Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝尚賢zh_TW
dc.contributor.advisorShang-Hsien Hsiehen
dc.contributor.author虞佳文zh_TW
dc.contributor.authorJia-Wen Yuen
dc.date.accessioned2024-08-16T16:27:20Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationAsare, K. A. B., Ruikar, K. D., Zanni, M., & Soetanto, R. (2020). BIM-based LCA and energy analysis for optimised sustainable building design in Ghana. SN Applied Sciences, 2(11), 1855. https://doi.org/10.1007/s42452-020-03682-2

Ashour, M., Mahdiyar, A., Haron, S. H., & Hanafi, M. H. (2022). Barriers to the practice of sustainable interior architecture and design for interior renovations: A Parsimonious-Cybernetic Fuzzy AHP approach. Journal of Cleaner Production, 366. https://doi.org/10.1016/j.jclepro.2022.132958

Boesel, M., Chen, S., & Nothaft, F. E. (2021). Housing preferences during the pandemic: Effect on home price, rent, and inflation measurement. Business Economics, 56(4), 200–211. https://doi.org/10.1057/s11369-021-00241-4

Bulchandani, D. (2024, May 29). What are the Differences between Revit vs. Dynamo API? QeBIM Service Co.Uk. https://www.qebimservices.co.uk/blog/what-are-the-differences-between-revit-vs-dynamo-api/

Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. https://doi.org/10.1016/j.rser.2013.08.037

Cavalliere, C., Habert, G., Dell’Osso, G. R., & Hollberg, A. (2019). Continuous BIM-based assessment of embodied environmental impacts throughout the design process. Journal of Cleaner Production, 211, 941–952. https://doi.org/10.1016/j.jclepro.2018.11.247

Corporation, T. S. (2024, July 20). Welcome to Circular Economy of Taiwan Sugar Corporation-Shalun Smart Green Energy Circular Residential Park (Taiwan(ROC)) [Text]. Taiwan Sugar Corporation; Taiwan Sugar Corporation. https://www.taisugar.com.tw/circular/english/CP2.aspx?n=12428

De Bruijn, H., Van Duin, R., Huijbregts, M. A. J., Guinee, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Van Oers, L., Wegener Sleeswijk, A., Suh, S., & Udo De Haes, H. A. (Eds.). (2002). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards (Vol. 7). Springer Netherlands. https://doi.org/10.1007/0-306-48055-7

Embodied Carbon Primer. (n.d.). Leti. Retrieved July 20, 2024, from https://www.leti.uk/ecp

Gan, V. J. L., Deng, M., Tse, K. T., Chan, C. M., Lo, I. M. C., & Cheng, J. C. P. (2018). Holistic BIM framework for sustainable low carbon design of high-rise buildings. Journal of Cleaner Production, 195, 1091–1104. https://doi.org/10.1016/j.jclepro.2018.05.272

Guinee, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5), 311–313. https://doi.org/10.1007/BF02978897

Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., & Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161. https://doi.org/10.1016/j.buildenv.2019.106218

Hollberg, A., Genova, G., & Habert, G. (2020). Evaluation of BIM-based LCA results for building design. Automation in Construction, 109, 102972. https://doi.org/10.1016/j.autcon.2019.102972

Lai, K. E., Abdul Rahiman, N., Othman, N., Ali, K. N., Lim, Y. W., Moayedi, F., & Mat Dzahir, M. A. (2023). Quantification process of carbon emissions in the construction industry. Energy and Buildings, 289. https://doi.org/10.1016/j.enbuild.2023.113025

Liu, Z., Li, Y., Xu, W., Yin, H., Gao, J., Jin, G., Lun, L., & Jin, G. (2019). Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case. Energy, 173, 28–37. https://doi.org/10.1016/j.energy.2019.02.061

Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228–236. https://doi.org/10.1016/j.buildenv.2018.02.016

