請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93831完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 黃筱婷 | zh_TW |
| dc.contributor.author | Hsiao-Ting Huang | en |
| dc.date.accessioned | 2024-08-08T16:27:01Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-04 | - |
| dc.identifier.citation | 李奕慧, 碳源對Pantoea vagans M17表面移行及生物膜形成的影響. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2023.
顧子欣, 分離自截切小黃瓜之菌株Enterobacter sp. FS08特性分析. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2022. Adékambi, T.; Drancourt, M.; Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 2009, 17 (1), 37-45. Aldridge, P.; Hughes, K. T. Regulation of flagellar assembly. Curr Opin Microbiol 2002, 5 (2), 160-5. Alegbeleye, O.; Odeyemi, O. A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Applied Food Research 2022, 2 (1), 100122. Amrutha, B.; Sundar, K.; Shetty, P. H. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb Pathog 2017, 111, 156-162. Aroney, S. T. N.; Poole, P. S.; Sánchez-Cañizares, C. Rhizobial chemotaxis and motility systems at work in the soil. Front Plant Sci 2021, 12, 725338. Baker, A. E.; O'Toole, G. A. Bacteria, Rev your engines: stator dynamics regulate flagellar motility. J Bacteriol 2017, 199 (12). Boumba, V. A.; Ziavrou, K. S.; Vougiouklakis, T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 2008, 174 (2-3), 133-51. Caiazza, N. C.; Merritt, J. H.; Brothers, K. M.; O'Toole, G. A. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007, 189 (9), 3603-12. Cao, P.; Li, C.; Tan, K.; Liu, C.; Xu, X.; Zhang, S.; Wang, X.; Zhao, J.; Xiang, W. Characterization, phylogenetic analyses, and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang Province, China. Plant Dis 2020, 104 (6), 1601-1609. Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial biofilms in the food industry-A Comprehensive Review. Int J Environ Res Public Health 2021, 18 (4). Chitlapilly Dass, S.; Wang, R. Biofilm through the looking glass: a microbial food safety perspective. Pathogens 2022, 11 (3). Chugani, S.; Greenberg, E. P. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2010, 107 (23), 10673-8. Colin, R.; Ni, B.; Laganenka, L.; Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021, 45 (6). Cooney, S.; O'Brien, S.; Iversen, C.; Fanning, S. Bacteria: other pathogenic Enterobacteriaceae – Enterobacter and other genera. In Encyclopedia of Food Safety, 2014; pp 433-441. D’Agostino, M.; Cook, N. Foodborne pathogens. Encyclopedia of Food and Health, 2016, pp 83-86. Davin-Regli, A.; Lavigne, J. P.; Pages, J. M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 2019, 32 (4). Davin-Regli, A.; Pagès, J. M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 2015, 6, 392. De Gregorio, E.; Del Franco, M.; Martinucci, M.; Roscetto, E.; Zarrilli, R.; Di Nocera, P. P. Biofilm-associated proteins: news from Acinetobacter. BMC Genomics 2015, 16, 933. Di Martino, P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 2018, 4 (2), 274-288. Dong, X.; Tu, C.; Liu, Y.; Zhang, R.; Liu, Y. Identification of the core c-di-GMP turnover proteins responsible for root colonization of Bacillus velezensis. iScience 2022, 25 (11), 105294. Feng, H.; Fu, R.; Hou, X.; Lv, Y.; Zhang, N.; Liu, Y.; Xu, Z.; Miao, Y.; Krell, T.; Shen, Q.; Zhang, R. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions. Int J Mol Sci 2021, 22 (13). Feng, L.; Xu, M.; Zeng, W.; Zhang, X.; Wang, S.; Yao, Z.; Zhou, T.; Shi, S.; Cao, J.; Chen, L. Evaluation of the antibacterial, antibiofilm, and anti-virulence effects of acetic acid and the related mechanisms on colistin-resistant Pseudomonas aeruginosa. BMC Microbiol 2022, 22 (1), 306. Fontaine, L.; Boutry, C.; Guédon, E.; Guillot, A.; Ibrahim, M.; Grossiord, B.; Hols, P. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 2007, 189 (20), 7195-205. Fukuda, N. Apparent diameter and cell density of yeast strains with different ploidy. Sci Rep 2023, 13 (1), 1513. Fung, D. Y. C. Food spoilage, preservation and quality control. Encyclopedia of Microbiology (Third Edition), Schaechter, M., Ed. Academic Press: Oxford. 2009, pp 54-79. Galié, S.; García-Gutiérrez, C.; Miguélez, E. M.; Villar, C. J.; Lombó, F. Biofilms in the food industry: health aspects and control methods. Front Microbiol 2018, 9, 898. Gmiter, D.; Kaca, W. Into the understanding the multicellular lifestyle of Proteus mirabilis on solid surfaces. Front Cell Infect Microbiol 2022, 12, 864305. Gould, P.; Maguire, M.; Lund, P. A. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 2007, 187 (1), 1-14. Grand View Research. Fresh Fruits Market Size & Share | Industry Report, 2028. 2023. Guo, L.; Wang, Y. H.; Cui, R.; Huang, Z.; Hong, Y.; Qian, J. W.; Ni, B.; Xu, A. M.; Jiang, C. Y.; Zhulin, I. B.; Liu, S. J.; Li, D. F. Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor. PLoS Biol 2023, 21 (12), e3002429. Guttenplan, S. B.; Kearns, D. B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013, 37 (6), 849-71. Halkman, H. B. D.; Halkman, A. K. Indicator organisms. In Encyclopedia of Food Microbiology, 2014, pp 358-363. Hartl, R.; Kerschner, H.; Gattringer, R.; Lepuschitz, S.; Allerberger, F.; Sorschag, S.; Ruppitsch, W.; Apfalter, P. Whole-genome analysis of a human Enterobacter mori isolate carrying a bla(IMI-2) carbapenemase in Austria. Microb Drug Resist 2019, 25 (1), 94-96. Hida, A.; Oku, S.; Kawasaki, T.; Nakashimada, Y.; Tajima, T.; Kato, J. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl Environ Microbiol 2015, 81 (21), 7420-30. Jang, I. A.; Kim, J.; Park, W. Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1. Sci Rep 2016, 6, 21121. Jung, J.; Schaffner, D. W. Quantification of survival and transfer of Salmonella on fresh cucumbers during waxing. J Food Prot 2021, 84 (3), 456-462. Jung, M. Y.; Park, B. S.; Lee, J.; Oh, M. K. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 2013, 139, 21-7. Kafantaris, I.; Tsadila, C.; Nikolaidis, M.; Tsavea, E.; Dimitriou, T. G.; Iliopoulos, I.; Amoutzias, G. D.; Mossialos, D. Transcriptomic analysis of Pseudomonas aeruginosa response to pine honey via RNA sequencing indicates multiple mechanisms of antibacterial activity. Foods 2021, 10 (5). Kearns, D. B. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010, 8 (9), 634-44. Kettles, R. A.; Tschowri, N.; Lyons, K. J.; Sharma, P.; Hengge, R.; Webber, M. A.; Grainger, D. C. The Escherichia coli MarA protein regulates the ycgZ-ymgABC operon to inhibit biofilm formation. Mol Microbiol 2019, 112 (5), 1609-1625. Kiymaci, M. E.; Altanlar, N.; Gumustas, M.; Ozkan, S. A.; Akin, A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain's organic acid. Microb Pathog 2018, 121, 190-197. Korkeala, H.; Alanko, T.; Mäkelä, P.; Lindroth, S. Lactic acid and pH as indicators of spoilage for vacuum-packed cooked ring sausages. Int J Food Microbiol 1990, 10 (3-4), 245-53. Kritikos, A.; Aska, I.; Ekonomou, S.; Mallouchos, A.; Parlapani, F. F.; Haroutounian, S. A.; Boziaris, I. S. Volatilome of chill-stored European