請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94511完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張豐丞 | zh_TW |
| dc.contributor.advisor | Feng-Cheng Chang | en |
| dc.contributor.author | 梁容瑜 | zh_TW |
| dc.contributor.author | Jung-Yu Liang | en |
| dc.date.accessioned | 2024-08-16T16:27:59Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | 王瀛生、吳孟玲(2010)台灣竹材替代木質材料展現竹之美。林業研究專訊 17 (4):54-60。
行政院農業委員會林務局(2015)第四次森林資源調查報告。行政院農業委員會林務局,臺北。78頁。 汪大雄(2011)臺灣竹林資源與經營。林業研究專訊18(1):3-7。 呂錦明(2010)臺灣竹圖鑑。晨星出版社。271頁。 邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查成果概要,行政院農委會林務局。臺灣林業期刊41:3-13。 張嵐婷、林冠萱、張資正、張豐丞(2014)奈米微晶纖維素於不同溶劑之分散相容性評估。2014中華林產事業協會學術論文暨研究成果研討會,台中,臺灣。 劉佳旻、林冠萱、張豐丞(2016)不同酸水解條件對所製孟宗竹纖維素奈米微晶性質之影響。105年森林資源永續發展研討會,屏東,臺灣。 劉業經、歐辰雄、呂福原(1994)臺灣樹木誌。南天書局。925頁。 Abdul Khalil H.P.S., I.U.H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, Y.S. Hadi (2012) Bamboo fibre reinforced biocomposites: a review. Materials & Design 42: 353-368. Agarwal U.P., S.A. Ralph, R.S. Reiner, C.G. Hunt, C. Baez, R. Ibach, K.C. Hirth (2018) Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25: 5791-5805. An L., J. Chen, J. W. Heo, J. H. Bae, H. Jeong, Y. S. Kim (2021) Synthesis of lignin-modified cellulose nanocrystals with antioxidant activity via Diels–Alder reaction and its application in carboxymethyl cellulose film. Carbohydrate Polymers 274: 118651. An, X. Y., Y. B. Wen, D. Cheng, X. H. Zhu, Y. H. Ni (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23(4): 2409-2420. Araki J., M. Wada, S. Kuga (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1): 21-27. Araki J., M. Wada, S. Kuga and T.J. Okano (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. Journal of Wood Science 45(3): 258-261. Araki J., Wada, M., Kuga, S., Okano, T. (1998). Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 142(1): 75-82. Ates, B., S.Koytepe, A.Ulu, C.Gurses, V. K.Thakur (2020) Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews120(17): 9304-9362 Azizi Samir M.A.S., F. Alloin, J.-Y. Sanchez, N. El Kissi, A. Dufresne (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules. 37(4): 1386-1393. Beck-Candanedo S., Roman, M., Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2): 1048-1054. Bondeson, D., A.Mathew, , & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171-180. Bonini C., L. Heux, J.Y. Cavaille, P. Lindner, C. Dewhurst, P. Terech (2002) Rodlike cellulose whiskers coated with surfactant: A small-angle neutron scattering characterization. Langmuir 18(8): 3311-3314. Börjesson, M., G. Westman (2015). Crystalline nanocellulose—preparation, modification, and properties. Cellulose-fundamental aspects and current trends 7. Braun B., J.R. Dorgan (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10(2): 334-341. Camarero Espinosa S., T. Kuhnt, E. J. Foster, and C. Weder. (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4): 1223-1230. Cao X., H. Dong, C.M. Li (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904. Chang F.-C. (2011) Creep behaviour of wood-plastic composites. The University of British Columbia. Doctor of philosophy. 230 pp. Chang F.-C., F. Lam (2010) Feasibility of using mountain pine beetle attacked wood to produce wood-plastic composites: Preliminary work. Wood and Fiber Science 42(1): 107-116. Chang F.-C., F. Lam (2018) Effects of temperature‑induced strain on creep behavior of wood–plastic composites. Wood Science and Technology 52(5): 1213-1227. Chang F.-C., F. Lam, J.F. Kadla (2013a) Using master curves based on time–temperature superposition principle to predict creep strains of wood-plastic composites. Wood Science and Technology 47: 571-584. Chang F.-C., F. Lam, J.F. Kadla (2013b) Application of time–temperature–stress superposition on creep of wood–plastic composites. Mechanics Time-Dependent Mater 17(3): 427-437. Chang F.-C., F. Lam, J.F. Kadla (2014) The effect of temperature on creep behavior of wood-plastic composites. Journal of Reinforced Plastics and Composites 33(9): 883-892. Chang F.-C., F. Lam, K.R. Englund (2010) Feasibility of Using Mountain Pine Beetle Attacked Wood to Produce Wood-Plastic Composites. Wood and Fiber Science 42(3): 388-397. Chaowana P., M.C. Barbu. (2017) 13-Bamboo: Potential material for biocomposites, Editor(s): Mohammad Jawaid, Paridah Md Tahir, Naheed Saba, In Woodhead Publishing Series in Composites Science and Engineering, Lignocellulosic Fibre and Biomass-Based Composite Materials, Woodhead Publishing: 259-289. Chazeau L., J.Y. Cavaille, G. Canova, R. Dendievel, B. Boutherin (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. Journal of Applied Polymer Science 71(11): 1797-1808. Chen H.-C, F.-C Chang (2018) Feasibility of using nanocellulose composites for artwork conservation. Pacific Rim Bio-based Composites Symposium, Makassar, Indonesia. Chen L. H., J. Y. Zhu, C. Baez, P. Kitin, and T. Elder. (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry 18(13): 3835-3843. Chen L. H., Q.Q. Wang, K. Hirth, C. Baez, U. P. Agarwal, and J. Y. Zhu. (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22: 1753-1762. Chen M.-J., X.-Q. Zhang, A. Matharu, E. Melo, R.-M. Li, C.-F. Liu, and Q.-S. Shi. (2017) Monitoring the crystalline structure of sugar cane bagasse in aqueous ionic liquids. ACScs Sustainable Chemistry & Engineering 5(8): 7278-7283. Chen Y., C. Liu, P.R. Chang, X. Cao, D.P. Anderson (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohydrate Polymers 76(4): 607-615. Cheng, M., Z. Y. Qin, Y. Y. Chen, S. Hu, Z. C. Ren, and M. F. Zhu. (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACScs Sustainable Chemistry & Engineering 5(6): 4656-4664. Cherian, B. M., A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81(3): 720-725. Corrêa A.C., V.B. Carmona, J.ASimão, F. Galvani, J.M. Marconcini, L.H.C. Mattoso (2019) Cellulose Nanocrystals from Fibers of Macauba (Acrocomia Aculeata) and Gravata (Bromelia Balansae) from Brazilian Pantanal. Polymers 11: 1785. Das, M, D. Chakraborty (2009) The effect of alkalization and fibre loading on the mechanical properties of bamboo fibre composites, part 1: polyester resin matrix. Journal of Applied Polymer Science 112: 489-95. de Oliveira, S. D., E. A. Asevedo, J. S. de Araujo, P. B. Brito, C. Costa, G. R. de Macedo, and E. S. dos Santos. (2020) Enzymatic extract of Aspergillus fumigatus CCT 7873 for hydrolysis of sugarcane bagasse and generation of cellulose nanocrystals (CNC). Biomass Conversion and Biorefinery2. Deepa, B., E. Abraham, N. Cordeiro, M. Mozetic, A. P. Mathew, K. Oksman, M. Faria, S. Thomas, and L. A. Pothan. (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2): 1075-1090. Deshpande, A.P., M.B. Rao, C.L. Rao (2000) Extraction of bamboo fibres and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science 76: 83-92. Dong, X. M., J. F. Revol, D. G. Gray(1998). Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5(1): 19-32. Dong, X.M., T. Kimura, A.Revol, D.G. Gray (1996). Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites. Langmuir, 12, 2076-2082. Dufresne, A. (2006). Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. Journal of Nanoscience and Nanotechnology 6(2): 322-330. Dufresne, A., M.B. Kellerhals, B. Witholt (1999) Transcrystallization in mcl-phas/cellulose whiskers composites. Macromolecules 32(18): 7396-7401. Farrelly, D. (1996). The book of bamboo: a comprehensive guide to this remarkable plant, its uses, and its history. Thames and Hudson Ltd. Favier, V., Chanzy, H., Cavaille, J. Y. (1995a). Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18): 6365-6367. Favier, V., G.R. Canova, J.Y. Cavaille, H. Chanzy, A. Dufresne, C. Gauthier (1995b) Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies 6(5): 351-355. Food and Agriculture organization of the United Nations (FAO) (2014) Enhancing the socio-economic benefits from forests. State of the World’s Forests 2014. Rome Italy. Gopalan Nair, K., A. Dufresne, A. Gandini, M. Naceur Belgacem (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835-1842. Grunert, M., W.T. Winter (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Journal of Polymers and the Environment 10(1-2): 27-30. Gupta A., W. Simmons, G.T. Schueneman (2016) Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid). Journal of Thermal Analysis and Calorimetry 126: 1243–1251. Gündüz, G. and D. Aydemir (2009). Some physical properties of heated Hornbeam (Carpinus betulus L.) wood. Drying Technology. 27: 714-720. Habibi, Y., A.L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18(41): 679-687. Habibi, Y., H. Chanzy, M.R. Vignon (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6): 679-687. Hajji, P., J.P. Cavaille, V. Favier, C. Gauthier, G. Vigier (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polymer Composites 17(4): 612-619. Halloub A., M. Raji, H. Essabir, H. Chakchak, R. boussen, M.-o. Bensalah, R. Bouhfid, A. el k. Qaiss (2022) Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydrate Polymers 296: 119972. Heux, L., G. Chauve, C. Bonini (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21): 8210-8212. Hong, S., Y. Song, Y. Yuan, H. Lian, and H. Liimatainen. (2020) Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products 143: 111913. Hu, Y., Tang, L., Lu, Q. (2014) Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21: 1611–1618. Huang, Y. X., Y. H. Ji, and W. J. Yu. (2019) Development of bamboo scrimber: a literature review. Journal of Wood Science 65(1): 10. Igor, M.D.R., S. Carlo, S. Fabrizio (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated phormium tenax leaf fibers. Materials & Design 31: 2397-2405. Iguchi, M., T. Aida, M. Watanabe, R.L. Smith (2013) Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water. Carbohydrate Polymers 92: 651-658. Imai, T., Boisset, C., Samejima, M., Igarashi, K., Sugiyama, J. (1998). Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. Febs Letters 432(3): 113-116. Janssen, J.J.A. (2000) Designing and building with bamboo. International Network for Bamboo and Rattan Technical Report 29. pp 207. Ji, H., Z. Y. Xiang, H. S. Qi, T. T. Han, A. Pranovich, and T. Song. (2019) Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chemistry 21(8): 1956-1964. Jindal, U.C. (1986) Development and testing of bamboo-fibres reinforced plastic composites. J Composite Material 20: 19-29. Johar, N., I. Ahmad, and A. Dufresne. (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99. Kazemi H., F. Mighri, K. W. Park, S. Frikha, D. Rodrigue (2022) Natural rubber biocomposites reinforced with cellulose nanocrystals/lignin hybrid fillers Polymer Composites 43(8): 5442. Klemm, D., F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Doris (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition. 50(24): 5438-5466. Korkut, S. and S. Hiziroglu (2009). Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Materials & Design 30(5): 1853-1858. Kvien, I., B.S. Tanem, K. Oksman (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6): 3160-3165. Li X., C.Z. Chen, M.F. Li (2015) Structural Characterization of Bamboo Lignin Isolated With Formic Acid and Alkaline Peroxide by Gel Permeation Chromatography and Pyrolysis Gas Chromatography Mass Spectrometry. Annals of Chromatography and Separation Techniques 1(2): 1006. Li, Q., J. Zhou, L. Zhang (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science 47(11): 3160-1077. Li, S.H., Q.Y. Zeng, Y.L. Xiao, S.Y. Fu, B.L. Zhou (1995) Biomimicry of bamboo bast fiber with engineering composite materials. Materials Science and Engineering: C (3):125-130. Liang, C.Y., R.H. Marchessault (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. Journal of Polymer Science 37 (132): 385-395. Lin, K.-H., C.-M. Liu, F.-C. Chang (2016) The production of Rod-like cellulose nanocrystals from moso bamboo. 2016 Global Conference on Life Science and Biological Engineering, Kyoto, Japan. Lin, K.-H., D. Hu, T. Sugimoto, F.-C. Chang, M. Kobayashia, T. Enomae (2019a) An analysis on the electrophoretic mobility of cellulose nanocrystals as thin cylinders: relaxation and end effect. RSC Advances 9: 34032-34038. Lin, K.-H., T. Enomae, F.-C. Chang (2019b) Cellulose Nanocrystal Isolation from Hardwood Pulp using Various Hydrolysis Conditions. Molecules 24(20): 3724-3738. Lin, K.-H., T. Sugimoto, M. Kobayashi, F.-C. Chang, T. Enomae (2017) Colloidal properties of cellulose nanocrystal suspensions for ink jet printing. The 67th Annual Meeting of Japan Wood Research Society, Fukuoka, Japan. Lin, K.-H., Y. Xu, D. Hu, T. Enomae, F.-C. Chang (2018) Application of cellulose nanocrystals to paper substrate to improve performance of printed conductive tracks. The 68th Annual Meeting of Japan Wood Research Society, Kyoto, Japan. Ling, Z., J. V. Edwards, Z. Guo, N. T. Prevost, S. Nam, Q. Wu, A. D. French, and F. Xu. (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26(2): 861-876. Liu, C.-M., K.-H. Lin, T.-C. Chang, F.-C. Chang (2019) Preparation and characterization of moso bamboo-based cellulose nanowhiskers under various acid hydrolysis conditions. BioResources 14(1): 1077-1090. Liu, D. G., J. W. Song, D. P. Anderson, P. R. Chang, and Y. Hua. (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5): 1449-1480. Ljungberg, N., C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5): 2732-2739. Loboviko M., S. Paudel, M. Pizza, K. Rene, J. Wu (2017)World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations, Rome Lobovikov M., S. Paudel, L. Ball, M. Piazza, M. Guardia, Food and Agriculture Organization of the United Nations, Hong Ren, Laura Russo, Junqi Wu (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources asessment 2005 . Food and Agriculture Organization of the United Nations. 73. Lu, Q., W. Lin, L. Tang, S. Wang, X. Chen, B. Huang (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. Journal of Materials Science 50(2): 611-619. Ma, L., Y. Zhang, J. Cao and J. Yao (2013) Preparation of unmodified cellulose nanocrystals from phyllostachys heterocycla and their biocompatibility evaluation. BioResources 9(1): 210-217. Man, Z., N. Muhammad, A. Sarwono, M. A. Bustam, M. Vignesh Kumar, and S. Rafiq. (2011) Preparation of cellulose nanocrystals using an ionic liquid. Journal of Polymers and the Environment 19(3): 726-731. Mandal, S., S. Alam, I.K. Varma, S.N. Maiti (2010) Studies on bamboo/glass fibre reinforced USP and VE resin. Journal of Reinforced Plastics and Composites 29: 43-51. Marino, M., L. Lopes da Silva, N. Duran, and L. Tasic. (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4): 5908-5923. Mathew, A.P., A. Dufresne (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3(3): 609-617. Missoum, K., M.N. Belgacem, J. Barnes, M. Brochier-Salon, J. Bras (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8: 8338-8349. Mondal, S. (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers 163: 301-316. Morandi, G., L. Heath, W. Thielemans (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14): 8280-8286. Muhammad, A., M. R. Rahman, S. Hamdan, and K. Sanaullah. (2019) Recent developments in bamboo fiber-based composites: a review. Polymer Bulletin 76(5): 2655-2682. Oteng-Amoako, A.A., D.A. Ofori, L.C.N. Anglaaere, B.E. Obiri-Darko, E. Ebanyenle (2004) Sustainable development of bamboo resources. Africa Forestry Research Network(AFORNET), Ghana Processing Report 1 (unpublished), Jan-Dec 2004. 13p. Oteng-Amoako, A.A., D.A. Ofori, L.C.N. Anglaare, B.E. Obiri-Darko, E. Ebanyenle (2005) Sustainable development of bamboo resources of Ghana and Togo. Progress report submitted to Africa forest research Network, Nairobi, Kenya. Paralikar, S.A., J. Simonsen, J. Lombard (2008) Physical properties of starch nanocrystal-reinforced pullulan films. Journal of Membrane Science 320(1-2): 248-258. Petersson, L., A.P. Mathew, K. Oksman (2009) Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. Journal of Applied Polymer Science 112(4): 2001-2009. Pu, Y., J. Zhang, T. Elder, Y. Deng, P. Gatenholm, A.J. Ragauskas (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Composites Part B 38(3): 360-366. Qi, H., J. Cai, L. Zhang and S. Kuga (2009) properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6): 1597-1602. Rao, H.R., A.V. Rajulu, G.R. Reddy, H.K. Reddy (2010) Flexural and compressive properties of bamboo and glass fibre-reinforced epoxy hybrid composites. Journal of Reinforced Plastics and Composites 29: 1446-50. Roman, M., Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5(5): 1671-1677. Rusch, F., G. B. Ceolin, and E. Hillig. (2019) Morphology, density and dimensions of bamboo fibers: a bibliographical compilation. Pesquisa Agropecuaria Tropical 49: 9. Sameni, J., Krigstin, S., and Sain, M. (2017) Solubility of lignin and acetylated lignin in organic solvents BioRes 12(1): 1548-1565 Segal, L., J.J. Creely, A.E. Martin Jr, C.M. Conrad (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29: 786-794. Shojaeiarani J., D. S. Bajwa, C. Ryan, S. Kane (2022) Enhancing UV-shielding and mechanical properties of polylactic acid nanocomposites by adding lignin coated cellulose nanocrystals. Industrial Crops and Products 183: 114904. Sikora, A., F. Kačík, M. Gaff, V. Vondrová, T. Bubeníková, and I. Kubovský (2018). Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science. 64: 406-416. Singh, S., A.K. Mohanty, T. Sugie, Y. Takai, H. Hamada (2008) Renewable resource based biocomposites from natural fibre and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Composites Part A: Applied Science and Manufacturing 39: 875-86. Singla, R., S. Soni, P. M. Kulurkar, A. Kumari, M. S, V. Patial, Y. S. Padwad, and S. K. Yadav. (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydrate Polymers 155: 152-162. Siqueira, G., J. Bras, A. Dufresne (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2): 425-432. Stromme, M., Mihranyan, A., Ek, R. (2002). What to do with all these algae? Materials Letters57(3): 569-572. Thipchai P., W. Punyodom, K. Jantanasakulwong, S.Thanakkasaranee, S.Hinmo, K. Pratinthong, G. Kasi, P. Rachtanapun (2023) Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film. Polymers 15(12): 2622. Tong, X., W. Shen, X. Chen, M. Jia, and J.-C. Roux. (2020) Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp. Journal of Applied Polymer Science 137(9): 48407. Wang Y., S. Liu, Q. Wang (2020) Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals. Cellulose 27: 8725–8743. Wang, Q., X. Zhao, and J. Y. Zhu. (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Industrial & Engineering Chemistry Research 53(27): 11007-11014. Wang, R. B., L. H. Chen, J. Y. Zhu, and R. D. Yang. (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. Chemnanomat 3(5): 328-335. Wang, Y., X. Cao, L. Zhang (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience 6(7): 524-531. Wei, L., N.M. Stark, R.C. Sabo, L. Matuana (2016) Modification of cellulose nanocrystals (CNCs) for use in poly (lactic acid)(PLA)-CNC composite packaging products. Forest Products Society International