Najjar, M., Figueiredo, K., Hammad, A. W. A., & Haddad, A. (2019). Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Applied Energy, 250, 1366–1382. https://doi.org/10.1016/j.apenergy.2019.05.101

Najjar, M., Figueiredo, K., Palumbo, M., & Haddad, A. (2017). Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 14, 115–126. https://doi.org/10.1016/j.jobe.2017.10.005

Nwodo, M. N., & Anumba, C. J. (2019). A review of life cycle assessment of buildings using a systematic approach. Building and Environment, 162, 106290. https://doi.org/10.1016/j.buildenv.2019.106290

Pan, W., & Pan, M. (2018). A dialectical system framework of zero carbon emission building policy for high-rise high-density cities: Perspectives from Hong Kong. Journal of Cleaner Production, 205, 1–13. https://doi.org/10.1016/j.jclepro.2018.09.025

Powerful Features that Differentiate Revit API and Dynamo | eLogicTech Blog. (n.d.). Retrieved August 12, 2024, from https://www.elogictech.com/blogs/bloginfo/dynamo-vs-revit-api

Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107. https://doi.org/10.1016/j.apenergy.2019.114107

Santos, R., Costa, A. A., Silvestre, J. D., & Pyl, L. (2019). Integration of LCA and LCC analysis within a BIM-based environment. Automation in Construction, 103, 127–149. https://doi.org/10.1016/j.autcon.2019.02.011

Schultz, J., Ku, K., Gindlesparger, M., & Doerfler, J. (2016). A benchmark study of BIM-based whole-building life-cycle assessment tools and processes. International Journal of Sustainable Building Technology and Urban Development, 7(3–4), 219–229. https://doi.org/10.1080/2093761X.2017.1302839

Soust-Verdaguer, B., Llatas, C., García-Martínez, A., & Gómez de Cózar, J. C. (2018). BIM-Based LCA Method to Analyze Envelope Alternatives of Single-Family Houses: Case Study in Uruguay. Journal of Architectural Engineering, 24(3), 05018002. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000303

Tam, V. WY., Zhou, Y., Shen, L., & Le, K. N. (2023). Optimal BIM and LCA integration approach for embodied environmental impact assessment. Journal of Cleaner Production, 385, 135605. https://doi.org/10.1016/j.jclepro.2022.135605

United Nations Environment Programme (2022). 2022 Global Status Report for Buildings and Construction: Towards a Zero‑emission, Efficient and Resilient Buildings and Construction Sector.

https://wedocs.unep.org/20.500.11822/41133.

van Eldik, M. A., Vahdatikhaki, F., dos Santos, J. M. O., Visser, M., & Doree, A. (2020). BIM-based environmental impact assessment for infrastructure design projects. Automation in Construction, 120. https://doi.org/10.1016/j.autcon.2020.103379

Xu, J., Teng, Y., Pan, W., & Zhang, Y. (2022). BIM-integrated LCA to automate embodied carbon assessment of prefabricated buildings. Journal of Cleaner Production, 374, 133894. https://doi.org/10.1016/j.jclepro.2022.133894

Yang, X., Hu, M., Wu, J., & Zhao, B. (2018). Building-information-modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. Journal of Cleaner Production, 183, 729–743. https://doi.org/10.1016/j.jclepro.2018.02.070

低碳建築聯盟 LCBA (Low Carbon Building Alliance). (n.d.). Retrieved July 20, 2024, from https://www.lcba.org.tw/

住宅裝修市場規模推估方法之研究. (2020, March 21). 中華民國內政部建築研究所. http://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=38057
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94509-
dc.description.abstract隨著近年來建築物的能效逐步提高,相比於運營碳排,其隱含碳排逐漸受到更多的關注。室內裝修的碳排放屬於建築隱含碳排的一部分。與建築主結構的碳排放不同,室內裝修的碳排放會在建築物的生命周期內逐漸累積。因此,在設計階段進行室內裝修的碳足跡評估,有助於減少更新維護和廢棄處理階段裝修材料的碳排放,從而實現長期的可持續發展。然而,現有的BIM-LCA集成方法在進行生命周期評估時,存在耗時過長、給設計軟件帶來沉重負擔、數據互通性差等問題,且無法將評估結果反饋至設計軟件以輔助低碳室內設計。 為解決這些問題,本研究開發了一種基於BIM的碳足跡評估可視化方法,用於輔助低碳室內設計,並整合了台灣低碳建築聯盟提出的室內裝修分項工程碳足跡資料庫。研究中開發了三個插件,用於實現數據提取、整合與評估,並將結果反饋至Revit元件中進行3D可視化。本研究采用台糖沙崙智慧綠能循環住宅園區的示範屋作爲案例,將方法應用於示範屋的室内裝修碳足跡評估。結果表明,該方法能有效支持低碳室內設計決策,減少BIM和LCA數據提取與整合所需的時間,並提高BIM與LCA數據之間的互通性。zh_TW
dc.description.abstractAs buildings become more energy-efficient, embodied carbon has gained increasing attention. The carbon emissions of interior renovation are also included in the embodied carbon. Unlike the carbon emissions from the main structure, the carbon emissions from interior renovation accumulate over the building's lifecycle. Conducting a carbon footprint evaluation of interior renovation during the design stage is beneficial for reducing the carbon emissions of renovation materials during maintenance and disposal stages, achieving long-term sustainability. However, the existing BIM-LCA integrated approaches for life cycle assessment are time-consuming, prone to cause huge burden on design software, have poor data interoperability, and fail to transmit evaluation results back to the design software to assist low-carbon interior design. To address these problems, this study developed a BIM-based visualization of carbon footprint evaluation for assisting low carbon interior design, which integrates the carbon footprint database for interior renovation proposed by the Low Carbon Building Alliance in Taiwan. Three plugins were developed to achieve data extraction, integration, evaluation, feed back to Revit components and 3D visualization. Then the approach was applied in the demo house of the Taisugar Circular Village. The results showed that this approach efficiently supports low-carbon interior design decision-making, reduces the time required for BIM and LCA data extraction and integration, and improves interoperability between BIM and LCA data.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:27:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:27:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
Acknowledgements 誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 Existing BIM-LCA Approaches and Their Shortcomings 5
2.2 Local Carbon Footprint Evaluation System for Interior Renovation 8
2.3 The Presentation Format of the LCA Results 15
Chapter 3 Methods 18
3.1 Module 1: LCA Data Preparation 20
3.2 Module 2: BIM data extraction 23
3.3 Module 3: BIM and LCA Data Integration 27
3.4 Module 4: Interior Design Carbon Footprint Evaluation and Analysis, and Low-Carbon Design Alternatives Customization 31
3.5 Module 5: Carbon footprint evaluation data feedback 33
3.6 Module 6: Carbon footprint evaluation data visualization 35
Chapter 4 A case study using the developed method 40
4.1 Case building description 40
4.2 Application of the developed method 41
4.3 Interior Design Carbon Footprint Evaluation and Analysis, and Low-Carbon Design Alternatives Customization Results of the Case Building 45
4.4 Visualization of results 50
Chapter 5 Discussion 57
Chapter 6 Conclusion 61
REFERENCE 62
-
dc.language.isoen-
dc.title以BIM輔助室内裝修設計碳足跡評估的可視化方法zh_TW
dc.titleA BIM-based Visualization of Carbon Footprint Evaluation for Assisting Low Carbon Interior Designen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林偲妘;黃麗玲zh_TW
dc.contributor.oralexamcommitteeSzu-Yun Lin;Li-ling Huangen
dc.subject.keyword碳足跡,室内設計,視覺化,隱含碳,建築信息建模,zh_TW
dc.subject.keywordCarbon footprint,Interior design,Visualization,Embodied carbon,BIM,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202404310-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved