Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author周智宇zh_TW
dc.contributor.authorChih-Yu Chouen
dc.date.accessioned2024-08-09T16:14:14Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citationBellayer, S., Gossiaux, A., Duquesne, S., Dewailly, B., Bachelet, P., & Jimenez, M. (2022). Transparent fire-protective sol-gel coating for wood panels. Polymer Testing, 110, 107579.
Carosio, F., Alongi, J., & Malucelli, G. (2011). α-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. Journal of Materials Chemistry, 21(28), 10370-10376.
Chain, J (2004). A Study on Burning Characteristics and Influencing Factors of Building Decorative Materials with a Cone Calorimeter. Master thesis, National Kaohsiung University of Science and Technology.
Chuang, C. & Ko C (2004). Impact of various binding resins and formulation on the characteristics of intumescent fire-retardant paints. Master thesis, National Taiwan University.
CNS 14705 A3386 (2010), Method of test for heat release rate for building materials – Part 1: Cone calorimeter method, bureau of standards. Metrology and inspection.
Cui, Z., Xu, M., Chen, Z., & Xiang, J. (2018). Experimental study on the thermal performance of bamboo scriber at elevated temperatures. Construction and Building Materials, 182, 178-187.
Feng, F., & Qian, L. (2014). The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polymer Composites, 35(2), 301-309.
Filip, D., Macocinschi, D., & Vlad, S. (2011). Thermogravimetric study for polyurethane materials for biomedical applications. Composites Part B: Engineering, 42(6), 1474-1479.
Gayathri, K., Rajesh, K., Krishnan, P., Anandan, K., Swadhi, R., Devaraj, A. R., & Anbalagan, G. (2020, November). A study on kinetic properties of aluminum hydrogen (s) malate pentahydrate single crystal by Coats Redfern method. In AIP Conference Proceedings (Vol. 2265, No. 1). AIP Publishing.
Gharehbagh A, Ahmadi Z (2012) Chapter 6: Polyurethane Flexible Foam Fire Behaviour, Polyurethane. In: Fahima Z, Eram S (eds), InTech. p 102-120. ISBN 978-953-51-0726-2
Gorrepati, E. A., Wongthahan, P., Raha, S., & Fogler, H. S. (2010). Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect. Langmuir, 26(13), 10467-10474.
Gottlieb, I. M. (1956). A theory of flame-retardant finishes. Textile Research Journal, 26(2), 156-167.
Green, J. (1996). Mechanisms for flame retardancy and smoke suppression-a review. Journal of Fire Sciences, 14(6), 426-442.
Hakkarainen, T., Mikkola, E., Ostman, B., Tsantaridis, L., Brumer, H., & Piispanen, P. (2005). Innovative eco-efficient high fire performance wood products for demanding applications. VTT, Finland, 1-47.
Horacek, H., & Pieh, S. (2000). The importance of intumescent systems for fire protection of plastic materials. Polymer International, 49(10), 1106-1114.
Jiang, J., Han, S., Ren, X., Wang, H., Yu, H., & Sun, F. (2022). Enhanced durability of round bamboo treated with copper naphthenate under heat-cold impregnation. Royal Society Open Science, 9(11), 220247.
Jiang, J., Li, H., Pang, J., & Mei, C. (2022). Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: hydrophobicity, thermal stability, and surface hardness. Journal of Wood Chemistry and Technology, 42(2), 104-113.
Jiao S S, Zhan Z L. (2019). Study on non-isothermal thermal decomposition kinetics of serine[J]. Journal of Chemical Engineering of Chinese Universities, 33(5)
Kang, F., Tu, J., Zhao, H., Bai, Z., & Zhang, T. (2023). Flame retardancy and smoke suppression of silicone rubber foam with microencapsulated sepiolite and zinc borate. Polymers, 15(13), 2927.
Kim, H. S., Kim, S., Kim, H. J., & Yang, H. S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1-2), 181-188.
Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J. M., & Dubois, P. (2009). New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials science and engineering: R: Reports, 63(3), 100-125.
