. Biological Reviews, 89, 105-122. Guillemain, M., Pöysä, H., Fox, A. D., Arzel, C., Dessborn, L., Ekroos, J., Gunnarsson, G., Holm, T. E., Christensen T. K., Lehikoinen, A., Mitchell, C., Rintala, J. & Muller, A. P. (2013). Effects of climate change on European ducks: what do we know and what do we need to know? Wildlife Biology, 19, 404-419. Hey, D. L., & Philippi, N. S. (1995). Flood reduction through wetland restoration: the Upper Mississippi River Basin as a case history. Restoration Ecology, 3, 4-17. Jordán, D. P. (2017). Waterbirds in a changing world: effects of climate, habitat and conservation policy on European waterbirds. Academic dissertation, University of Helsinki. http://hdl.handle.net/10138/180162 Kruskal, J. B. (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1): 1-27. Lin, D. L., Tsai, C. Y., Pursner, S., Chao, J., Lyu, A., Amano, T., Maron, M., Lin, R. S., Lin, K. H., Chiang, K. K., Lin, Y. L., Lu, L. C., Chang, A.Y., Chen, W. J. & Fuller, R. A. (2023). Remote and local threats are associated with population change in Taiwanese migratory waterbirds. Global Ecology and Conservation, 42, e02402. https://doi.org/10.1016/j.gecco.2023.e02402 Lin, D. (2022). Taiwan New Year Bird Count. Version 1.6. Taiwan Biodiversity Research Institute. Sampling event dataset https://doi.org/10.15468/mm9hwy. Maclean, I. M., Austin, G. E., Rehfisch, M. M., Blew, J., Crowe, O., Delany, S., Devos, K., Deceuninck, B., Günther, K., Laursen, K., Roomen, M. V. & Wahl, J. (2008). Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology, 14, 2489-2500. Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J. & Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology & Evolution, 25, 574-582. Mendez, V., Gill, J. A., Burton, N. H., Austin, G. E., Petchey, O. L., & Davies, R. G. (2012). Functional diversity across space and time: trends in wader communities on British estuaries. Diversity and Distributions, 18, 356-365. Monnet, A. C., Jiguet, F., Meynard, C. N., Mouillot, D., Mouquet, N., Thuiller, W., & Devictor, V. (2014). Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecology and Biogeography, 23, 780-788. Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P., & Fuller, R. A. (2014). Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and the Environment, 12, 267-272. Pezzati, L., Verones, F., Curran, M., Baustert, P., & Hellweg, S. (2018). Biodiversity recovery and transformation impacts for wetland biodiversity. Environmental Science & Technology, 52, 8479-8487. Piersma, T., Lok, T., Chen, Y., Hassell, C. J., Yang, H. Y., Boyle, A., Slaymaker, M., Chan, Y. C., Melville, D. S., Zhang, Z. W. & Ma, Z. (2016). Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. Journal of Applied Ecology, 53, 479-490. Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G., & Fuller, R. A. (2014). Conserving mobile species. Frontiers in Ecology and the Environment, 12, 395-402. Rushing, C. S., Rubenstein, M., Lyons, J. E., & Runge, M. C. (2020). Using value of information to prioritize research needs for migratory bird management under climate change: a case study using federal land acquisition in the United States. Biological Reviews, 95, 1109-1130. Rebecca, R. J., Isola, C. R., Colwell, M. A., & Williams,O. E.(1997). Benthic invertebrates at foraging locations of nine waterbird species in managed wetlands of the northern San Joaquin Valley, California. Wetlands, 17, 407-415. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. Šmilauer, P., & Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press. England. Steinmetz, J., Kohler, S. L., & Soluk, D. A. (2003). Birds are overlooked top predators in aquatic food webs. Ecology, 84, 1324-1328. Steinmuller, H. E., & Chambers, L. G. (2019). Characterization of coastal wetland soil organic matter: Implications for wetland submergence. Science of the Total Environment, 677, 648-659. Studds, C. E., Kendall, B. E., Murray, N. J., Wilson, H. B., Rogers, D. I., Clemens, R. S., Gosbell, K., Hassell, C. J., Jessop, R. J., Melville, D. S., Milton, D. A., Minton, C. D. T., Possingham, H. P., Riegen, A. C., Straw, P., Woehler, E. J. & Fuller, R. A., (2017). Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Communications, 8, 14895. https://doi.org/10.1038/ncomms14895 Suding, K. N., Lavorel, S., Chapin Iii, F., Cornelissen, J. H., DIAz, S., Garnier, E., Goldberg, D., Hooper, D. U., Jackson, S. T. & Navas, M. L. (2008). Scaling environmental change through the community‐level: A trait‐based response‐and‐effect framework for plants. Global Change Biology, 14, 1125-1140. Thukral, A. K. (2017). A review on measurement of Alpha diversity in biology. Agricultural Research Journal, 54, 1-10. van Altena, C., Bakker, E. S., Kuiper, J. J., & Mooij, W. M. (2016). The impact of bird herbivory on macrophytes and the resilience of the clear-water state in shallow lakes: a model study. Hydrobiologia, 777, 197-207. Wang, X., Chen, Y., Melville, D. S., Choi, C.-Y., Tan, K., Liu, J., Li, J., Zhang, S., Cao, L., & Ma, Z. (2022). Impacts of habitat loss on migratory shorebird populations and communities at stopover sites in the Yellow Sea. Biological Conservation, 269, 109547. https://doi.org/10.1016/j.biocon.2022.109547 Whytock, R. C., Fuentes‐Montemayor, E., Watts, K., Barbosa De Andrade, P., Whytock, R. T., French, P., Macgregor, N. A., & Park, K. J. (2018). Bird‐community responses to habitat creation in a long‐term, large‐scale natural experiment. Conservation Biology, 32, 345-354. Zhang, S. P., Zhang, Z. W., Xu, J. L., Sun, Q. H., & Liu D. P.(2002). The analysis of waterbird diversity in Tianjin. Biodiversity Science, 10, 280-285 Zhang, C., Yuan, Y., Zeng, G., Liang, J., Guo, S., Huang, L., . . . An, H. (2016). Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecological Engineering, 90, 473-481. 李培芬。2000。關渡自然公園與自然保留區之解說教育宣導資料庫。臺北市政府。臺北市。 http://wagner.zo.ntu.edu.tw/guandu/ 李允如。2005。關渡自然公園內棲地管理對水鳥之影響。碩士論文,國立臺灣大學,台北市。 林大利、林湧倫、趙容、張安瑜、潘森識、呂翊維、林昆海、蔣功國、林瑞興。2020。臺灣新年數鳥嘉年華2020年度報告。社團法人中華民國野鳥學會、行政院農業委員會特有生物研究保育中心。南投市。 林明志。1994。關渡地區鳥類群聚動態與景觀變遷之關係。碩士論文,輔仁大學,新北市。 林芳儀。2001。景觀變遷對於鳥類群聚時空分佈之影響—以關渡自然公園為例。碩士論文,國立臺灣大學,台北市。 趙偉凱。2019。蘭陽溪口地景變化對水鳥群集組成的影響。碩士論文,國立臺灣大學,臺北市。 潘致遠、丁宗蘇、吳建龍、阮錦松、林文隆、林瑞興、楊玉祥。2020。2020年臺灣鳥類名錄。中華民國野鳥學會,臺北市。 賴怡蒨。2013。淡水河度冬水鳥族群的長期趨勢。碩士論文,國立臺灣大學,臺北市。 戴漢彰。2009。關渡自然公園棲地經營管理對鳥類相的影響。碩士論文,國立臺灣大學,臺北市。 社團法人臺北市野鳥學會。2009。99年度臺北市國家集濕地監測復育計畫。臺北市政府。臺北市。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94620 | - |
| dc.description.abstract | 濕地擁有世界上最豐富的生物多樣性,其特徵是動植物資源豐富。其中,鳥類被認為是濕地重要的組成成分,在生物多樣性方面發揮著至關重要的作用。由於鳥類群聚組成對棲地變化高度敏感,鳥類已成為監測濕地棲地品質的指標物種。
關渡自然公園位處淡水河與基隆河的交會口,為重要鳥類棲息地,是提供候鳥度冬、繁殖與過境的中繼站。臺北市野鳥學會於1998年開始對關渡自然公園進行鳥類監測,每月至少執行一次鳥類調查監測資料持續至今,本研究將分析1998至2020年關渡自然公園鳥類調查資料,以量豐度、多樣性指數、非度量性多元尺度法 (non-metric multidimensional scaling, NMDS)了解鳥類群聚的變化,並使用廣義線性模型進行卜瓦松迴歸,建立17種常見物種23年來的長期族群趨勢。另外以地景之水域面積變化、「新年數鳥嘉年華」資料、長期氣候資料作為因子分析,探究可能影響水鳥族群趨勢的原因。 研究結果發現,水鳥量豐度、多樣性指數與水域面積變化顯著相關;NMDS分析發現水鳥群聚結構改變。長期族群趨勢顯示9種物種顯著增加 (p<0.05),僅小水鴨、黃頭鷺和夜鷺三個物種顯著減少;探討影響族群趨勢的原因,結果顯示水域面積變化與族群趨勢有相關,在地景組成不變的時期,遷徙線與族群趨勢無關,氣候因子僅有風速與族群趨勢呈現顯著相關,整體水鳥族群仍以水域面積變化影響為主。 | zh_TW |
| dc.description.abstract | Wetlands harbor the richest biodiversity globally, characterized by abundant flora and fauna. Among them, birds are considered crucial components of wetlands, playing a vital role in habitat stability and biodiversity. Due to the high sensitivity of bird communities to habitat changes, birds have become indicator species for monitoring wetland habitat quality.