Seabass (Dicentrarchus labrax) fillets and Atlantic Salmon (Salmo salar) slices under modified atmosphere packaging. Molecules 2020, 25 (8). Larsen, S. H.; Adler, J.; Gargus, J. J.; Hogg, R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A 1974, 71 (4), 1239-43. Laughlin, M.; Bottichio, L.; Weiss, J.; Higa, J.; McDonald, E.; Sowadsky, R.; Fejes, D.; Saupe, A.; Provo, G.; Seelman, S.; Concepción-Acevedo, J.; Gieraltowski, L. Multistate outbreak of Salmonella Poona infections associated with imported cucumbers, 2015-2016. Epidemiol Infect 2019, 147, e270. Lee, J.; Page, R.; García-Contreras, R.; Palermino, J. M.; Zhang, X. S.; Doshi, O.; Wood, T. K.; Peti, W. Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol 2007, 373 (1), 11-26. Lee, J. H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 2010, 34 (4), 426-44. Li, X. S.; Xue, J. Z.; Qi, Y.; Muhammad, I.; Wang, H.; Li, X. Y.; Luo, Y. J.; Zhu, D. M.; Gao, Y. H.; Kong, L. C.; Ma, H. X. Citric acid confers broad antibiotic tolerance through alteration of bacterial metabolism and oxidative stress. Int J Mol Sci 2023, 24 (10). Liu, X.; Yan, Y.; Wu, H.; Zhou, C.; Wang, X. Biological and transcriptomic studies reveal hfq is required for swimming, biofilm formation and stress response in Xanthomonas axonpodis pv. citri. BMC Microbiol 2019, 19 (1), 103. Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 2023, 28 (6). Lv, M.; Chen, Y.; Liao, L.; Liang, Z.; Shi, Z.; Tang, Y.; Ye, S.; Zhou, J.; Zhang, L. Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018, 8 (1), 341. Mangalea, M. R.; Plumley, B. A.; Borlee, B. R. Nitrate sensing and metabolism inhibit biofilm formation in the opportunistic pathogen Burkholderia pseudomallei by reducing the intracellular concentration of c-di-GMP. Front Microbiol 2017, 8, 1353. Mansur, A. R.; Seo, D.-H.; Song, E.-J.; Song, N.-E.; Hwang, S. H.; Yoo, M.; Nam, T. G. Identifying potential spoilage markers in beef stored in chilled air or vacuum packaging by HS-SPME-GC-TOF/MS coupled with multivariate analysis. Lwt 2019, 112. Martín-Mora, D.; Ortega, Á.; Pérez-Maldonado, F. J.; Krell, T.; Matilla, M. A. The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018, 8 (1), 2102. McFeeters, R.F.; Fleming, H.P.; Thompson, R.L. Malic and citric acids in pickling Cucumbers. Journal of Food Science 1982, 47: 1859-1861. Meng, J.; Bai, J.; Chen, J. Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr Genet 2020, 66 (5), 971-988. Meng, J.; Young, G.; Chen, J. The Rcs system in Enterobacteriaceae: envelope stress responses and virulence regulation. Front Microbiol 2021, 12, 627104. Miller, M. B.; Bassler, B. L. Quorum sensing in bacteria. Annu Rev Microbiol 2001, 55, 165-99. Minamino, T.; Imae, Y.; Oosawa, F.; Kobayashi, Y.; Oosawa, K. Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 2003, 185 (4), 1190-4. Mulchandani, R.; Brehmer, C.; Butt, S.; Vishram, B.; Harrison, M.; Marchant, E.; Ferris, S.; Jorgensen, F.; Smith, R.; Godbole, G.; Jenkins, C.; Dallman, T. J.; Verlander, N. Q.; Phin, N.; Todkill, D.; Gharbia, S.; Hawker, J. Outbreak of Shiga toxin-producing Escherichia coli O157 linked with consumption of a fast-food product containing imported cucumbers, United Kingdom, August 2020. Int J Infect Dis 2021, 110 Suppl 1, S62-s68. Mustafa, A.; Ibrahim, M.; Rasheed, M. A.; Kanwal, S.; Hussain, A.; Sami, A.; Ahmed, R.; Bo, Z. Genome-wide analysis of four Enterobacter cloacae complex type strains: insights into virulence and niche adaptation. Sci Rep 2020, 10 (1), 8150. Nakamura, S.; Minamino, T. Flagella-driven motility of bacteria. Biomolecules 2019, 9 (7). Nyenje, M. E.; Green, E.; Ndip, R. N. Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules 2013, 18 (8), 9582-93. Nyenje, M. E.; Odjadjare, C. E.; Tanih, N. F.; Green, E.; Ndip, R. N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: public health implications. Int J Environ Res Public Health 2012, 9 (8), 2608-19. Oh, E.; Jeon, B. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS One 2014, 9 (1), e87312. Oh, E.; Kim, J. C.; Jeon, B. Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions. Virulence 2016, 7 (7), 846-51. Olanbiwoninu, A. A.; Popoola, B. M. Biofilms and their impact on the food industry. Saudi J Biol Sci 2023, 30 (2), 103523. Paksanont, S.; Sintiprungrat, K.; Yimthin, T.; Pumirat, P.; Peacock, S. J.; Chantratita, N. Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci Rep 2018, 8 (1), 9167. Papenfort, K.; Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 2016, 14 (9), 576-88. Parker, D. J.; Demetci, P.; Li, G. W. Rapid accumulation of motility-activating mutations in resting liquid culture of Escherichia coli. J Bacteriol 2019, 201 (19). Partridge, J. D. Surveying a swarm: experimental techniques to establish and examine bacterial collective motion. Appl Environ Microbiol 2022, 88 (3), e0185321. Pérez-Giménez, J.; Mongiardini, E. J.; Althabegoiti, M. J.; Covelli, J.; Quelas, J. I.; López-García, S. L.; Lodeiro, A. R. Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants. Int J Microbiol 2009, 2009, 719367. Pfeifer, V.; Beier, S.; Alirezaeizanjani, Z.; Beta, C. Role of the two flagellar stators in swimming motility of Pseudomonas putida. mBio 2022, 13 (6), e0218222. Pham, H. T.; Parkinson, J. S. Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 2011, 193 (23), 6597-604. Qadri, O. S.; Yousuf, B.; Srivastava, A. K.; Yildiz, F. Fresh-cut fruits and vegetables: critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food & Agriculture 2015, 1 (1). Raffo, A.; Paoletti, F. Fresh-cut vegetables processing: environmental sustainability and food safety issues in a comprehensive perspective. Frontiers in Sustainable Food Systems 2022, 5. Rekha, K.; Baskar, B.; Srinath, S.; Usha, B. Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots. Can J Microbiol 2018, 64 (1), 20-27. Rinaldo, S.; Giardina, G.; Mantoni, F.; Paone, A.; Cutruzzolà, F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 2018, 365 (6). Rodelas, B.; Lithgow, J. K.; Wisniewski-Dye, F.; Hardman, A.; Wilkinson, A.; Economou, A.; Williams, P.; Downie, J. A. Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 1999, 181 (12), 3816-23. Rogers, L.; Power, K.; Gaora, P. Ó.; Fanning, S. Escherichia coli and Other Enterobacteriaceae: occurrence and detection. In Encyclopedia of Food and Health, 2016, pp 545-551. Roggo, C.; Carraro, N.; van der Meer, J. R. Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Sci Rep 2019, 9 (1), 3845. Rudrappa, T.; Czymmek, K. J.; Paré, P. W.; Bais, H. P. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 2008, 148 (3), 1547-56. Rutherford, S. T.; Bassler, B. L., Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012, 2 (11). Sabri, S.; Nielsen, L. K.; Vickers, C. E. Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain. Appl Environ Microbiol 2013, 79 (2), 478-87. Sauer, K.; Stoodley, P.; Goeres, D. M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P. S.; Bjarnsholt, T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 2022, 20 (10), 608-620. Schroeder, B. K.; Waters, T. D.; du Toit, L. J. Evaluation of onion cultivars for resistance to Enterobacter cloacae in storage. Plant Dis 2010, 94 (2), 236-243. Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 2016, 121 (2), 309-19. Sharma, M.; Saleh, D.; Charron, J. B.; Jabaji, S., A Crosstalk between Brachypodium root exudates, organic acids, and Bacillus velezensis B26, a growth promoting bacterium. Front Microbiol 2020, 11, 575578. Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods 2022, 11 (21). Shrout, J. D.; Chopp, D. L.; Just, C. L.; Hentzer, M.; Givskov, M.; Parsek, M. R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 2006, 62 (5), 1264-77. Shukla, S. K.; Khan, A.; Rao, T. S. Chapter 22 - Microbial fouling in water treatment plants. In Microbial and Natural Macromolecules, Das, S.; Dash, H. R., Eds. Academic Press: 2021, pp 589-622. Si, P.; Shao, W.; Yu, H.; Xu, G.; Du, G. Differences in microbial communities stimulated by malic acid have the potential to improve nutrient absorption and fruit quality of grapes. Front Microbiol 2022, 13, 850807. Simões, L. C.; Simões, M.; Vieira, M. J. Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl Environ Microbiol 2007, 73 (19), 6192-200. Sisti, F.; Ha, D. G.; O'Toole, G. A.; Hozbor, D.; Fernández, J. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology (Reading) 2013, 159 (Pt 5), 869-879. Song, K.; Chen, L.; Suo, N.; Kong, X.; Li, J.; Wang, T.; Song, L.; Cheng, M.; Guo, X.; Huang, Z.; Huang, Z.; Yang, Y.; Tian, X.; Choo, S. W. Whole-transcriptome analysis reveals mechanisms underlying antibacterial activity and biofilm inhibition by a malic acid combination (MAC) in Pseudomonas aeruginosa. PeerJ 2023, 11, e16476. Stevenson, K.; McVey, A. F.; Clark, I. B. N.; Swain, P. S.; Pilizota, T. General calibration of microbial growth in microplate readers. Sci Rep 2016, 6, 38828. Su, Y.; Alter, T.; Gölz, G. Motility related gene expression of Campylobacter jejuni NCTC 11168 derived from high viscous media. Eur J Microbiol Immunol (Bp) 2023, 13 (1), 15-23. Sudarshan, S.; Hogins, J.; Ambagaspitiye, S.; Zimmern, P.; Reitzer, L. The nutrient and energy pathway requirements for surface motility of nonpathogenic and uropathogenic Escherichia coli. J Bacteriol 2021, 203 (11). Sun, Y.; Ma, Y.; Guan, H.; Liang, H.; Zhao, X.; Wang, D. Adhesion mechanism and biofilm formation of Escherichia coli O157:H7 in infected cucumber (Cucumis sativus L.). Food Microbiol 2022, 105, 103885. Sun, Y.; Tian, L.; Chang, J.; Shi, S.; Zhang, J.; Xie, H.; Cai, Y.; Chen, D.; Kuramae, E. E.; van Veen, J. A.; Li, W.; Tran, L.-S. P.; Tian, C. Rice domestication influences the composition and function of the rhizosphere bacterial chemotaxis systems. Plant and Soil 2021, 466 (1-2), 81-99. Sun, Y.; Wang, D.; Ma, Y.; Guan, H.; Liang, H.; Zhao, X. Elucidating Escherichia coli O157:H7 colonization and internalization in cucumbers using an inverted fluorescence microscope and hyperspectral microscopy. Microorganisms 2019, 7 (11). Sun, Y.; Zhao, X.; Ma, Y.; Guan, H.; Liang, H.; Wang, D. Inhibitory effect of modified atmosphere packaging on Escherichia coli O157:H7 in fresh-cut cucumbers (Cucumis sativus L.) and effectively maintain quality during storage. Food Chem 2022, 369, 130969. Tan, S.; Yang, C.; Mei, X.; Shen, S.; Raza, W.; Shen, Q.; Xu, Y. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology 2013, 64, 15-22. Tarrach, F.; Herrmann, K. Organic acids of various kinds of vegetables. IV. Changes in the acids and sugar in tomatoes, sweet peppers and cucumbers during development and ripening. Z Lebensm Unters Forsch 1986, 183 (6), 410-5. Tran, T. T.; Hadinoto, K. A Potential quorum-sensing inhibitor for bronchiectasis therapy: quercetin-chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int J Mol Sci 2021, 22 (4). Tschowri, N.; Lindenberg, S.; Hengge, R. Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Mol Microbiol 2012, 85 (5), 893-906. USDA Agricultural Research Service. FoodData Central, FDC ID: 1103352. Cucumber, with peel, raw. (accessed July 11, 2024). Verstraeten, N.; Braeken, K.; Debkumari, B.; Fauvart, M.; Fransaer, J.; Vermant, J.; Michiels, J. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008, 16 (10), 496-506. Wadhams, G. H.; Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 2004, 5 (12), 1024-37. Wadhwa, N.; Berg, H. C. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol 2022, 20 (3), 161-173. Wagner, E. M.; Pracser, N.; Thalguter, S.; Fischel, K.; Rammer, N.; Pospíšilová, L.; Alispahic, M.; Wagner, M.; Rychli, K. Identification of biofilm hotspots in a meat processing environment: detection of spoilage bacteria in multi-species biofilms. Int J Food Microbiol 2020, 328, 108668. Walker, G. M. The roles of magnesium in biotechnology. Crit Rev Biotechnol 1994, 14 (4), 311-54. Wang, P.; Ma, L.; Ge, J.; Feng, F.; Wan, Q.; Zeng, D.; Yu, X. Colonization mechanism of endophytic Enterobacter cloacae TMX-6 on rice seedlings mediated by organic acids exudated from roots. J Agric Food Chem 2023, 71 (12), 4802-4809. Wang, Z.; Hu, Y.; Dong, Y.; Shi, L.; Jiang, Y. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Microb Biotechnol 2023, 16 (3), 534-545. Wang, J.-C.; Wang, H.-H. Fermentation products and carbon balance of spoilage Bacillus cereus. Journal of Food and Drug Analysis 2002, Vol. 10, No. 1, Pages 64-68. Whiteley, C. G.; Lee, D. J. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv 2015, 33 (1), 124-141. Wood, T. K. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 2009, 11 (1), 1-15. Wood, T. K.; González Barrios, A. F.; Herzberg, M.; Lee, J. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 2006, 72 (2), 361-7. Worlitzer, V. M.; Jose, A.; Grinberg, I.; Bär, M.; Heidenreich, S.; Eldar, A.; Ariel, G.; Be'er, A. Biophysical aspects underlying the swarm to biofilm transition. Sci Adv 2022, 8 (24), eabn8152. Yousuf, B.; Deshi, V.; Ozturk, B.; Siddiqui, M. W. Fresh-cut fruits and vegetables: quality issues and safety concerns. In Fresh-Cut Fruits and Vegetables, 2020; pp 1-15. Yu, J.; Tseng, Y.; Pham, K.; Liu, M.; Beckles, D. M. Starch and sugars as determinants of postharvest shelf life and quality: some new and surprising roles. Current Opinion in Biotechnology 2022, 78, 102844. Yuan, J.; Zhang, N.; Huang, Q.; Raza, W.; Li, R.; Vivanco, J. M.; Shen, Q. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 2015, 5, 13438. Yuan, X.; Zeng, Q.; Xu, J.; Severin, G. B.; Zhou, X.; Waters, C. M.; Sundin, G. W.; Ibekwe, A. M.; Liu, F.; Yang, C. H. Tricarboxylic acid (TCA) cycle enzymes and intermediates modulate intracellular cyclic di-GMP levels and the production of plant cell wall-degrading enzymes in soft rot pathogen Dickeya dadantii. Mol Plant Microbe Interact 2020, 33 (2), 296-307. Zhang, F.; Su, S.; Yu, G.; Zheng, B.; Shu, F.; Wang, Z.; Xiang, T.; Dong, H.; Zhang, Z.; Hou, D.; She, Y. High quality genome sequence and description of Enterobacter mori strain 5-4, isolated from a mixture of formation water and crude-oil. Stand Genomic Sci 2015, 10, 9. Zhang, M.; Zhang, Y.; Han, X.; Wang, J.; Yang, Y.; Ren, B.; Xia, M.; Li, G.; Fang, R.; He, H.; Jia, Y. Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express 2021, 11 (1), 129. Zhang, X.; Hughes, J. G.; Subuyuj, G. A.; Ditty, J. L.; Parales, R. E. Chemotaxis of Pseudomonas putida F1 to alcohols is mediated by the carboxylic acid receptor McfP. Appl Environ Microbiol 2019, 85 (22). Zhu, B.; Lou, M. M.; Xie, G. L.; Wang, G. F.; Zhou, Q.; Wang, F.; Fang, Y.; Su, T.; Li, B.; Duan, Y. P. Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int J Syst Evol Microbiol 2011, 61 (Pt 11), 2769-2774. Zhu, B.; Zhang, G. Q.; Lou, M. M.; Tian, W. X.; Li, B.; Zhou, X. P.; Wang, G. F.; Liu, H.; Xie, G. L.; Jin, G. L., Genome sequence of the Enterobacter mori type strain, LMG 25706, a pathogenic bacterium of Morus alba L. J Bacteriol 2011, 193 (14), 3670-1. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93831 | - |
| dc.description.abstract | 細菌的運動性包括泳動和表面移行能力,對宿主定殖和環境適應至關重要。與泳動能力相關的趨化性推動細菌向營養源移動或遠離有害物質。表面移行的細胞則透過細菌群的聚集,逐漸轉變為生物膜狀態。若食物成分是引誘劑,將導致細菌趨化性增加,從而使細菌積累,這可能會導致食物腐敗。我們先前的研究自截切小黃瓜中分離的Enterobacter mori FS08具顯著的泳動能力,並且小黃瓜汁對這株菌是很強的引誘劑。然而,此菌株與小黃瓜之間的關聯性尚未建立。本研究旨在 (1) 確認E. mori FS08是否促進小黃瓜腐敗;(2) 探討小黃瓜中的有機酸成分對E. mori FS08運動性相關表型的影響。實驗結果發現直接將E. mori FS08接種至新鮮截切小黃瓜上會導致外觀變質,並且消耗小黃瓜中的醣類成分。菌株特性分析中,觀察到有機酸在相同pH值下,並不會影響E. mori FS08的活菌數。值得注意的是,L-蘋果酸增強了泳動能力和正向趨化反應,但減少生物膜形成。反之,檸檬酸與DL-乳酸抑制了泳動和表面移行能力,且檸檬酸的抑制更為顯著,但這兩種有機酸皆促進了生物膜的形成。進一步的實驗證實添加L-蘋果酸使運動性相關基因 (fliC、flgM與motA) 表現量提升,添加檸檬酸則無顯著變化。而經過L-蘋果酸處理的轉錄組分析結果,鑑定出與運動性和生物膜形成相關的差異表達基因,其中fis (促進運動性的轉錄調節因子)、ahpC (氧化壓力防禦基因,其解毒作用可減少生物膜形成)、narK (硝酸鹽轉運蛋白,硝酸鹽會抑制生物膜形成) 表現量上升。另外,調控生物膜形成的群體感應相關基因亦受到抑制。這些實驗結果證明小黃瓜中的有機酸成分會調控訊息途徑影響細菌行為,可作為新鮮截切小黃瓜的預防措施和控制方法的重要參考。 | zh_TW |
| dc.description.abstract | Bacterial motility, encompassing swimming and swarming motility, is pivotal for host colonization and environmental adaptation. Chemotaxis, associated with swimming motility, propels bacteria toward nutrient sources or away from harmful substances. Swarming cells often aggregate and progressively transit to biofilm forming status. If the food factors are attractants, it will cause the increase of chemotaxis in bacteria, which results in bacteria accumulation. This may potentially lead to food spoilage. Our previous study isolated Enterobacter mori FS08 from fresh-cut cucumbers, exhibits pronounced swimming motility; however, the association between this strain and cucumber has not yet been established. The current study aimed to 1) investigate if E. mori FS08 leads to the spoilage of cucumber; 2) explore the impact of organic acids in cucumber on motility-related phenomena. The results demonstrate that E. mori FS08 caused cucumber spoilage by directly inoculating the strain onto fresh-cut cucumbers. The strain characterization indicated that organic acids did not affect the viable bacterial count of E. mori FS08 by the pH levels. Notably, L-malic acid enhanced swimming motility and positive chemotaxis response, but reduced biofilm formation. In contrast, citric acid and DL-lactic acid inhibited swimming and swarming motility, with citric acid having a more significant effect. However, both organic acids promoted biofilm formation. The subsequent analysis by qPCR found that the addition of L-malic acid led to the higher expression of motility-related genes (fliC, flgM, and motA), while the addition of citric acid showed no significant changes. Further transcriptomic analysis revealed that, in response to L-malic acid treatment, differentially expressed genes related to motility and biofilm formation were identified. The expression of fis (a transcriptional regulator promoting motility), ahpC (an oxidative stress defense gene whose detoxification activity can reduce biofilm formation), and narK (a nitrate transporter protein, with nitrate inhibiting biofilm formation) were upregulated. Additionally, quorum sensing-related genes that regulate biofilm formation were also downregulated. This study elucidated how organic acid components in cucumbers affect bacterial behavior and regulatory pathways, providing valuable insights into future preventative measures and control methods for fresh-cut cucumber handling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:27:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:27:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Graphical abstract v 目次 vi 圖次 ix 表次 xi 附錄次 xii 第一章、前言 1 第二章、文獻回顧 2 第一節、截切蔬果的加工處理與食品安全 2 一、截切蔬果之食安問題-以小黃瓜為例 2 二、小黃瓜的主要成分 2 三、細菌汙染截切小黃瓜之途徑 3 四、截切小黃瓜之品質指標 3 第二節、腸桿菌屬 (Enterobacter spp.) 4 一、基本特性 4 二、引發的問題 4 第三節、細菌運動性 6 一、泳動能力 (Swimming motility) 6 二、表面移行能力 (Swarming motility) 7 第四節、細菌運動性相關之菌株特性 8 一、趨化性 (Chemotaxis) 8 二、生物膜 (Biofilm) 9 第五節、細菌運動性與生物膜形成之調控機制 11 一、c-di-GMP調節運動性和生物膜形成 11 二、群體感應 (Quorum Sensing, QS) 12 第三章、研究目的與架構 14 第四章、材料與方法 16 第一節、材料 16 一、樣品 16 二、實驗菌株 16 三、藥品 17 四、培養基及實驗溶液之配製 18 五、儀器與設備 26 六、套裝軟體 27 第二節、實驗方法 27 一、截切小黃瓜之接菌試驗 27 二、小黃瓜品質指標測定 28 三、菌株特性分析 31 四、基因表現量分析 (qPCR) 34 五、轉錄組分析 (RNA-sequencing, RNA-seq) 40 第五章、結果與討論 44 第一節、確認E. mori FS08與截切小黃瓜腐敗之相關性 44 一、截切小黃瓜之菌數變化 44 二、E. mori FS08使小黃瓜外觀腐敗 47 三、E. mori FS08使截切小黃瓜之醣類含量減少 49 四、E. mori FS08不影響小黃瓜之有機酸含量變化 53 五、E. mori FS08不影響小黃瓜之pH值與可滴定酸 56 第二節、小黃瓜含有的有機酸成分對菌株特性之影響 59 一、混合碳源培養基添加不同有機酸不影響菌株生長 59 二、提高有機酸濃度不影響E. mori FS08之生長 66 三、於30 °C時,L-蘋果酸促進E. mori FS08泳動能力、檸檬酸則抑制 69 四、有機酸對E. mori FS08的泳動能力呈濃度效應 73 五、僅L-蘋果酸對E. mori FS08具吸引之趨化反應 78 六、混合碳源添加L-蘋果酸對E. mori FS08之趨化反應具加乘效果 81 七、L-蘋果酸不影響表面移行能力,檸檬酸與DL-乳酸則抑制 84 八、L-蘋果酸使生物膜形成減少,檸檬酸與DL-乳酸則促進生物膜的形成 87 第三節、L-蘋果酸與檸檬酸對E. mori FS08運動性相關基因之影響 90 一、引子效率 90 二、L-蘋果酸使E. mori FS08運動性相關基因表現量上升 93 第四節、L-蘋果酸與檸檬酸對E. mori FS08轉錄組之影響 98 一、主成分分析 (Principal Component Analysis, PCA) 98 二、差異表達基因 (differentially expressed genes, DEGs) 100 三、L-蘋果酸和檸檬酸處理與對照組相比有許多調控相似的DEGs 100 四、L-蘋果酸使能量產生、促進運動性和抑制生物膜形成相關的基因上調 102 五、KEGG分析顯示L-蘋果酸使群體感應受到抑制 108 六、GSEA分析顯示檸檬酸使鞭毛組裝相關基因表現量下降 111 第六章、結論與展望 113 第七章、參考文獻 114 第八章、附錄 126 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有機酸 | zh_TW |
| dc.subject | 新鮮截切小黃瓜 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 趨化性 | zh_TW |
| dc.subject | 泳動 | zh_TW |
| dc.subject | swimming motility | en |
| dc.subject | chemotaxis | en |
| dc.subject | biofilm | en |
| dc.subject | organic acid | en |
| dc.subject | Fresh-cut cucumber | en |
| dc.title | 有機酸對Enterobacter mori FS08運動性及生物膜形成的影響 | zh_TW |
| dc.title | Effect of organic acids on motility and biofilm formation of Enterobacter mori FS08 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林旭陽;李月嘉;王如邦;林乃君 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Yang Lin;Yue-Jia Lee;Reu-Ben Wang;Nai-Chun Lin | en |
| dc.subject.keyword | 新鮮截切小黃瓜,有機酸,泳動,趨化性,生物膜, | zh_TW |
| dc.subject.keyword | Fresh-cut cucumber,organic acid,swimming motility,chemotaxis,biofilm, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202401515 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 6.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
