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ABSTRACT

As buildings become more energy-efficient, embodied carbon has gained increasing
attention. The carbon emissions of interior renovation are also included in the embodied
carbon. Unlike the carbon emissions from the main structure, the carbon emissions from
interior renovation accumulate over the building's lifecycle. Conducting a carbon
footprint evaluation of interior renovation during the design stage is beneficial for
reducing the carbon emissions of renovation materials during maintenance and disposal
stages, achieving long-term sustainability. However, the existing BIM-LCA integrated
approaches for life cycle assessment are time-consuming, prone to cause huge burden on
design software, have poor data interoperability, and fail to transmit evaluation results
back to the design software to assist low-carbon interior design. To address these
problems, this study developed a BIM-based visualization of carbon footprint evaluation
for assisting low carbon interior design, which integrates the carbon footprint database
for interior renovation proposed by the Low Carbon Building Alliance in Taiwan. Three
plugins were developed to achieve data extraction, integration, evaluation, feed back to
Revit components and 3D visualization. Then the approach was applied in the demo
house of the Taisugar Circular Village. The results showed that this approach efficiently

supports low-carbon interior design decision-making, reduces the time required for BIM
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and LCA data extraction and integration, and improves interoperability between BIM and

LCA data.

Keywords: Carbon footprint, Interior design, Visualization, Embodied carbon, BIM
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Chapter 1 Introduction

The United Nations Environment Programme (UNEP) highlighted in its latest 2022
Global Status Report for Buildings and Construction that the building sector accounts for
37% of global carbon emissions from operational energy and process-related activities
(United Nations Environment Programme, 2022). The Operational energy-related carbon
emissions, also known as operational carbon, arise from energy consumption during
building use, such as heating, cooling, and lighting. The Process-related carbon emissions
are associated with building material production, especially in interior design, and are
part of embodied carbon, which also includes emissions from material extraction,

transportation, installation, maintenance, and disposal (What Is Embodied Carbon?, n.d.).

In previous sustainable design cases, designers focused on reducing the
environmental impact of buildings throughout their lifecycle by enhancing energy
efficiency. It can effectively reduce operational carbon emissions. However, it has also

led to an increased proportion of embodied carbon emissions (Liu et al., 2019). For high-

energy-efficiency buildings, embodied carbon emissions can exceed operational carbon

emissions, accounting for 50% to 90% of the total carbon emissions of buildings (Rock

et al., 2020). Therefore, reducing embodied carbon emissions is a strategic and important

approach to achieving net-zero goals, and effective evaluation of embodied carbon is the
1
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first step in reducing these emissions (Pan & Pan, 2018).

The extraction, transportation, production, installation, maintenance, and disposal of

materials such as wall decorations, flooring, and ceilings in interior design generate

embodied carbon emissions. However, interior renovation are highly favored by

consumers because they can significantly enhance the usability and functionality of a

building by updating and optimizing the internal structure and facilities of existing

buildings. According to statistics from the Architecture and Building Research Institute

of the Ministry of the Interior, R.O.C. (Taiwan) in 2002, with the annual housing

transaction volume accounting for approximately 4% to 5% of all households, up to

44.3% of households undertook renovations, indicating that renovation is a more feasible

and economical way for most families to meet their housing needs compared to

purchasing new houses (i %13 3 F3Hda s > /2 2 F7F, 2020). Especially during

the COVID-19 pandemic, to cope with the significant rise in housing prices and avoid the

high costs associated with buying new houses, many families chose to improve their

existing living spaces through interior design to enhance their quality of life (Boesel et

al., 2021; De Bruijn et al., 2002). Another important reason for the high demand for

interior renovation projects is their ability to effectively respond to changing household

needs. For instance, during the COVID-19 pandemic, there was a significant increase in
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the demand for remote work and online learning, and interior renovation projects could

meet this demand by transforming home office spaces and study areas (Boesel et al.,

2021). In summary, with the rising cost of homeownership and the lifestyle changes

brought about by the pandemic, the volume of interior renovation will increase

significantly relative to new construction. It will further highlight their importance.

Therefore, the embodied carbon emissions of interior design should not be overlooked,

they are crucial for achieving more sustainable building practices.

In the cradle-to-gate life cycle of buildings, the embodied carbon of interior

renovation accounts for 4% to 22% of the total embodied carbon of buildings. Buildings

with larger wall, floor, and ceiling areas have a higher proportion of embodied carbon

from interior renovation (Embodied Carbon Primer, n.d.). Although the opportunities for

reducing the embodied carbon of interior renovation are not as significant as those for the

main structure of buildings, the lifespan of interior renovation depends on actual use and

maintenance and is usually shorter. For example, in Taiwan, the maximum lifespan of

general construction projects is 60 years, while the maximum lifespan of interior

renovation is 20 years, meaning that interior renovation can lead to multiple carbon

emissions over the building's entire life cycle (Lin, 2018). However, most studies in the

field of building embodied carbon today focus only on the carbon emissions of the main
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structure and ignore those of interior renovation (Ashour et al., 2022). This will leads to

inaccurate evaluation results of total building carbon, and causing designers to miss

opportunities for carbon reduction in interior design.

From another perspective, the renovation of existing buildings has been recognized

as a major strategy to reduce the environmental impact associated with construction.

Under the influence of government principles advocating reuse and renovation over

demolition and new construction, the number of future building renovation projects is

bound to increase. Studies have shown that in the same building case, the global warming

potential of concrete materials is highest in new construction scenarios, at 38%, while in

renovation scenarios, the global warming potential of finishes (including exterior and

interior) is highest, at 40% (Hasik et al., 2019). Therefore, the environmental impact of

interior renovation will become increasingly significant over time. However, the

predominant focus on new construction in most studies of building environmental impact

often leads to the oversight of the environmental impact associated with interior

renovation in existing buildings (Cabeza et al., 2014). This can result in a biased analysis

of a building's environmental impact, causing the long-term environmental effects of the

building to be underestimated, which in turn affects long-term sustainability. Thus,

incorporating embodied carbon evaluation of interior renovation in the design stage is

doi:10.6342/NTU202404310


https://www.zotero.org/google-docs/?TVZJkZ
https://www.zotero.org/google-docs/?DozcOR
https://www.zotero.org/google-docs/?Fk2NL2

essential.

To address these research gaps, this paper aims to develop a BIM-based visualization
of carbon footprint evaluation for assisting low carbon interior design. The objectives of
this paper are: (1) to efficiently conduct embodied carbon evaluation for interior design,
providing accurate data support for low-carbon interior design decision making; (2) to
identify key factors contributing to embodied carbon in interior design for both new
construction and renovation of buildings, and to quantify the impact of different interior
materials on total carbon emissions through the development of a visualization tool; (3)
to offer customized recommendations for low-carbon alternative material selection to
interior designers, reducing potential risks that may affect long-term sustainability at the

early stages.

Chapter 2 Literature review

2.1 Existing BIM-LCA Approaches and Their Shortcomings

Life Cycle Assessment (LCA) is one of the most suitable methods for analyzing the

environmental impact of buildings throughout their entire life cycle (Guinee, 2002; Meex

et al., 2018; Lin, 2018). However, the application of LCA in buildings commonly has

time consumption, lack of databases, information management, and data interoperability
5
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issues (Yang et al., 2018).

Building Information Modeling (BIM) has a quantity takeoff function which allows

it to effectively integrate and manage the complex data throughout the building lifecycle.

And reduces the time and effort required by LCA practitioners for extensive manual input.

This has led to an increasing number of researchers attempting to integrate LCA and BIM

to assess the embodied environmental impacts of buildings (Cavalliere et al., 2019; Gan

et al., 2018: Hollberg et al., 2020: Lai et al., 2023: Nwodo & Anumba, 2019: Santos et

al.. 2019: Soust-Verdaguer et al., 2018).

Tam et al. (2022) categorized existing BIM-LCA integration approaches into five

types: (1) Export the bill of quantities from the BIM model, combine it with

environmental impact factors of building components and materials, and conduct the

assessment in Excel to obtain results; (2) Export the bill of quantities from the BIM model,

integrate it with LCI data (Life Cycle Inventory) from external LCA tools, and conduct

the assessment in these external tools to obtain results; (3) Install an LCA plugin

containing LCI data within the BIM environment, and conduct the assessment within the

plugin to obtain results; (4) Export the bill of quantities from the BIM model, combine it

with environmental impact factors of building components and materials, and conduct the

assessment in a visual programming environment to obtain results; (5) Integrate LCA data
6
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into the BIM objects and conduct the assessment within the BIM environment using the

Industry Foundation Classes (IFC) format to obtain results. By evaluating these

approaches’ performances, such as the quality of extracted BIM materials’ data and LCA

data, the time consumption of assessment, the automation degree of assessment, the

operational complexity of assessment, and the skill threshold for practitioners, Tam et al.

(2022) considered that the first approach has significant shortcomings in terms of

automation, the second approach has notable shortcomings in data quality and operational

complexity, and the fifth approach has clear drawbacks in assessment time and technical

threshold. In contrast, the third and fourth approaches are the best integration approaches

in the detailed design stage. And the fourth approach is the best in the early and

construction design stage. However, the representative plugin for the third approach, Tally,

is considered to have missing LCA data (Najjar et al., 2017; Schultz et al., 2016).

Materials that are either not evaluated or only partially assessed may lead to an

underestimation or overestimation of the building's environmental impact, resulting in

inaccurate LCA evaluation outcomes. And the fourth approach tends to place huge burden

on Revit software (Tam et al., 2023). This is because Dynamo is a visual programming

tool outside Autodesk Revit, and unlike the Revit API, it is not built into Revit. This lack

of integration with Revit’s core functionality can cause delays and resource consumption

due to intermediate layers, and prevents direct access to and manipulation of Revit data,
7
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leading to performance overheads associated with data conversion and processing

(Bulchandani, 2024). Moreover, as a node-based graphical programming tool, Dynamo

often lacks the flexibility and control necessary for handling complex logic, such as the
data extraction, integration, and calculation involved in LCA (Powerful Features That
Differentiate Revit APl and Dynamo | eLogicTech Blog, n.d.). Therefore, compared to

Dynamo, the Revit API is more suitable for developing LCA-related tools.

Data interoperability issues, such as missing components when importing models
from the BIM environment to the LCA environment, differences in data formats and units
between BIM and LCA environments, are commonly occurring in these BIM-LCA

integration approaches.

In addition, none of the above five integration approaches have returned the LCA
results to the Revit components as parameters. In fact, returning results to Revit not only
allows designers access these data directly for efficient design optimization, but also
provides an opportunity for visualization of evaluation results. Therefore, it is worth
researching whether there are new BIM-LCA integration methods that can improve or

solve the problems mentioned above.

2.2 Local Carbon Footprint Evaluation System for Interior
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Renovation

When conducting a carbon evaluation for interior renovation during the design stage,

the reliability, completeness, geographical relevance, and technical relevance of the data

in the LCA database (British Standards Institution [BSI], 2011) can directly affect the

credibility of the assessment results. And it is necessary for LCA practitioners to confirm

that the evaluation approach complies with the Carbon Footprint Product Category Rules

(CFP-PCR) and its boundaries suitable for the building location before proceeding with

the evaluation. Since the CFP-PCR boundaries for building inventories in different

countries may vary due to differing environmental policies, building standards, and

specific carbon inventory requirements.

To facilitate LCA practitioners in conducting carbon footprint evaluation of interior

renovation, the Low Carbon Building Alliance (LCBA) in Taiwan applied to the Ministry

of Environment for approval of the interior renovation CFP-PCR in 2017 (Lin, 2018), and

established a sub-divisional work carbon footprint database specifically for the interior

renovation. This database includes carbon emission data obtained from the materials,

construction techniques, and equipment used in sub-divisional works. It is known for its

high data quality and clear boundary settings, as well as ensuring the accuracy and

credibility of the assessment results. And it is suitable for Taiwan’s interior renovation
9
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CFP-PCR and boundaries (Lin, 2018).

The Interior Renovation Carbon Footprint Evaluation System (ICF System) is an

assessment tool also proposed by the Low Carbon Building Alliance in Taiwan, focusing

on the carbon reduction benefits of interior renovation design. This system is supported

by data from the sub-divisional work carbon footprint database specifically for the interior

renovation. It covers five sub-divisional works: partition walls, wall finishes, floor

finishes, ceiling finishes, and fixed cabinets. Among them, ‘partition walls’ refers to

newly added partition walls in interior renovation, including screens and partitions, but

excluding RC walls, masonry walls, lightweight grouting walls, and existing walls and

screen structures. ‘Wall finishes’ refers to newly added surface finishes fixed to the

aforementioned newly added partition walls or existing wall and screen structures in

interior renovation, excluding movable objects. ‘Floor finishes’ refers to finishes newly

fixed to the floor structure in interior renovation, and also excludes movable objects.

‘Ceiling finishes’ refers to finishes newly fixed to the ceiling structure in interior

renovation, excluding water and electrical piping, lighting fixtures, chandeliers, and other

objects. ’Fixed cabinets‘ refers to cabinets newly fixed to walls or floors in interior

renovation, excluding movable furniture (Lin, 2018). Its assessment includes the carbon

footprint of materials and the carbon footprint during the construction process, the repair

10
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and maintenance process, and the end of life disposal process. The following are the

calculation formulas for the evaluation model of this system (Fig. 2. 1):

11

doi:10.6342/NTU202404310



e New Construction Phase Materials and Construction Carbon Footprint (kgCOse) -
CFmic = CFwe + CFf + CFwd « CFe + CFFf
o Partition Wall (kgCOse) -
CFwe = FCFwcl = Awci
o Floor Finishes (kgCOye) :
CFF = SCFFi x Afi
o Wall Finishes (kgCOye) :
CFwd = JCFwdi » Awdi
o Ceiling Finishes (kgCO»e) :
CFe = TCFci » Aci
o Cabinets(kgCOye) :
u General Panel Cabinets:
CFHf » 5 ( SCFBi  ABSj « Muij » SCFDj « ADj + SCFTij x AT + SCFSij = AS§ )
s  Metal Tube Cabinets:
CFif = 3 ( TCFBij x ABij x Muij )

* Renovation and Update Phase Materials and Construction Carbon Footprint (kgCO,e) :
CFrm = SCFwdi x Awdi x RTwdi » SCFfi » Afi x RTfi « SCFei x Aci x RTei + 3 ( SCFBij x ABij x Muij +
ICFD'! ADjj + TCFTij = ATij » FCFSij = ASij )  RTbi

Partition Wall (kgCO:e) :
Due to the durability of partition walls exceeding the entire lifecycle of interior
renovation, they are not considered.
& Wall Finishes (kgCOse) -
ZCFwdi ® Awdi * RTwdi
o Floor Finishes (kgCOse) :
JCFfi * Afi * RTHi
o Ceiling Finishes (kgCOye) :
JCFei * Aci * RTai
o Cabinets(kgCOye) :
m  General Panel Cabinets:
2 (ZCFBij x ABIj  Muij « 3CFDij = ADjj « 3CFTij « ATij « 3CFSij « ASjj ) = RTbi
s Metal Tube Cabinets:
Exemnpt from calculation
s Demolition Waste Phase Carbon Footprint (kgCOse) :
CFwr = Wwe « Wwd « WF + We + WHF
o Partition Wall (kgCO:se) :
Wiwe = TWDwei = Awei
o Wall Finishes (kgCO»e) :
Wiwd = TWDwdi » Awdi = 1+ RTwdi )
& Floor Finishes (kgCOe) :
W = SWDfi = Afi« ( 1+ RTFi )
o Ceiling Finishes (kgCOye) :
We = TWDcixAcix=(1+RTci)
o Cabinets (kgCOye)
s General Panel Cabinets :
WHf = § { TWDbij = ABij = Muij + TWDdij = ADij + TWDHij = ATij + TWDsij = ASij ) = (1
«RThi)
= Metal Tube Cabinets:
W = 3 ( TWDbij « ABj = Muij )

(a) The carbon footprint calculation formula of the sub-divisional works

12
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e Total Carbon Footprint of Interior Renovation throughout the Life Cycle (kgCOse) :
TCF « CFmc +» CFrm « CFwr
e Design Project Carbon Footprint Indicator (kgCOe / m®. yr) :
CFlI«TCF+Al+LC
e Benchmark Project Carbon Footprint Indicator (kgCOse / m™. yr) :
CFIr«TCF +Al+ LC
e Design Project Carbon Footprint Reduction Percentage:
CFR« (CFI-CFI') + CFI'

CFwci: The Materials and Construction Carbon Footprint Density of Partition Wall i
CFwdi: The Materials and Construction Carbon Footprint Density of Wall i
CFfi: The Materials and Construction Carbon Footprint Density of Floor i
CFci: The Materials and Construction Carbon Footprint Density of Ceiling i
Awci: The Area of Partition Wall i

Afi: The Area of Floor i

Awdi: The Area of Wall i

Aci: The Area of Ceiling i

CFBij: Cabinet i Body j Material and Construction Carbon Footprint Density
CFDij: Cabinet i Door | Material and Construction Carbon Footprint Density
CFTij: Cabinet | Countertop | Material and Construction Carbon Footprint Density
CFSij: Cabinet i Panel | Material and Construction Carbon Footprint Density
ABij: Cabinet i Body j Elevation Area

ADij: Cabinet i Door j Area

ATij: Cabinet | Countertop | Area

ASij: Cabinet i Panel j Area

Muij: Cabinet | Body | Material Ratio

RTwdi: The Life Cycle Update Standard of Wall Finishes i

RTfi: The Life Cycle Update Standard of Floor Finishes i

RTci: The Life Cycle Update Standard of Ceiling Finishes

RTbi: The Life Cycle Update Standard of Cabinet i Body Finishes

WDwci: The Disposal Carbon Footprint Density of Partition Wall i
WDwdi: The Disposal Carbon Footprint Density of Wall i

WODfi: The Disposal Carbon Footprint Density of Floor i

WDxci: The Disposal Carbon Footprint Density of Ceiling i
WDbij: The Disposal Carbon Footprint Density of Cabinet i Body |

WDdij: The Disposal Carbon Footprint Density of Cabinet i Door

WDtij: The Disposal Carbon Footprint Density of Cabinet i Countertop |
WDsij: The Disposal Carbon Footprint Density of Cabinet i Panel |

Al: Total Floor Area of Interior Renovation Projects

LC: The Life Cycle Standard of Interior Renovation

(b) Main evaluation formulas and variables

Fig. 2. 1 Formulas and variables in the ICF system calculation model.

13
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In the above formulas, apart from the area of various building components and the

material ratio of cabinet bodies, which need to be extracted from the revit model. The

carbon footprint density, the life cycle update standard for sub-divisional works, and the

life cycle standard of interior renovation can all be obtained by querying the database.

The carbon footprint density in the database includes design and its baseline two

parts. The carbon footprint density of the design case component depends on the material

usage information in the actual sub-divisional work design of the Revit model, while the

carbon footprint density of the baseline case component is based on the most commonly

used or representative materials in the sub-divisional work. The carbon footprint density

of the baseline case refers to the benchmark for the design case. During the assessment

process, these data are used to calculate the carbon footprint indicators of the baseline and

design cases, as well as the carbon reduction percentage of the design case.

The ICF system divides buildings into 3 types: buildings with high deterioration rate,

buildings with medium deterioration rate, and buildings with low deterioration rate, and

set the life cycle standard for them respectively in 5, 10, and 20 years. These standards

have gained industry consensus, and are part of the interior renovation CFP-PCR rules.

Based on this, the ICF system has calculated corresponding sub-divisional work update

standards for these three types of buildings, which are incorporated into the ICF
14
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calculation model during the assessment process to obtain the total carbon footprint of

the interior renovation throughout the life cycle and the carbon reduction percentage of

the design case ( Ag % # 5 ' LCBA (Low Carbon Building Alliance), n.d.; Lin, 2018).

Although the ICF System complies with Taiwan's interior renovation CFP-PCR and

its boundaries, and the data used in the assessment process are reliable, complete,

geographically relevant, and technically relevant, the calculation method is manual. Since

the ICF system's calculation process involves extensive data collection, organization, and

analysis, manually assess the carbon footprint can lead to time consuming and human

CITOorS.

2.3 The Presentation Format of the LCA Results

According to the content of the ICF System, its evaluation results only provide the

total carbon footprint of the interior renovation throughout the life cycle (TCF) and the

carbon reduction percentage of the design case (CFR). Although these data can be used

for the rating of low-carbon interior renovation design ( Mg <& # 7 £ LCBA (Low

Carbon Building Alliance), n.d..; Lin, 2018), they cannot directly assist designers in

decision-making during the actual design process. Designers often need more detailed

and intuitive results, such as 3D visualization, to consider carbon emissions when
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selecting materials.

In previous research, the results of building life cycle assessments were normally

presented in the form of data and graphs (Asare et al., 2020; Najjar et al., 2019; Xu et al.,

2022). In contrast, presenting the LCA results in 3D content creation suites outside of the

design platform Autodesk Revit was relatively less common (Kulahcioglu et al., 2012).

And there are only one study added the evaluation results to the building component

properties and presented the results in 3D visualization in Autodesk Revit (van Eldik et

al., 2020). However, this method is only applicable to the environmental impact

assessments in infrastructure design projects and cannot be directly used for carbon

footprint evaluation of interior renovation in Taiwan.

The LCA results in previous research were typically presented in the form of data

and graphs because visualizing LCA results generally requires very detailed and

comprehensive data, including environmental impact baseline for each building

component. However, since different components serve various functions and purposes

within a building, obtaining and integrating this data to support fair and accurate

comparisons is often highly complex. For example, while data and graphs can be used to

compare the carbon emissions of certain types of building components, visualizing these

results would require carbon emission data for each component. Although this data can
16
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be easily obtained, the components’ different roles, such as load-bearing, insulation, and

waterproofing, require varying requirements for material strength, durability, and cost.

Directly comparing their embodied carbon emissions might overlook these functional

differences, leading to unfair comparisons. Furthermore, visualizing LCA results also

needs linking this data to specific building model components, which presents technical

challenges and requires advanced programming skills. Therefore, while LCA result

visualization is theoretically feasible, it is relatively difficult to implement in practice,

which has led most past research to rely on data and graphs for presenting LCA outcomes.

A number of points can be derived from this review. First, the manual calculation

model proposed by the ICF System, which meets the CFR-PCR standards for interior

renovation, is time-consuming and prone to errors, emphasizing the need for a more

automated approach. Second, though the BIM-LCA integration approach using the visual

programming language environments shows promise, it places a heavy burden on Revit.

This highlights the potential of Revit API for tool development to enhance stability. Third,

existing BIM-LCA integration methods often face data interoperability issues, which

similarly affect the carbon footprint evaluation of interior design. This presents the

necessity for improved data management solutions. Lastly, there is a distinct lack of

studies that integrate LCA results back into Revit components for visualization, which

17
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limits the ability to use these results in practical design optimization. Therefore, this study
proposes a BIM-based visualization of carbon footprint evaluation for assisting low
carbon interior design by providing accurate, actionable data to support effective

decision-making and long-term sustainability.

Chapter 3 Methods

This study aims to accurately evaluate the embodied carbon emissions in the interior
design through a BIM-based visualization for carbon footprint evaluation, providing
reliable data, charts, and 3D visualization support for low-carbon interior design decision-
making. Through this approach, interior designers can not only efficiently identify carbon
hotspots in new construction and renovation interior design, including the sub-items of
interior renovation sub-divisional works and the materials used for components in the
interior renovation, but also gain a clear understanding of the impact of different sub-
divisional works on the total carbon emissions across various life cycle phases.
Consequently, this approach offers customized recommendations for low-carbon

alternative materials to support low-carbon design.

To achieve these objectives, this study developed a systematic approach comprising

six main modules (Fig. 3. 1): (1) LCA data preparation, (2) BIM data extraction, (3) BIM
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and LCA data integration, (4) Interior Design Carbon Footprint Evaluation and Analysis,

and Low-Carbon Design Alternatives Customization, (5) Carbon footprint evaluation

data feedback, and (6) Carbon footprint evaluation data visualization. These modules are

closely integrated, forming a comprehensive and effective process for assessing and

reducing embodied carbon emissions in interior design. The following sections will

provide a detailed description of the functionality and implementation of each module,

and explain how they collectively support the core objectives of this study.
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Module 1: LCA Data Preparation

Module 2: BIM Data Extraction

Module 3: BIM and LCA Data Integration

Module 4: Interior Design Carbon Footprint Evaluation and Analysis, and Low Carbon Alternatives Customization
Module 5: Carbon Footprint Evaluation Data Feedback

Module &: Carbon footprint Evaluation Data Visualization

Fig. 3. 1 Flowchart of the developed systematic approach.

3.1 Module 1: LCA Data Preparation

First, to support the integration of BIM and LCA data, the sub-divisional work
carbon footprint database for interior renovation proposed by LCBA was normalized.
This process involved restructuring and optimizing the data using Microsoft SQL Server,
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creating a more digitized and structured database to ensure data integrity and consistency,

to enhance the efficiency of subsequent queries and analyses.

Although the database provided by LCBA offers fundamental data on carbon

footprint density and lifecycle standards, its primary presentation in paper-based tables

(LCBA Taiwan Low Carbon Building Alliance, n.d.; Lin, 2018). And the limitations in

data organization and querying (Fig. 3. 2) often lead to complexities and risks of errors in

the querying process. To address these issues, this study applied normalization to the

original data, transforming it into a structured and easily manageable digital format.
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Fig. 3. 2 The lifecycle and update standard table for interior renovation subdivisional

works.

This process was based on the three normal forms of data normalization (Fong &

Wong Ting Yan, 2021), aiming to eliminate data redundancy, ensure data integrity and

consistency, and simplify the interdependencies between data. As a result, an optimized

sub-divisional work carbon footprint database for interior renovation was established,

consisting of 19 simplified tables linked by primary or foreign key relationships (Fig. 3.

3). This database can effectively supports the efficient integration of BIM and LCA data,
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providing the RevitDBBridge.dll plugin with a streamlined, efficient, and reliable

querying capability.
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Fig. 3. 3 The relationship diagram of database LCBA.

3.2 Module 2: BIM data extraction
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Subsequently, to achieve effective integration of BIM and LCA data, this study

developed a plugin named IRCFES.dII (Fig. 3. 4), designed to automatically extract BIM

data from Revit models. This data includes each component's unique identifier (GUID),

family type, material name, and area (with units: m?). The extracted data is stored in a

dedicated database, IRCFES, to support subsequent carbon footprint evaluation and

analysis.

The carbon footprint evaluation approach developed in this study focuses on four

sub-divisional works: partition walls, wall finishes, floor finishes, and ceiling finishes.

This focus was chosen because many users now prefer to purchase prefabricated cabinets

from furniture stores rather than custom-making them during renovation. This means that

the carbon footprint from the production, transportation, and installation of fixed cabinets

should be categorized under furniture, not interior renovation. Therefore, the approach

excludes fixed cabinet carbon footprint calculations from the interior renovation

evaluation. Instead, it focuses on the fixed components that are integral to the interior

renovation process, ensuring accuracy and relevance in the evaluation. The IRCFES.dIl

plugin automatically extracts and organizes the BIM data required for evaluation. This

information not only supports the precise matching of LCA data in the carbon footprint

evaluation but also enhances data transparency and traceability in the design process.
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Through a systematic data processing approach, this study ensures that the extracted

BIM data is highly complete and consistent. The retention of the GUID in the extracted

BIM data enhances cross-platform compatibility and supports the precise linkage of

subsequent evaluation results to BIM model components (van Eldik et al., 2020). The

combination of family type and material name provides detailed descriptions of the

components' structure, type, and specific material composition, facilitating the

association of LCA data in the carbon footprint evaluation with specific elements. The

area data directly supplies the necessary input for the partition wall, wall finish, floor

and ceiling areas in the carbon footprint evaluation. To ensure the accuracy and precision

of the data, the IRCFES.dIl plugin imposes strict controls on the data extraction process,

to make sure that each piece of data accurately reflects the actual design in the Revit

model.

Moreover, considering that partition walls and wall finishes are both categorized

under the wall category (OST_Walls) in Revit models, this method incorporates a filtering

condition based on the component parameter ‘Coarse Scale Fill Pattern’ during the export

of partition wall data, to accurately identify partition wall components (Fig. 3. 5). This

approach not only improves the accuracy of data extraction but also ensures that carbon

footprint evaluations in complex modeling environments are based on correct data inputs.
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Fig. 3. 4 The relationship diagram of database LCBA.
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// Export partition wall data
private void btnExportPWData_Click(cbject sender, EventArgs e)
{

IList<Element> partitionwalls = new FilteredElementCollector (Doc)
.0fCategory(BuiltInCategory.0ST_Walls)
WhereElementIsNotElementType ()

.ToElements():

string setQuery = "INSERT INTO PartitionWallDetails(Uniqueld, FamilyType, Area, MaterialName)"® «
" VALUES (éparaml, fparam2, fparam3, &paramé)”:

foreach (Element ele in partitionwalls)
{

// Get Coarse Scale Fill Pattern
Parameter coarseScaleFillPattern = Doc.GetEZlement (ele.GetTypelId())
7.LeokupParameter ("Coarse Scale Fill Pattera”™):
if (coarseScaleFillPattern != null)
{
atring fillPatternValue = coarseScaleFillPattern.RsValueString();
if (fillPatternValue.Coatains("ARIEE") || fillPatteraValue.Contains("SRYE") 1|
fillPatternValue.Contains("Partition wall®™) ||
fillPatternValue.Contains ("PartitionWall™) ||
fillPatternValue.Contains("Partition Wall®))

string area = ele . LookupParameter (“Area™).AsValueString();
ICollection<tlementid> materialids = ele.GetMateriallds(false):
string mName = "%;

foreach (ElementId materialld in materiallds)

{
Material material = Doc.GetElement (materialld) as Material;
if (maverial != null)
{

}
break;

miName = macterial.Name;

}
using (SqlCommand command = sqglConnection.Query(setQuery))

Ty

{
command. Parameters. AddiWithValue ("fparaml”™, ele.Uniqueld);
command. Parameters.AddiWicthValue ("fparam2”, ele.Name);
command. Parameters.AddWithValue ("éparan3™, area);
command. Parameters. AddWichValue (“fparami{®, mName):
command.ExecuteNonQuery();

}
catch (Exception ex)
{

}

TaskDialcg.Show("SQL Insert Error™, ex.ToeString()):

}

TaskDialcg.Show("Partition Wall Details Export"”, "Partition Wall Decails added!");

Fig. 3. 5 The code for exporting partition wall data.

3.3 Module 3: BIM and LCA Data Integration

To achieve effective integration of BIM and LCA data, this study developed the
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RevitDBBridge.dll plugin, which assists users in establishing the connections between

BIM data and LCA data during the interior renovation carbon footprint evaluation process.

