Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖zh_TW
dc.contributor.advisorHsi-Sheng Goanen
dc.contributor.author蕭守晏zh_TW
dc.contributor.authorShou-Yen Hsiaoen
dc.date.accessioned2024-08-09T16:28:17Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citationRichard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):467–488, Jun 1982.
Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22):12685–12717, October 2020.
Jiangfeng Du, Nanyang Xu, Xinhua Peng, Pengfei Wang, Sanfeng Wu, and Dawei Lu. NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Physical Review Letters, 104:030502, Jan 2010.
Zhaokai Li, Man-Hong Yung, Hongwei Chen, Dawei Lu, James D. Whitfield, Xinhua Peng, Alán Aspuru-Guzik, and Jiangfeng Du. Solving quantum ground-state problems with nuclear magnetic resonance. Scientific Reports, 1(1), September 2011.
B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White. Towards quantum chemistry on a quantum computer. Nature Chemistry, 2(2):106–111, January 2010.
S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Physical Review Letters, 118:100503, Mar 2017.
Raffaele Santagati, Jianwei Wang, Antonio A. Gentile, Stefano Paesani, Nathan Wiebe, Jarrod R. McClean, Sam Morley-Short, Peter J. Shadbolt, Damien Bonneau, Joshua W. Silverstone, David P. Tew, Xiaoqi Zhou, Jeremy L. O'Brien, and Mark G. Thompson. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Science Advances, 4(1):eaap9646, 2018.
Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120:110501, Mar 2018.
Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92(1), March 2020.
John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, August 2018.
Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1), February 2022.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1), July 2014.
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Physical Review X, 6:031007, Jul 2016.
Dmitry A. Fedorov, Bo Peng, Niranjan Govind, and Yuri Alexeev. VQE method: A short survey and recent developments, 2021.
P. Jordan and E. Wigner. Über das Paulische äquivalenzverbot. Zeitschrift für Physik, 47(9):631–651, Sep 1928.
Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of Physics, 298(1):210–226, 2002.
Yu Shee, Pei-Kai Tsai, Cheng-Lin Hong, Hao-Chung Cheng, and Hsi-Sheng Goan. Qubit-efficient encoding scheme for quantum simulations of electronic structure. Physical Review Research, 4:023154, May 2022.
Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90(2), August 2014.
Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, and Kristan Temme. Tapering off qubits to simulate fermionic Hamiltonians, 2017.
Andrew Tranter, Peter J. Love, Florian Mintert, and Peter V. Coveney. A comparison of the Bravyi–Kitaev and Jordan–Wigner transformations for the quantum simulation of quantum chemistry. Journal of Chemical Theory and Computation, 14(11):5617–5630, September 2018.
Jonathan Romero, Ryan Babbush, Jarrod R. McClean, Cornelius Hempel, Peter Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz, 2018.
Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, September 2017.
Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1), November 2018.
Shih-Kai Chou, Jyh-Pin Chou, Alice Hu, Yuan-Chung Cheng, and Hsi-Sheng Goan. Accurate harmonic vibrational frequencies for diatomic molecules via quantum computing. Physical Review Research, 5:043216, Dec 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93926-
dc.description.abstract在使用量子處理器模擬電子結構問題時,將量子態對應到量子位元空間的編碼是必要的。在已被提出的編碼方法中,量子位元高效編碼透過僅將正確電子數的量子態編碼到量子位元空間,來減少量子位元的使用量。然而,在使用量子位元高效編碼時,因為對激發算符的直接展開,系統哈密頓量中的包立項數量增長得比其他編碼方法快得多。在量子位元高效編碼的結構下,一種新的標記方法在本論文中被提出,被稱為單NQ串標記。使用此標記的目的是通過結合激發算符表達式中的相同項來減少包立項的數量。我們使用單NQ串標記的量子位元高效編碼來模擬電子結構問題,並得到了優於使用預設標記的模擬結果。zh_TW
dc.description.abstractA fermionic-to-qubit encoding is essential in simulating electronic structure problems with quantum processors. Among the proposed encoding schemes, the qubit-efficient encoding (QEE) reduces the qubit usage to O(m log n) by only encoding physical configurations to qubit space, compared to other common encoding schemes that need n qubit to simulate the system with n spin-orbitals and m electrons. However, the number of Pauli terms in the QEE Hamiltonian grows much faster than other encoding schemes because of the direct expansion on the excitation operators. Under the structure of QEE, a new labeling method, named single NQ-string labeling, is proposed in this thesis, which aims to reduce the number of Pauli terms by combining similar terms in the expression of excitation operators. Simulations for electronic structure problems using QEE with the single NQ-string labeling are made, and the results outperform those of QEE with default labeling and the parity encoding.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:28:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:28:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Solving Electronic Structure Problems with Quantum Computing 3
2.1 Fermionic Hamiltonian 3
2.2 Fermionic-to-qubit Encoding 5
2.2.1 Jordan-Wigner Encoding 5
2.2.2 Parity Encoding 6
2.2.3 Bravyi-Kitaev Encoding 7
2.3 Variational Quantum Eigensovler 7
Chapter 3 Single NQ-string Labeling 11
3.1 Qubit-efficient Encoding 11
3.1.1 Formulation 11
3.1.2 An Example: the CO Molecule 14
3.1.3 Problems of QEE 16
3.2 Single NQ-string Labeling 17
3.2.1 Motivation 17
3.2.2 Procedure 18
3.2.3 Qubit Number Calculation 19
3.2.3.1 Properties of Single NQ-string Expressions for Excitation Operators 19
3.2.3.2 Single NQ-string Constraint 20
3.2.3.3 Qubit Number Needed 20
3.2.4 Generation of the Dictionary and the State Labeling 22
3.2.5 An example: A System with Six Spin-orbitals and Three Electrons 23
3.2.6 Number of Pauli Terms 24
Chapter 4 Results 25
4.1 Number of Pauli Terms for Hamiltonian of Diatomic Molecules 25
4.2 VQE Simulation Results 27
4.2.1 QEE Default v.s. QEE Single NQ-string 29
4.2.2 QEE Single NQ-string v.s. Parity 34
Chapter 5 Conclusion 37
References 39
-
dc.language.isoen-
dc.subject編碼zh_TW
dc.subject量子位元高效編碼zh_TW
dc.subject量子變分電路zh_TW
dc.subject電子組態問題zh_TW
dc.subjectQubit-efficient encodingen
dc.subjectVariational quantum eigensolveren
dc.subjectFermionic-to-qubit encodingen
dc.subjectElectronic structure problemen
dc.title利用單NQ串標記的量子位元高效編碼來模擬電子組態問題zh_TW
dc.titleUsing the Qubit-efficient Encoding with the Single NQ-string Labeling to Simulate Electronic Structure Problemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張慶瑞;鄭原忠zh_TW
dc.contributor.oralexamcommitteeChing-Ray Chang;Yuan-Chung Chengen
dc.subject.keyword編碼,量子位元高效編碼,量子變分電路,電子組態問題,zh_TW
dc.subject.keywordFermionic-to-qubit encoding,Qubit-efficient encoding,Variational quantum eigensolver,Electronic structure problem,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202401735-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf619.81 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved