請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93754| 標題: | 量子井異質介面光電晶體應用於四對二加碼器電路元件之製作與開發 Development of 4 to 2 Encoder Circuit Utilizing Quantum Well Heterojunction Phototransistor |
| 作者: | 許書睿 Shu-Jui Hsu |
| 指導教授: | 吳肇欣 Chao-Hsin Wu |
| 關鍵字: | 砷化銦鎵/砷化鎵異質接面結構,發光電晶體,光電積體電路,光電晶體, InGaAs/GaAs heterojunction structure,Light-Emitting Transistor,OEIC,Phototransistor, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 隨著5G時代的來臨以及物聯網的快速發展,全球對互聯網的重要性有了更深刻的認識。尤其是在2020年COVID-19全球大流行期間,迫使個人和企業普遍採用遠程工作的模式,使得對高速數據傳輸和強大計算系統的需求變得更為迫切。這種情況突顯了數據傳輸在科技進步中的關鍵作用。
光通訊技術的發展為訊號傳遞提供了全新的可能性。相比傳統的電子訊號傳輸,光通訊具有不受電磁干擾、低損耗、高頻寬、傳輸距離長和傳輸容量大的優勢,顯示出極高的競爭力。在從傳統電子訊號過渡到光通訊的過程中,光電積體電路(OEIC)技術應運而生。OEIC技術將光訊號與電訊號集成在單一晶片上,成為現代光通訊技術發展的重要方向之一。本研究之內容可應用在以發光電晶體為單元的光電積體電路平台,為其在收光元件方面提供更進一步的發展。 本篇論文主要探討帶有量子井結構之單顆光電晶體的光電特性,並將其應用於四對二光電加碼器電路上,同時分析不同磊晶結構對於單一元件和電路響應速度的影響。 本論文分做四部分,第一部分介紹了發光電晶體的結構和歷史,並說明本論文研究動機,為論文概述; 第二部分講述發光電晶體元件的製程與直流電性量測,並比較了不同磊晶與布局之元件在各項量測中的差異; 第三部分著重在以發光電晶體之磊晶製作之量子井光電晶體的光電流特性,並且對於在雙量子井元件之光電流圖中觀察到的突起電流效應之相關實驗結果做出詳細分析; 最後第四部分展示了利用光電晶體製作的四對二光電加碼器電路,從設計、製作到量測進行詳細的說明,並以等效充放電電路說明各部件對於電路操作頻率上限的影響作出說明。 With the advent of the 5G era and the rapid development of the Internet of Things (IoT), the global significance of the internet has been further emphasized. Particularly during the COVID-19 pandemic in 2020, individuals and businesses widely adopted remote working models, increasing the demand for high-speed data transmission and robust computing systems. This situation has highlighted the critical role of data transmission in technological advancement. The development of optical communication technology has provided new possibilities for signal transmission. Compared to traditional electronic signal transmission, optical communication boasts several advantages: immunity to electromagnetic interference, low loss, high bandwidth, long transmission distances, and large transmission capacities, making it highly competitive. During the transition from traditional electronic signals to optical communication, Opto-Electronic Integrated Circuit (OEIC) technology has emerged. OEIC technology integrates optical and electronic signals on a single chip, becoming a crucial direction in modern optical communication technology development. This research's content can be applied to OEIC platforms using light-emitting transistors as units, providing further development in light-receiving components. This thesis primarily explores the optoelectronic characteristics of single phototransistors with quantum well structures and applies them to a 4-to-2 optoelectrical encoder circuit, analyzing the impact of different epitaxial structures on the response speed of individual devices and circuits. The thesis is divided into four parts. The first part introduces the structure and history of light-emitting transistors, explaining the research motivation and providing an overview. The second part discusses the fabrication and DC electrical measurements of light-emitting transistor devices, comparing the differences in measurements among devices with different epitaxial structures and layouts. The third part focuses on the photoelectric characteristics of quantum well phototransistors fabricated with the epitaxial layers of light-emitting transistors, providing a detailed analysis of the experimental results related to the observed bulged current effect in the photocurrent graphs of double quantum well devices. Finally, the fourth part demonstrates the 4-to-2 optoelectrical encoder circuit made using phototransistors, detailing the design, fabrication, and measurement processes, and explains the influence of each component on the circuit's maximum operating frequency through an equivalent charging and discharging circuit model. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93754 |
| DOI: | 10.6342/NTU202402602 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2029-07-29 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-29 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