The plugin's user interface consists of a main interface and four sub-interfaces,

corresponding to the four sub-divisional works: partition walls, wall finishes, floor

finishes, and ceiling finishes (Fig. 3. 6). Through these interfaces, users can easily select

the BIM component material information that needs to be linked, along with the

corresponding material names, categories, sub-items of interior renovation sub-divisional

works, building types, and environmental types from the LCBA database. The system will

then automatically query and rapidly integrate the relevant BIM and LCA data.

il Ll Ty AERESIS

(a) Main interface
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Fig. 3. 6 The user Interfaces of RevitDBBridge plugin.

During the data integration process, the main interface provides a function to select

the building type. Users can choose the corresponding building type from the LCBA

database via a dropdown menu. The plugin automatically retrieves the building type ID

and lifecycle standard (LCi) and utilizes this information in subsequent carbon footprint

evaluations. The four sub-divisional work selection buttons allow users to access the

corresponding sub-interfaces. In these sub-interfaces, the plugin automatically extracts

the relevant LCA data from the LCBA database based on the user's selection, including

carbon footprint density, the baseline of the carbon footprint density, and the lifecycle

update standards for the sub-items of interior renovation sub-divisional works (except for

partition walls, which do not have this standard). These data are then integrated with the

corresponding BIM component information to calculate the difference between each

component's carbon footprint density and its baseline (kgCO:e/m?). This automated

process ensures seamless integration between BIM and LCA data.
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To achieve efficient integration, RevitDBBridge.dll uses programmatic SQL queries
to extract the necessary data and imports the integrated results into a dedicated database,
Data Calculation. Throughout the data integration process, RevitDBBridge.dll not only
simplifies the integration of BIM and LCA data but also reduces human errors through
automated data processing, thereby enhancing data reliability. This integration process
provides an accurate and consistent data foundation for subsequent carbon footprint

evaluations. And also ensures the scientific validity of the evaluation results.

3.4 Module 4: Interior Design Carbon Footprint Evaluation and

Analysis, and Low-Carbon Design Alternatives Customization

After the semi-automated integration of BIM and LCA data, the RevitDBBridge.dll
plugin can automatically evaluate the total carbon footprint (TCF, in kgCO:e) generated
during the interior renovation, the carbon footprint indicator (CFI, in kgCOze/m?-yr) of
the design case, and the carbon reduction percentage (CFR). These calculations consider
multiple dimensions of data input, including the area of building components, the carbon
footprint density of materials, lifecycle update standards, the total floor area of the
building, and the lifecycle standards of the interior renovation project. The results are
presented to the user in a dialog box, assisting in the preliminary evaluation of the design

scheme's carbon emissions and providing data support for design optimization.
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In addition, the RevitDBBridge.dll plugin automatically generates carbon emission

analysis charts, including the carbon footprint contribution of different sub-divisional

works, various life cycle phases, and the distribution of carbon footprint across sub-

divisional work in different lifecycle phases. These charts, presented as pie charts,

visually highlight the key points of high carbon footprint, and enables interior designers

to quickly identify and prioritize points for optimization.

To further support low-carbon interior design decisions, RevitDBBridge.dll can also

automatically generate low-carbon alternative materials for designers based on the

analysis results. These alternatives are produced through data integration and automated

analysis and compiled into a document. When combined with visualization results from

subsequent modules, this document provides specific material optimization suggestions,

which can assist the low-carbon design.

All the above-mentioned evaluations, analyses, and the customization of low-carbon

alternatives for interior design can be executed with a single click of a button on the

plugin's main interface. This not only significantly enhances the efficiency of interior

renovation carbon footprint evaluation and analysis but also reduces the complexity of

the operation, making the evaluation and analysis of carbon footprint in interior design

more convenient.
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3.5 Module 5: Carbon footprint evaluation data feedback

Although in Module 4 users can require the results of the total carbon footprint
(TCF), carbon footprint Indicator (CFI), and carbon reduction percentage (CFR) through
the main interface's calculation button, these data do not directly indicate the carbon
reduction hotspots in the design to interior designers. In contrast, specific data in the Data
Calculation database, such as the lifecycle update standards of the sub-items of interior
renovation sub-divisional works (with the exception of partition walls) and the difference
between each component's carbon footprint density and its baseline(kgCO:e/m?), more
intuitively reflect which materials require higher maintenance and update frequency
throughout the lifecycle and which materials have significantly higher carbon footprint
densities than its baseline. By feeding back and visualizing these data into the Revit model,
it becomes possible to visually represent high carbon emission areas, which refers to the
carbon reduction hotspots in the design. To achieve this, this study uses the IRCFES.dIl

plugin to return these critical data as new parameter values to the Revit model.

The plugin's user interface provides four data feedback buttons, corresponding to the
four sub-divisional works. The plugin adds new shared parameters to the model
components within each sub-divisional work, feeding the evaluation results back into the

components. The advantage of this approach is that all elements belonging to the same
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category share these parameters and display the relevant data when needed. Although
some wall elements (e.g., non-partition walls) may have additional parameter values,
these values are empty and do not affect subsequent data visualization. Because these

parameters will not be used in unrelated elements (Fig. 3. 7).

private bool setNewParametexrToTypeWall (UIApplication epp)

Document doc = app.ActiveUlDocument.Docunent;

bool result = true;

DefinitionFile myDefinitionFile = app.Application.OpenSharedParameterfile();
DefinitionGroup myGroup = myDefinitionFile.Groups.get_Item("IRCFESWall™) 7?7
nmyDefinitionFile . Groups.Creatce ("IRCFESWAll");

CategorySer myCategories = app.aApplication.Create, NewCategorySec():
Category myCategory = doc.Settings.Categories.get _Itexm(BuiltinCategory.COST _Walls):
nmyCategories,Inserc (myCategory)

TypeSinding typeBinding = app.Aapplication.Creace.NewIypeBSinding(myCategories);
BindingMap bindingMap = doc.ParameterBindings:

zesult &* CreateAndBindlefinition("CarbonFootprintDifferenceforConstzuction”,
ParameterType.Nuxber, myGroup, typeBinding, bindingMap, doc):

ParameverType.Number, myGroup, typeBinding, bindingMap, doc):;

result &=

CreateindBindDefinivion("StandardforRenewalTimesofSubdivisionalWorksofWalliFinishesRTwdl",
ParazeterType.Number, nmyGroup, typeBinding, bindingMap, doc):

resulc &=

CreateAndBindDefinition("CazbonFootprintDifferencefozConstzucticnofPartitionWall”,
ParameterType.Number, myGroup, typeBinding, bindingMap, doc):

result &=

CreateindSindDefinition("CarbonFcotprintDifferenceforEnd of LifeDisposalofParctiticonWail®,
ParameterType.Nuxber, myGroup, typeBinding, bindingMap, doc):

return resuls;

Fig. 3. 7 The code for setting new parameters to walls.

During the data feedback process, the plugin connects to the Data Calculation

database, automatically retrieves and reads the corresponding parameter values, and then

assigns these values to the relevant components in the Revit model. Ultimately, users can

visually observe the carbon emission-related parameter values of each component in the
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design through the Revit interface, which allow them to identify and optimize carbon
reduction hotpots. This method not only effectively feeds evaluation results back into the
BIM model but also enhances the efficiency and accuracy of data feedback through

automated data extraction and parameter settings.

3.6 Module 6: Carbon footprint evaluation data visualization

The visualization of evaluation data in this study is handled by the DataViz.dll plugin.
Through a user-friendly interface, this plugin assists designers in intuitively viewing
carbon footprint evaluation results, thereby identifying and optimizing carbon reduction
hotpots in the design scheme. The interface is designed to be simple, with two dropdown
menus and a ‘Visualize’ button. The first dropdown menu allows users to select one of
the four sub-divisional works of interior renovation, and the second dropdown menu loads

the corresponding parameter names based on the first menu's selection (Fig. 3. 8).
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Visualize

Fig. 3. 8 The user Interface of DataViz plugin.

Once users complete the selection of sub-divisional work and parameters, they can

click the ‘Visualize’ button to generate the corresponding parameter visualization. The

entire visualization process involves several 6 steps:

1. Retrieving Unique Parameter Values: A filter is created based on the selected

sub-divisional work and parameters, extracting the parameter values of all

relevant components and constructing a set of unique parameter values.

2. Mapping Values to Colors: Parameter values are mapped to colors (Fig. 3. 9).
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This method uses red and green as the two extremes of the color range for

visualization. Red indicates that the parameter value exceeds the reference value,

such as when the lifecycle update standard is greater than zero or the component's

carbon footprint density is higher than its baseline, suggesting that the component

has a relatively high carbon emission during the interior renovation lifecycle and

may require material optimization. Green indicates that the parameter value is

below the reference value, such as when the lifecycle update standard is less than

zero or the component's carbon footprint density is lower than its baseline,

suggesting that the component has a relatively low carbon emission, and the

material selection is optimized. When the parameter value equals the reference

value, such as when the lifecycle update standard is zero or the component's

carbon footprint density equals its baseline, the component is displayed in white.

This indicates that the component's carbon emissions match the industry

benchmark, neither higher nor lower than expected. Additionally, in the code of

the DataViz.dll plugin, the extreme values of the color range can be set. For

example, if ‘12 is used as the extreme value, the component will be displayed in

pure red when the parameter value equals 12, and in pure green when the

parameter value equals ‘-12°. Parameter values greater than ‘-12° but less than

zero will gradually transition from green to white, while values greater than zero
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but less than ‘12’ will transition from white to pure red.

private int Clamp(int value, int min, int max)
{
return (value < min) ? min : (value > max) ? max : value;

}

private System.Drawing.Color GetColorFromValue (double value)

; if (value == 0)
: return System.Drawing.Color.FromArgb (255, 255, 255);
}
int red, green, blue;
if (value > 0)

{

// Scale the color for positive values (0 < value <= 12)
red = 255;

green = 255 - Clamp((int) (255 * value / 12), 0, 255);
blue = 255 Clamp( (int) (255 * value / 12), 0, 255);

else

// Scale the color for negative values (-12 <= value < 0)

red = + Clamp((int) (255 * value / 12), -255, 0);

+ Clamp((int) (255 * value / 12), -255, 0);
}

return System.Drawing.Color.FromArgb(red, green, blue);

Fig. 3. 9 The code for mapping values to colors.

3. Collecting Relevant Elements: A collection of all relevant model components is
created to ensure that each component is included in the subsequent visualization
process.

4. Graphical Override Settings: Graphical override settings are applied to each
component, combining the color mapping from the parameter values with the

38

doi:10.6342/NTU202404310



graphical properties of the components to ensure clear visual presentation.

5. Applying Color Overrides: The graphical override settings are applied to the

relevant components to complete the color overlay, allowing designers to

intuitively identify carbon hotspots.

6. Carbon Hotspot Alert: A dialog box will display the information about

components where the lifecycle update standard exceeds zero or the component's

carbon footprint density is higher than its baseline, which can save designers time

and effort in manually searching for component information.

Through this visualization method, the DataViz.dll plugin provides designers with a

powerful tool for identifying carbon hotspots during the design phase. This approach not

only improves the transparency and comprehension of carbon footprint evaluation but

also provides clear guidance for optimizing low-carbon interior design.

Overall, this BIM-based LCA integration approach accurately assesses carbon

emissions during interior design and provides reliable data, charts, and 3D visualization

support for design decision makings. This method effectively combines the strengths of

BIM and LCA data, playing a crucial role in advancing low-carbon interior design

practices.
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Chapter 4 A case study using the developed method

4.1 Case building description

The case study in this research is the demo house at the Taisugar Circular Village (TCV),
Located in Tainan City. It received Taiwan's Diamond Level Building Carbon Footprint

Accreditation in 2020 and was completed and put into use in 2021 ( “ g2 # 7 g LCBA

(Low Carbon Building Alliance), n.d.). It is the first residential building in Taiwan to

implement the concept of a circular economy (Corporation, 2024). The BIM model of the

demonstration house (Fig. 4. 1) is a Revit model consisting of 2503 elements, including

101 different element types (Family and Type) and 68 different materials. This model

focuses on interior design and renovation, providing detailed material information for

walls, floors, and ceiling elements. Therefore, it is highly suitable for assessing the carbon

footprint of interior renovation and visualizing the evaluation results.
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Fig. 4. 1 The Revit model of the demo house.

4.2 Application of the developed method

The developed approach in this study was successfully applied to the case. All LCA
data related to the carbon footprint evaluation of interior renovation were included in the
LCBA database. Unique identifiers, family types, areas, and material names of
components in various sub-divisional works from the BIM model were exported to the
IRCFES database. Specifically, there are 83 rows of partition wall information, 658 rows
of wall finish information, 33 rows of floor finish information, and 44 rows of ceiling
finish information. Fig. 4. 2 illustrates an example of the extraction results for unique
identifiers, family types, areas, and material names of ceiling finish components from the

model.
41

doi:10.6342/NTU202404310



- ——

=BELECT TOP (1000) [Uniqueld)
, [FamilyType)
, [Ares)
, [MaterialName]

FROM [IRCFES].[dbo].[CeilingFinishingDetails)

100% ~

W Rosults ¥ Nessages
Uniqueld
| 04302£94-274d-465£~9972-dS62aBACASTb-00b0CA3C
0420294~ a74d~ 465 ~9972~d562a8dcdS5Th-00b0c4ed
04302£94~aT4d~4465{ ~9972~d562a8dcd5Tb~00b0CS1b
04302£94~aT4d~465{~9972~d582a8dcdSTb~00b0CSSE1
04302£94~aT4d~ 485 ~9972-d562a8dcdSTb 000058
04302£94~aT4d~465£~9972~d562aBdcdSTb-00b0cOOd
0% 402cb~3b75~ 44Tb-bb7c~1 Te40975aeSd-00b04dac
044521 6d-£876~4194~%ea3~cBeoboctS{6f~00b041dc
28bbSe82-bA62-4c94~83%B~20bb963ccPa6-00ac3fbT
28bbSe82-bH62- 4c94-8398~20bb963ccat00acdl 2a
28bbSe82-boA2~4c04-8398-20bb963cclab-00acd41 4
28bbSe82-b62~4c94~8398~20bb963ccab-00acd4T2
3288b778-0b%%~ 4104-b81 £-00%c0474309-00adTe3a
3288DTT8~ 00~ 41 04-b81 £~00%c06T 4309-002d2s54
3288778~ 0b%%- 41 04-b81 £~00%c06T4209-002d8283
10 32880778~ 0b%%= 41 04-b81 §~00%c08T 4309 00adBb22
17 32880 778~0b% 41 04~b81 {~00%c 0674309~ 00ad2bea
18 3288b778~0b%~ 41 04~b81 §~00%c08T4309-00adBc11
19 3284bTT8~0b %41 04~bE1 I~ 00%c06T 4209~ 00adBc6b
20 347b3%d~33b5~4d1 d-b501 ~b01 £ T0da5234~00054803
21 5Ta75e09-5733~40d8-b316~060234b9035b~00583823
22 990 4090~5cb5-419b~2%5-191084288ba5~00b4Ta 49
a
2

D W NS AW N

& W8 e o

@

3 218ci52f~fc2cm405c~89f 3~ 4d4296092408~ 00200435
4 218c {52~ fc2c~405c-82£3-4d4296092408~00a00d42
25 23c48181~3007-4582-8can-3033d2<5abT0~ 00200394

..... PO BAND AT AN BE A - du IAAS

© Query executed successfully,

ADL AZ .0

FaallyType

C8 ~ BMERBAE 250 (WP
C8 ~ MRS KE 250 (R0
c8 ~ BEEH AR50 (R
C8 - MBS KR 250 (WD

C8 - MERE KR 2% (WP

C8 - BMRER AR 25 (W)