Convention, Portland, OR. Wei, L., U. Agarwal, N. Stark, R. Sabo (2017). Nanocomposites from lignin-containing cellulose nanocrystals and poly (lactic acid). Paper prepared for: ANTEC® . Anaheim, CA. 5 p. Wei, L., U.P. Agarwal, L. Matuana, R.C. Sabo, N.M. Stark (2018) Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer, 135: 305-313. Yang, T. T., Y. Guo, N. Gao, X. Li, and J. Zhao. (2020) Modification of a cellulase system by engineering Penicillium oxalicum to produce cellulose nanocrystal. Carbohydr Polym 234:115862. Yildiz, S. and E. Gümüşkaya (2007) The effects of thermal modification on crystalline structure of cellulose in soft and hardw. Yongvanich, N. (2015) Isolation of nanocellulose from pomelo fruit fibers by chemical treatments. Journal of Natural Fibers 12(4): 323-331. Yu, H., Z. Qin, B. Liang, N. Liu, Z. Zhou, and L. Chen. (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A1(12). Zhang, C. W., S. Q. Xia, and P. S. Ma. (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology 219: 1-5. Zhang, P.P., D.S. Tong, C.X. Lin, H.M. Yang, Z.K. Zhong, W.H. Yu, C.H. Zhou (2014) Effects of acid treatments on bamboo cellulose nanocrystals. Asia‐Pacific Journal of Chemical Engineering 9(5): 686-695. Zhang, Y., X.-B. Lu, C. Gao, W.-J. Lv and J.-M. Yao (2012) Preparation and Characterization of Nano Crystalline Cellulose from Bamboo Fibers by Controlled Cellulase Hydrolysis. Journal of Fiber Bioengineering and Informatics 5(3): 263-271. Zhou, G. M., C. F. Meng, P. K. Jiang, and Q. F. Xu. (2011) Review of Carbon Fixation in Bamboo Forests in China. Botanical Review 77(3): 262-270. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94511 | - |
| dc.description.abstract | 使用酸水解生產的棒狀纖維素奈米微晶(Cellulose nanocrystals, CNCs)表面具有大量羥基,為高親水性材料,導致 CNCs 與疏水性聚合物基質間的相互作用及相容性較差,同時也使乾燥CNCs粉末難以均勻分布於基質中。然而,前人研究指出,在木質素存在的情況下,CNCs對基質將會有更好的分散性和相容性;對基質而言,含木質素之CNCs亦將有更高的結晶速率和結晶度。因此,本研究將在不同前處理條件下,探究以孟宗竹(Phyllostachys pubescens Mazel ex H. de Lehaie)為原料製造含木質素竹纖維素奈米微晶(Lignin-contained bamboo cellulose nanocrystals, L-BCNCs)之製程,並將進一步探討各組最終產物物理形態及化學性質,以確立可製造L-BCNCs的最佳製程。研究結果顯示,經不同前處理條件調控者,會因木質素留存量不同而呈現不同深淺黃褐色之顏色變化,顯示L-BCNCs中保留了相當程度的原有木質素。再進一步以FTIR圖譜確認,當中可發現自製L-BCNCs中皆有芳香環相關訊號,表示所製之L-BCNCs確實含有木質素存在。有鑑於木質素具有較高熱降解溫度,故以TGA觀察,可發現所製L-BCNCs之熱降解溫度皆高於竹纖維素奈米微晶(Bamboo cellulose nanocrystals, BCNCs)之熱降解溫度,顯示當中有木質素留存。其中,又以受熱處理及鹼處理後的L-BCNCs之熱降解溫度較高,反映較佳的熱穩定性。又熱穩定性益與結晶度有所關聯,以XRD進行測定,可發現BCNCs的結晶指數略低於市售CNCs,但仍屬於高結晶產物。因受木質素留存之影響,以亞氯酸鈉(Sodium chlorite, NaClO2)處理之L-BCNCs結晶度最低,而經熱處理之L-BCNCs組別皆高於市售CNCs,與熱性質的結論具有相似性。最後,由TEM圖則可觀察到竹CNCs產物同樣為細長棒狀纖維,長度範圍約為200-400 nm,寬度約為20 nm,與市售CNCs商品相似,顯示酸水解處理條件為可行之條件。綜上述可知,經熱處理及鹼處理之L-BCNCs具有更多的發展潛能,其奈米尺度與結晶剛性預期將可有效提升複合材料之機械性質,拓展其應用範疇。 | zh_TW |
| dc.description.abstract | Cellulose nanocrystals (CNCs) produced by acid hydrolysis have a large number of hydroxyl groups on their surfaces and are highly hydrophilic, which results in poor interaction and compatibility between CNCs and hydrophobic polymer matrices, as well as difficulties in the uniform distribution of dried CNCs powders in the matrix. However, previous studies have shown that in the presence of lignin, CNCs will have better dispersion and compatibility with the substrate, and CNCs with lignin will also have higher crystallisation rate and crystallinity for the substrate. Therefore, in this study, we will investigate the process of producing lignin-contained bamboo cellulose nanocrystals (L-BCNCs) from Phyllostachys pubescens under different pretreatment conditions, and further investigate the physical morphology and crystallisation of each group. The physical morphology and chemical properties of the final products will be further investigated to determine the optimal process for the production of L-BCNCs. The results of the study showed that the different pretreatment conditions resulted in different shades of yellow-brown colour variations depending on the amount of wood quality retained, indicating that a considerable amount of the original wood quality was retained in the L-BCNCs. Further confirmation by FTIR spectroscopy showed that all the homemade L-BCNCs had aromatic ring correlation signals, which indicated that the manufactured L-BCNCs did contain lignin. In view of the higher thermal degradation temperature of lignin, the thermal degradation temperature of the L-BCNCs was higher than that of the bamboo cellulose nanocrystals (BCNCs), indicating that lignin was present in the L-BCNCs. Among them, the thermal degradation temperature of heat-treated and alkaline-treated L-BCNCs was higher, reflecting better thermal stability. The thermal stability is also related to the crystallinity. The XRD measurement shows that the crystallinity index of BCNCs is slightly lower than that of commercially available CNCs, but it is still a high crystalline product. L-BCNCs treated with sodium chlorite (NaClO2) had the lowest crystallinity due to the effect of lignin retention, and the group of thermally treated L-BCNCs were all higher than that of the commercially available CNCs, which is similar to the conclusion of thermal properties. Finally, the TEM images showed that the products of bamboo CNCs were also long and thin rod-shaped fibres with a length range of about 200-400 nm and a width of about 20 nm, which were similar to those of commercially available CNCs, indicating that the acid hydrolysis treatment condition was a feasible condition. From the above, it can be seen that thermally treated and alkali treated L-BCNCs have more development potential, and their nanoscale and crystalline rigidity are expected to effectively improve the mechanical properties of the composite materials and expand their application scope. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:27:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:27:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌 謝 ... I
摘 要 ... II Abstract ... III 圖 次 ... V 表 次 ... VII 第一章 前言 ... 1 第二章 文獻探討 ... 6 2.1 竹子的特性 ... 6 2.2 纖維素奈米微晶(Cellulose Nanocrystals, CNCs) ... 11 2.3 奈米複合材料 ... 18 2.4 含木質素纖維素奈米微晶(Lignin-contained cellulose nanocrystals, L-CNCs) ...21 第三章 材料與方法 ... 24 3.1 原料 ... 24 3.2 試驗藥品 ... 25 3.3 竹纖維前處理 ... 25 3.3.1 不同時間之亞氯酸鈉(Sodium chlorite, NaClO2)處理 ... 25 3.3.2 不同時間之........熱處理 ... 25 3.3.3 不同時間之熱處理與鹼處理 ... 26 3.4 L-BCNCs 製備方法 ... 27 3.5 纖維性質評估 ... 29 3.5.1 纖維型態 ... 29 3.5.2 界面電位 ... 29 3.5.3 傅立葉紅外線光譜(Fourier Transform Infrared Spectroscopy,FT-IR) ... 29 3.5.4 X 光繞射(X-Ray Diffraction, XRD)... 29 3.5.5 纖維熱性質 ... 30 第四章 結果與討論 ... 32 4.1 傅立葉紅外線光譜 ... 32 4.2 纖維熱性質 ... 40 4.3 X 光繞射 ... 45 4.4 纖維型態 ... 48 4.5 外觀 ... 51 4.6 粒徑分析 ... 56 4.7 界面電位 ... 58 第五章 結論 ... 61 參考文獻 ... 63 附 錄 ... 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 孟宗竹 | zh_TW |
| dc.subject | 竹材 | zh_TW |
| dc.subject | 生物複合材料 | zh_TW |
| dc.subject | 纖維素奈米微晶 | zh_TW |
| dc.subject | 奈米纖維素 | zh_TW |
| dc.subject | Cellulose nanocrystals | en |
| dc.subject | Nanofibrillar | en |
| dc.subject | Mengzong bamboo | en |
| dc.subject | Bamboo | en |
| dc.subject | Biocomposite materials | en |
| dc.title | 含木質素之竹纖維素奈米微晶製程及性質探討 | zh_TW |
| dc.title | Study on the Production and Properties of Lignin-containing Bamboo Cellulose Nanocrystals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張資正;何振隆 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Cheng Chang;Chen-Lung Ho | en |
| dc.subject.keyword | 竹材,孟宗竹,奈米纖維素,纖維素奈米微晶,生物複合材料, | zh_TW |
| dc.subject.keyword | Bamboo,Mengzong bamboo,Nanofibrillar,Cellulose nanocrystals,Biocomposite materials, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202403226 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