Situated at the confluence of the Tamsui River and Keelung River, Guandu Nature Park is a significant habitat for birds, serving as a stopover for migratory, wintering, and breeding birds. Since 1998, Wild Bird Society of Taipei (WBST) has conducted monthly bird surveys at Guandu Nature Park. This study analyzes bird survey data from 1998 to 2020, examining changes in bird communities through abundance, diversity indices, and non-metric multidimensional scaling (NMDS). Generalized linear models using Poisson regression are applied to establish the long-term population trends of 17 common species over 23 years. Additionally, landscape changes, "New Year Bird Count" as a comparison for East Asian-Australasian Flyway (EAAF) waterbird populations, and long-term climate data are considered as factors to explore potential influences on population trends. The results reveal a positive correlation between waterbird abundance, diversity indices, and landscape changes. NMDS analysis identifies alterations in waterbird community structure. Long-term population trends show a significant increase (p < 0.05) in nine species, with only three species — common teal(Anas crecca), cattle egret(Bubulcus coromandus), and black-crowned night heron(Nycticorax nycticorax) — experiencing a significant decrease. Discussing the reasons that affect the population trends, the results show that changes in water area are related to the population trends. During the period when the landscape composition remains unchanged, the flyway shows no relation to population trends. Among climate factors, only wind speed is significantly related to population trends. Overall, changes in water area primarily impact waterbird populations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:07:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:07:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 圖次 v 表次 vi 前言 1 材料與方法 4 研究樣區 4 資料收集與處理 5 鳥類資料 5 地景資料 5 臺灣新年數鳥嘉年華 6 氣候資料 6 資料分析 7 生態同功群 7 物種多樣性指數 7 相似性指數 7 水鳥群集排序 8 族群長期趨勢分析 8 統計分析 9 氣候因子與族群趨勢之關聯 9 結果 10 水鳥組成 10 族群長期趨勢分析 10 水域面積變化 11 改變水鳥族群長期趨勢的因子 11 水域面積 11 遷徙線 12 氣候因子 12 討論 13 水域面積變化與族群趨勢之關係 13 遷徙線的影響 14 氣候因子與族群趨勢之關係 14 其他可能的影響因子 15 結論 15 引用文獻 17 圖 22 表 40 附錄一、關渡自然公園歷年水鳥名錄 43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水鳥 | zh_TW |
| dc.subject | 關渡自然公園 | zh_TW |
| dc.subject | 族群長期趨勢 | zh_TW |
| dc.subject | 長期監測 | zh_TW |
| dc.subject | population trends | en |
| dc.subject | Guandu Nature Park | en |
| dc.subject | long-term monitoring | en |
| dc.subject | waterbirds | en |
| dc.title | 關渡自然公園度冬水鳥族群之長期趨勢 | zh_TW |
| dc.title | Long-term Population Trends of the Wintering Waterbirds at Guandu Nature Park, Taipei, Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁宗蘇;柯智仁 | zh_TW |
| dc.contributor.oralexamcommittee | Tzung-Su Ding;Chie-Jen Ko | en |
| dc.subject.keyword | 水鳥,長期監測,族群長期趨勢,關渡自然公園, | zh_TW |
| dc.subject.keyword | waterbirds,long-term monitoring,population trends,Guandu Nature Park, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202403992 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| Appears in Collections: | 生態學與演化生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Access limited in NTU ip range | 3.67 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