Ci4 HSSELx0a EBAIEES

C8 - MRS KR250a (R

C16 |EPICELW

C14 BSSEL 0 BRAMIZAS

8 |BESRENR

C14-2 - H¥ERBEFISHEREEw10m)
co REPRIEESHLES

ct MEPREERILES

8 RBEFNEN

c8 MRS REN

co RRPRBEMILAES

co MEDREINSMILES

o RRPEREMILES

C8 MBPEGAEN

C14-2 -~ ¥ERREBVISWAR(WEw10m)
Ci14-2 - HIFRBEHISNER (FWEw10m)
RS

3 -4

Ci4 BRSFX Lot EBNTESES

4048 S0l 1

Area
3.17 a2
3.17 a2
3.17 a2
3.17 a2
3.17 a2
3.17 a2
0.06 a2
0.03 a2
4.42 a2
22.56 »2
139.01 a2
4.84 a2
172.58 a2
0.38 a2
1.12 a2
1.49 a2
0.38 a2
0.38 a2
0.38 a2
81.20 22
14.02 22
20.86 22
1.57 a2
0.08 a2
10.88 a2

EPRPVNSEN

NaterialNane

C8 ME RS KRN

C8 MBS KRN

C3 MBS ARN

C8 MBEES KRN

3 BB+ RS KEN

C3 MR RS AR

C8 MBES AR

Ci4 BESETxtoo REASREY
)

Ci4 BESEZoxtooRRNTE TS

3 MBS ARN

C14-2 - HERREAISHAS (RE9e10a0)
co REPRBEMILES

o MEPRIEEMNILES

C8 MR RS KRRN

c8 MBESARN

co REPRRERILES

Co RRDRBEMILTD

Co MRDREEMILES

C8 BB EG KRN

C14-2 -~ ¥IFRREAISHERA (RE10m)
Ci4-2 - HIERREAIZNAE (REw10m)
BEISe

RSN

C14 BRWMELextoc NBRIEES

A0 BN e e kP

LAPTOP-SP70PQCS (160 RTM)  LAPTOS

Fig. 4. 2 The example of the extraction result for ceiling finishes details.

The plugin RevitDBBridge.dll allows the dropdown menus of main interface and the

sub-interfaces to automatically query and load data from the LCBA and IRCFES

databases. After the user makes their selections, the plugin correctly builds the

relationships among these data and eventually imports the data into the Data Calculation

database for further evaluation and visualization. Fig. 4. 3 presents part of the results of

the data integration for ceiling finishes, as well as two new parameters related to the

difference between ceiling finishes component's carbon footprint density and its baseline

(kgCO2e/m?). To avoid an excessive number of columns, as the Ceiling Finishes table has
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24 columns, the table in the figure was split into four smaller tables. After the.c‘yaluaﬁron,

| 2= |
om .
is completed, the user can add the new parameters back to the Revit model v¢|' tha s,ipgle’

click. Fig. 4. 4 provides an example of the new parameter results for a type of ceiling.
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(d) Ceiling finishes table part 4

Fig. 4. 3 Part of the BIM-LCA data relationship structuring result for ceiling finishes.
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Fig. 4. 4 The example of the parameter adding results for a type of ceilings.

4.3 Interior Design Carbon Footprint Evaluation and Analysis, and
Low-Carbon Design Alternatives Customization Results of the

Case Building

The carbon footprint evaluation results for the interior renovation of the case study
are shown in Fig. 4. 5. The total carbon footprint of interior renovation throughout the life
cycle is 103,638 (with units: kgCO-¢), with a design case carbon footprint indicator of

2.97 (with units: kgCO2e/m? -yr) and a carbon reduction percentage of 52.9%.
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Fig. 4. 5 The carbon footprint evaluation results of the interior renovation for the demo

house.

Furthermore, the LCBA classifies the low-carbon interior renovation certification into
5 levels: Qualified, Bronze, Silver, Gold, and Diamond. For design cases involving
general renovation amounts, such as accommodations, public assembly, commercial
entertainment, and office service buildings, the relationship between classification and

CFR is as follows (Lin, 2018):

ualified: 10% < CFR <20%
Q

e Bronze: 20% < CFR <30%

o Silver: 30% < CFR <40%

e Gold: 40% < CFR <50%

e Diamond: 50% < CFR

The higher the CFR, the more the interior renovation project reduces carbon compared
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to its baseline case, indicating a more environmentally friendly design.

The case used in this study is classified as an accommodation building. Therefore,

according to the above classification levels, the CFR the case falls within the ‘50% <

CFR’range, qualifying for the Diamond-level low-carbon interior renovation certification.

Based on the carbon footprint analysis of the case's interior design, three pie charts

illustrating the distribution of carbon footprint were generated (Fig. 4. 6). The distribution

of carbon footprint across the four sub-divisional works throughout the entire lifecycle of

the interior renovation is as follows: floor finishes account for 41.98%, ceiling finishes

for 24.08%, wall finishes for 21.29%, and partition walls for 12.65%. The distribution of

carbon footprint across different lifecycle phases of the interior renovation is: the

construction phase accounts for 62.37%, the maintenance phase for 29.25%, and the

demolition phase for 8.37%. Among the sub-divisional works in different lifecycle phases,

the top three contributors to carbon footprint are: floor finishes during the construction

phase (36.99%), ceiling finishes during the maintenance phase (17.69%), and wall

finishes during the maintenance phase (11.56%). Designers can prioritize optimizing the

materials of high-carbon components in these specific sub-divisional works and lifecycle

phases based on this carbon footprint distribution pie charts and the visualization results.
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Fig. 4. 6 The three pie charts generated by the carbon footprint analysis of the case's

interior design.

Furthermore, the customized low-carbon alternatives document, tailored to the case,
displays the materials within each sub-divisional work component that can be optimized.
The list of low-carbon alternatives for each material to be optimized is customized
according to the building type, environmental type, the sub-divisional work the
component belongs to, and the carbon emission-related data of the material in the case

(Fig. 4. 7). Interior designers can choose the low-carbon alternatives they wish to replace
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based on the recommendations in the document. If the alternatives are strictly followed,

when the original material's lifecycle update standard is greater than zero and its carbon

footprint density exceeds its baseline, the new material's lifecycle update standard will be

less than or equal to zero, and its carbon footprint density will be less than or equal to its

baseline; if the original material's lifecycle update standard is greater than zero but its

carbon footprint density is less than or equal to its baseline, the new material's lifecycle

update standard will be less than or equal to zero, and its carbon footprint density will be

less than or equal to that of the original material and also less than or equal to the baseline

of itself; if the original material's lifecycle update standard is equal to zero but its carbon

footprint density exceeds its baseline, the new material's lifecycle update standard will be

equal to zero, and its carbon footprint density will be less than or equal to its baseline.
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Fig. 4. 7 The customized low-carbon alternatives document of the case building.
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4.4 Visualization of results

The visualization of the case evaluation results is categorized into four sub-

divisional works, as shown in Fig. 4. 8. When the user clicks the ‘Visualize’ button, if the

selected sub-divisional work parameter exceeds its reference value—such as when the

lifecycle update standard of a component’s material is greater than zero or its carbon

footprint density surpasses its baseline—the user will receive a carbon hotspot alert (Fig.

4. 9). For instance, when the user selects the carbon footprint difference of construciton

as the floor finishes visualization parameter, the carbon hotspot alert indicates that two

materials, ‘F3 - 60*120 Matte Quartz Tile’ and ‘F4-1 - 30*60 Rock Surface Quartz Tile’,

have carbon footprint densities that exceed their baselines by 8.12 kgCO:e/m?.

Additionally, the alert provides the total number of components using these materials,

such as nine components with ‘F3 - 60*120 Matte Quartz Tile’ and four components with

‘F4-1 - 3060 Rock Surface Quartz Tile.” These carbon hotspot alerts correspond to

components displayed in red in the visualization interface. And the value 8.12 determines

the component’s color intensity.

Combined with the carbon footprint analysis and low-carbon alternatives document

for the case study, designers should prioritize optimizing the floor finishes materials ‘F3

- 60*120 Matte Quartz Tile’ and ‘F4-1 - 30*60 Rock Surface Quartz Tile’ used in the
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construction phase. Taking the material ‘F3 - 60120 Matte Quartz Tile’ as an example, if

the designer follows the recommendations for Floor Finishes Material Types and Sub-

items of Floor Finishes from the document, they could select alternatives from the Mud

Work Flooring category, such as Stone Surface Flooring (Hard Base), Stone Surface

Flooring (Soft Base), Cement Mortar Flooring, or Tiled Flooring (Soft Base). These

alternative materials would ensure that all components using ‘F3 - 60*120 Matte Quartz

Tile’ are optimized to have a lifecycle update standard of zero and a carbon footprint

density less than or equal to the baseline. Furthermore, it would ensure that these

components do not display in red during the three parameter visualization processes for

floor finishes, thereby avoiding classification as carbon hotspots.

AW

Naa

ZU) Pay 01 (Z1+) vadIO) W

(a) The visualization results of the difference in material and construction carbon

footprints between the design case and the baseline case for partition walls.
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(b) The visualization results of the difference in end-of-life disposal carbon footprint

between the design case and the baseline case for partition walls.
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(c) The visualization results of the difference in material and construction carbon

footprints between the design case and the baseline case for wall finishes.
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(d) The visualization results of the difference in end-of-life disposal carbon footprint

between the design case and the baseline case for wall finishes.
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(e) The visualization results of the lifecycle update standard for wall finishes.
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(f) The visualization results of the difference in material and construction carbon

footprints between the design case and the baseline case for floor finishes.
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(g) The visualization results of the difference in end-of-life disposal carbon footprint

between the design case and the baseline case for floor finishes.
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(h) The visualization results of the lifecycle update standard for floor finishes.

°
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(1) The visualization results of the difference in material and construction carbon

footprints between the design case and the baseline case for ceiling finishes.
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(j) The visualization results of the difference in end-of-life disposal carbon footprint

between the design case and the baseline case for ceiling finishes.

(Z1) P 0L (Z1+) USNID W] SUNSIY LONRZIINSIA JO RIS J000D UL

(k) The visualization results of the lifecycle update standard for ceiling finishes.

Fig. 4. 8 The Revit visualization results of the interior design carbon footprint

evaluation for the case building.
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Fig. 4. 9 The example of carbon hotspot alert.

Chapter 5 Discussion

This study proposes a BIM-based visualization of carbon footprint evaluation for
assisting low carbon interior design, specifically applicable to the detailed design and
construction design phases of new constructions and renovations. The innovative aspects

of this approach are highlighted as follows:

First, the new approach automates all necessary BIM and LCA data queries through
plugins, significantly reducing the data collection time. It streamlines LCA data by
normalizing the LCBA database, simplifying data structures, and improving LCA data
query efficiency. The method also provides users with an intuitive BIM plugin interface,
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containing only dropdown menus and buttons, allowing users to import BIM data into the

database, integrate new parameters into BIM components, and complete the calculation

of the total carbon footprint generated during the interior renovation, the carbon footprint

indicator of the design case, and the carbon reduction percentage with a single click. This

method is similar to the third approach summarized by Tam et al. (2022), which also

installs plugins in the BIM environment and completes the LCA assessment within the

plugin, offering the advantage of reduced evaluation time. The ICF system proposed by

LCBA involves extensive collection, organization, and analysis of BIM and LCA data

(Lin, 2018). Without the new approach developed in this study, LCA practitioners would

need to manually collect, organize, and analyze BIM and LCA data. And they also need

to export quantities from the Revit model, searching for related LCA data, and manually

inputting formulas into Excel to obtain the final evaluation results. Clearly, the new

approach outperforms traditional manual assessments in terms of evaluation time.

Second, the plugins in this study were developed using Autodesk’s official

programming interface, Revit API, which integrates directly with Revit’s core functions,

ensuring stable and efficient operations. Compared to the fourth method summarized by

Tam et al. (2022), which uses Dynamo, the approach developed in this study reduces

delays and resource consumption (Autodesk University, n.d.), and is particularly flexible
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when handling complex database queries and calculations. Overall, the plugins developed

in this study run more stably and impose a lower burden on users' equipment compared

to Dynamo-based plugins.

Third, the new approach ensures smooth integration and efficient interoperability

between BIM and LCA data through three measures. The first measure normalizes LCA

data by establishing the LCBA database, to ensure data accuracy and completeness. The

second measure involves developing data transmission and semi-automated data

integration plugins, enabling BIM data to be exported in native Revit format and adjusted

semi-automatically to the structure required by the LCA model before being imported

into the Data Calculation database. This measure establishes a secure integration bridge

between BIM and LCA data. It effectively avoids data loss and attribute and type mapping

issues commonly seen during the Revit to IFC conversion process (Moreau, 2018) and

the problem of inconsistent data structures between BIM and LCA data (Rezaei et al.,

2019). The third measure includes an area unit adjustment code in the evaluation button.

It ensures unit consistency between BIM and LCA data before calculating evaluation

results, thus avoiding inaccuracies due to unit adjustments (Yang et al., 2018).

Fourth, the new approach successfully adds parameters related to interior renovation

carbon footprint evaluation results to the Revit components and visualizes these results
59

doi:10.6342/NTU202404310



directly in the Revit model by mapping parameter values to colors and applying overrides.

In previous carbon footprint assessment approaches, evaluations typically concluded with

data or graphs, with results rarely being fed back into the main design platform, Autodesk

Revit, for 3D visualization (Hussain et al., 2023; Tam et al., 2023; Zhang et al., 2022).

This transition from numerical and 2D chart data to 3D visualization enables interior

designers to intuitively understand the carbon footprint evaluation results of interior

design and more easily identify carbon reduction hotspots, promoting low-carbon design

in Taiwan's interior renovation sector. Visualizing these results in the Revit model and

generating low-carbon alternative files can become more effective communication tools

between designers, clients, and contractors, encouraging the adoption of low-carbon

interior renovation materials. Moreover, since most interior designers and LCA

practitioners are not familiar with each other's works, this method also has educational

significance. By using the plugins developed in this study, designers can better grasp low-

carbon interior design practices, and LCA practitioners can gain a deeper understanding

of interior design processes, helping to establish more suitable low-carbon design

standards for interior design.

However, it should be noted that the new approach developed in this study requires

the Revit model’s LOD level to be no less than 350, and the model needs to use the
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‘Coarse Scale Fill Pattern’ in the ‘Graphics’ property to mark partition wall components,

thereby ensuring the program runs successfully.

Chapter 6 Conclusion

The carbon emissions from interior renovation are a significant part of a building's
embodied carbon emissions but are often overlooked in favor of focusing on the main
structure. The current carbon footprint evaluation approaches for interior renovation are
time-consuming, prone to human error, have high technical barriers, low BIM-LCA data
interoperability, and do not have results backhaul and visualization. To address these
issues, this study developed a BIM-based visual assessment approach featuring a
standardized database, automated data query functions, semi-automated data transfer and
integration assessment functions, and the capability to achieve 3D visualization of
assessment results in Revit through the preservation of unique element identifiers,

numerical color mapping, and graphical overlays.

The approach was demonstrated through a case study of a demo house at the Taisugar
circular village inTaiwan. The results showed the approach's advantages in improving
evaluation efficiency, reducing the frequency of human errors, lowering user technical
barriers, enhancing BIM-LCA data interoperability, and providing data feedback. The
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visualization of evaluation results and the customized low carbon alternatives document

also aids designers' decision-making, enhances communication efficiency between

designers and clients, and promotes the education of carbon footprint evaluation in

interior design.

In future work, the study aims to improve the approach in the following areas: 1)

Incorporating cost assessment of interior design to assist designers in providing optimal

low-carbon interior renovation designs for clients; 2) Developing a multi-level database

for interior design to accommodate models of different LOD levels; 3) Achieving full

automation of data import and export; 4) Adding a comparison function for design

changes.
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