Lazaro, A., Vilanova, N., Barreto Torres, L. D., Resoort, G., Voets, I. K., & Brouwers, H. J. H. (2017). Synthesis, polymerization, and assembly of nanosilica particles below the isoelectric point. Langmuir, 33(51), 14618-14626.
Li, C., Cui, X., Gao, X., Liu, S., Sun, Q., Lian, H., ... & Cui, X. (2021). Electrochemically prepared black phosphorene micro-powder as flame retardant for epoxy resin. Composite Interfaces, 28(7), 693-705.
Liu, Q., Chai, Y., Ni, L., & Lyu, W. (2020). Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica sol. Materials, 13(20), 4478.
Lobovikov, M., Paudel, S., Piazza, M., Ren, H., & Wu, J. (2007). World bamboo resources–A Thematic StudyPrepared in the Framework of the Global Forest Resources Assessment 2005: Non-wood Forest Products18 (Non-Wood Forest Products). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Lowden, L. A., & Hull, T. R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2, 1-19.
Mai, C., & Militz, H. (2004). Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review. Wood Science and Technology, 37, 339-348.
Mena, J., Vera, S., Correal, J. F., & Lopez, M. (2012). Assessment of fire reaction and fire resistance of Guadua angustifolia kunth bamboo. Construction and Building Materials, 27(1), 60-65.
Miyafuji, H., Saka, S., & Yamamoto, A. (1998). SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung 52(4):410–416
Nicholas, Darrel D.; Crawford, Douglas. 2003. Concepts in the development of new accelerated test methods for wood decay. Wood deterioration and preservation : advances in our changing world. Washington, DC : American Chemical Society, c2003. ACS symposium series ; 845: Pages 288-312
Nikolaeva, M., & Kärki, T. I. M. O. (2011). A review of fire retardant processes andchemistry, with discussion of the case of wood-plastic composites. Baltic For, 17(2), 314-326.
Ogata, S., Homma, S., Sasahira, A., Kawamura, F., Koga, J., & Matsumoto, S. (2004). Fluorination reaction of uranium dioxide by fluorine. Journal of Nuclear Science and Technology, 41(2), 135-141.
Pries M, Mai C (2013) Fire resistance of wood treated with a cationic silica sol. Eur J Wood Prod 71:237–244
Puri, R. G., & Khanna, A. S. (2017). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14, 1-20.
Quintiere, James G. (1998), Principles of Fire Behavior, Thomson Delmar Learning.
Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renewable Energy, 183, 67-77.
Salvador S, Quintard M, David C (2004) Combustion of a substitution fuel made of cardboard and polyethylene: influence of the mix characteristics experimental approach. Fuel, 83, 451–462.
Šebenik, U., & Krajnc, M. (2007). Influence of the soft segment length and content on the synthesis and properties of isocyanate-terminated urethane prepolymers. International Journal of Adhesion and Adhesives, 27(7), 527-535.
Shah, D. U., Bock, M. C., Mulligan, H., & Ramage, M. H. (2016). Thermal conductivity of engineered bamboo composites. Journal of Materials Science, 51, 2991-3002.
Shi, Y., & Wang, G. (2016). An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating. Progress in Organic Coatings, 90, 83-90.
Sun, Z., Zuo, Y., Li, P., Wu, Y., Wang, Z., Yuan, G., & Lyu, J. (2022). Synergistic effects of Al/Si double oxide on flame-retardant and smoke-suppressant wooden materials. Journal of Building Engineering, 59, 105037.
Tang, L., Wu, Y., Yuan, L., Hu, Y., Liu, Y., Yuan, G., & Fan, Y. (2021). The heat insulation and smoke suppression effect of M-Si-phosphocarbonaceous catalyzed by metal salt-doped APP silicon gel in situ build in wood. Journal of Thermal Analysis and Calorimetry, 146, 2353-2364.
Wang, K., Wang, S., Meng, D., Chen, D., Mu, C., Li, H., ... & Zhang, S. (2021). A facile preparation of environmentally benign and flame-retardant coating on wood by comprising polysilicate and boric acid. Cellulose, 28, 11551-11566.
Wang, Y. (2010). The benefits of bamboo forest management in mitigating the greenhouse effect. Forestry Research Newsletter, 18(1), 8-11.
Wladyka‐Przybylak, M., & Kozlowski, R. (1999). The thermal characteristics of different intumescent coatings. Fire and materials, 23(1), 33-43.
Xiao, Z., Xu, J., Mai, C., Militz, H., Wang, Q., & Xie, Y. (2016). Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica. Holzforschung, 70(12), 1165-1173.
Xu, E., Zhang, Y., & Lin, L. (2020). Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers, 12(8), 1632.
Xu, X., Xu, P., Zhu, J., Li, H., & Xiong, Z. (2022). Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions. Science of the total environment, 814, 152697.
Yan, L., Xu, Z., & Wang, X. (2018). Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Progress in Organic Coatings, 122, 107-118.
Yang, G., Liu, J., Xu, B., Liu, Z., Ma, F., & Zhang, Q. (2021). Effect of silicon-containing nitrogen and phosphorus flame-retardant system on the mechanical properties and thermal and flame-retardant behaviors of corrugated cardboard. Journal of Thermal Analysis and Calorimetry, 145, 2321-2334.
Yano, S., Ito, T., Shinoda, K., Ikake, H., Hagiwara, T., Sawaguchi, T., ... & Seno, M. (2005). Properties and microstructures of epoxy resin/TiO2 and SiO2 hybrids. Polymer International, 54(2), 354-361.
Yona, A. M. C., Žigon, J., Matjaž, P., & Petrič, M. (2021). Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review. Wood Science and Technology, 55(4), 887-918.
Zea Escamilla, E., Habert, G. 2014. Environmental impacts of bamboo-based construction materials representing global production diversity. Journal of Cleaner Production, 69, 117-127.
Zhang, L., Zhang, W., Peng, Y., Wang, W., & Cao, J. (2022). Thermal behavior and flame retardancy of poplar wood impregnated with furfuryl alcohol catalyzed by boron/phosphorus compound system. Industrial Crops and Products, 176, 114361.
Zhang, X., Mu, J., Chu, D., & Zhao, Y. (2016). Synthesis of fire retardants based on N and P and poly (sodium silicate-aluminum dihydrogen phosphate)(PSADP) and testing the flame-retardant properties of PSADP impregnated poplar wood. Holzforschung, 70(4), 341-350.
Zhou, Z., Du, C., Yu, H., Yao, X., & Huang, Q. (2020). Promotion effect of nano-SiO2 on hygroscopicity, leaching resistance and thermal stability of bamboo strips treated by nitrogen-phosphorus-boron fire retardants. Wood Research, 65(5), 693-704.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93891-
dc.description.abstract木竹材做為重要的森林資源,具有快速的生長能力,以及良好的固碳效益,在傳統的應用上可以當作家具材料以及一些小規模建築的材料。在應用上,火災事故對於林產品是一個不可忽視的威脅。目前市售透明防火塗料主要使用樹脂構成,本研究對此種配方加入各種矽類化合物,包括矽酸鈉(又稱水玻璃Sodium silicate)和矽凝膠(Colloidal silica)。利用塗裝的方式將藥劑應用於孟宗竹單板中。
塗料部分,經800°C熱重分析檢測後,聚氨基甲酸酯(polyurethane, PU)加入20 %矽凝膠後提升了22.71 %的剩餘重量以及在主要降解區段提升了15.14 kJ/mol的活化能。環氧樹脂(Epoxy, EPO)加入20 %矽凝膠以及水玻璃後,檢測後分別提升了8.63以及23.24 %的剩餘重量,並提高了8.15以及27.41 kJ/mol的活化能。
而圓錐量熱儀方面。塗裝的竹板經過檢測發現,PU加入20 %矽凝膠後,總熱量釋放降低了6.15 MJ/m2,總煙霧釋放降低85.85 m2。而EPO加入20 %矽凝膠與水玻璃後總熱量釋放分別降低了6.43 與0.29MJ/m2,總煙霧釋放部分EPO加入20 %矽凝膠降低186.45 m2。而單純塗佈水玻璃的樣本試驗全程總熱量釋放僅0.22 MJ/m2,最高放熱速率峰值為5.18 kW/m2,且幾乎沒有煙霧產出。
zh_TW
dc.description.abstractAs one of the important forest resources, wood and bamboo have rapid growth ability and great carbon sequestration efficiency, in traditional applications, they can be used as furniture materials and materials for some small-scale construction. However, since wood and bamboo are mainly composed of hydrocarbons with low flash points, fire accidents are a threat that cannot be ignored in terms of application. The currently available transparent fire-retardant coatings primarily use resin as their main component. This study incorporates various silicon compounds into such formulations, including sodium silicate (water glass) and colloidal silica. These agents were applied to moso bamboo through coating methods.
In the coating section, after thermogravimetric analysis at 800 °C, the addition of 20 % silica gel to polyurethane (PU) resulted in a 22.71 % increase in residual weight and an increase of 15.14 kJ/mol in activation energy in the main degradation region. For epoxy resin (EPO), the addition of 20 % silica gel and sodium silicate resulted in increases of 8.63% and 23.24% in residual weight respectively and increases of 8.15 and 27.41 kJ/mol in activation energy.
 
In terms of cone calorimeter testing, the coated bamboo panels showed that with the addition of 20 % silica gel to PU, the total heat release decreased by 6.15 MJ/m², and the total smoke release decreased by 85.85 m². For EPO, with the addition of 20 % silica gel and sodium silicate, the total heat release decreased by 6.43 and 0.29 MJ/m² respectively. The total smoke release for EPO with 20 % silica gel decreased by 186.45 m². In the case of samples coated with sodium silicate, the total heat release throughout the test was only 0.22 MJ/m², the peak heat release rate was 5.18 kW/m², and there was almost no smoke production.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:14:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:14:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 iv
誌謝 v
摘要 vi
Abstract vii
Content ix
Figure index xi
Table index xiii
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Moso bamboo plywood 3
2.2 Combustion 5
2.3 The Combustion properties of wood and bamboo 7
2.4 Theory of fire retardancy 12
2.4.1 Barrier theory 12
2.4.2 Thermal theories 13
2.4.3 Theory of dispersion of non-flammable gases 13
2.4.4 Free radical theory 13
2.5 Thermal properties and flammability test 15
2.5.1 Thermogravimetric analysis (TGA) 15
2.5.2 CNS 14705-1 cone calorimetry 18
2.6 Modification of silicone-based agent 23
2.7 Silicon compounds as fire retardants 27
Chapter 3 Material and methods 37
3.1 Research framework 37
3.2 Material 39
3.3 Chemical formulation 40
3.4 Coating procedure 41
3.5 Solid content 42
3.6 Film of hardness 43
3.7 Thermal properties and fire resistance testing 44
3.7.1 Thermogravimetric analysis (TGA) 44
3.7.2 Cone calorimetry 46
Chapter 4 Result and discussion 47
4.1 Coating amount 47
4.2 Solid contents 48
4.3 Hardness of film 49
4.4 Thermogravimetric analysis and derivative thermogravimetry 50
4.5 Activation energy calculation 57
4.6 Kissinger method to calculate activation energy 60
4.7 Coats-Redfern method to calculate activation energy 63
4.8 Cone calorimeter 65
Chapter 5 Conclusion 80
Chapter 6 Reference 83
-
dc.language.isoen-
dc.title矽基化合物複合樹脂生成透明防火塗料zh_TW
dc.titleSilicon-based composite transparent fire retardant coatingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee藍浩繁;蔡明哲;莊智勝;林振榮zh_TW
dc.contributor.oralexamcommitteeHaw-Farn Lan;Ming-Jer Tsai;Chih-Shen Chuang;Cheng-Jung Linen
dc.subject.keyword孟宗竹,透明防火塗料,水玻璃,矽凝膠,zh_TW
dc.subject.keywordPhyllostachys edulis,Transparent fire retardant coating,Sodium silicate (water glass),Silicone gel,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202402595-
dc.rights.note未授權-
dc.date.accepted2024-08-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved