Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author許書睿zh_TW
dc.contributor.authorShu-Jui Hsuen
dc.date.accessioned2024-08-07T17:03:41Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation[1] H. Hsia et al., "Heterogeneous Integration of a Compact Universal Photonic Engine for Silicon Photonics Applications in HPC," in 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), 1 June-4 July 2021 2021, pp. 263-268, doi: 10.1109/ECTC32696.2021.00052.
[2] W. Bogaerts et al., "Programmable photonic circuits," Nature, vol. 586, no. 7828, pp. 207-216, 2020/10/01 2020, doi: 10.1038/s41586-020-2764-0.
[3] L. A. Coldren et al., "High Performance InP-Based Photonic ICs—A Tutorial," Journal of Lightwave Technology, vol. 29, no. 4, pp. 554-570, 2011, doi: 10.1109/JLT.2010.2100807.
[4] T. Sharma et al., "Review of Recent Progress on Silicon Nitride-Based Photonic Integrated Circuits," IEEE Access, vol. 8, pp. 195436-195446, 2020, doi: 10.1109/ACCESS.2020.3032186.
[5] S. Y. Siew et al., "Review of Silicon Photonics Technology and Platform Development," Journal of Lightwave Technology, vol. 39, no. 13, pp. 4374-4389, 2021/07/01 2021. [Online]. Available: https://opg.optica.org/jlt/abstract.cfm?URI=jlt-39-13-4374.
[6] P. v. Gerven. "Silicon photonics: piggybacking on decades of chip manufacturing experience." https://bits-chips.nl/article/silicon-photonics-piggybacking-on-decades-of-chip-manufacturing-experience/ (accessed.
[7] J. J. G. M. van der Tol, Y. Jiao, and K. A. Williams, "Chapter Seven - InP Photonic Integrated Circuits on Silicon," in Semiconductors and Semimetals, vol. 99, S. Lourdudoss, R. T. Chen, and C. Jagadish Eds.: Elsevier, 2018, pp. 189-219.
[8] M. Feng, N. Holonyak, Jr., and W. Hafez, "Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors," Applied Physics Letters, vol. 84, no. 1, pp. 151-153, 2004, doi: 10.1063/1.1637950.
[9] F. Dixon et al., "Visible spectrum light-emitting transistors," Applied Physics Letters, vol. 88, no. 1, p. 012108, 2006, doi: 10.1063/1.2158704.
[10] M. Feng, N. Holonyak, Jr., B. Chu-Kung, G. Walter, and R. Chan, "Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor," Applied Physics Letters, vol. 84, no. 23, pp. 4792-4794, 2004, doi: 10.1063/1.1760595.
[11] H. Y. Lan, I. C. Tseng, Y. H. Lin, S. W. Chang, and C. H. Wu, "Characteristics of Blue GaN/InGaN Quantum-Well Light-Emitting Transistor," IEEE Electron Device Letters, vol. 41, no. 1, pp. 91-94, 2020, doi: 10.1109/LED.2019.2955733.
[12] C. Wu, G. Walter, H. Then, M. Feng, and N. Holonyak, "Scaling of light emitting transistor for multigigahertz optical bandwidth," Applied Physics Letters, vol. 94, pp. 171101-171101, 04/27 2009, doi: 10.1063/1.3126642.
[13] M. Feng, N. Holonyak, Jr., H. W. Then, and G. Walter, "Charge control analysis of transistor laser operation," Applied Physics Letters, vol. 91, no. 5, p. 053501, 2007, doi: 10.1063/1.2767172.
[14] A. Winoto, J. Qiu, D. Wu, and M. Feng, "Transistor Laser-Integrated Photonics for Optical Logic: Unlocking Unique Electro-Optical Integration Potential to Open Up New Possibilities for Logic Processors," IEEE Nanotechnology Magazine, vol. 13, no. 2, pp. 27-34, 2019, doi: 10.1109/MNANO.2019.2891978.
[15] H. H. Chen, C. W. Wang, and C. H. Wu, "Monolithically Integrated Optical NAND Gate Using Light-Emitting Transistors," in 2018 23rd Opto-Electronics and Communications Conference (OECC), 2-6 July 2018 2018, pp. 1-2, doi: 10.1109/OECC.2018.8729956.
[16] Y.-T. Chen, Y.-T. Liang, and C.-H. Wu, "Monolithically Integrated Optoelectronic Multiplexer Circuit Using Light Emitting Transistors," in 26th Optoelectronics and Communications Conference, Hong Kong, P. T. H. Alexander Wai and C. Yu, Eds., 2021/07/03 2021: Optica Publishing Group, in OSA Technical Digest, p. T3E.2, doi: 10.1364/OECC.2021.T3E.2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=OECC-2021-T3E.2
[17] Y.-T. Liang, Y.-T. Huang, C.-H. Wu, and H.-Y. Lin, Monolithically Integrated Opto-Electrical NOR Gate Using Light Emitting Transistors. 2020, pp. 1-3.
[18] W. J. R. Hoefer, "The Transmission-Line Matrix Method - Theory and Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 10, pp. 882-893, 1985, doi: 10.1109/TMTT.1985.1133146.
[19] T. C. Shen, G. B. Gao, and H. Morkoç, "Recent developments in ohmic contacts for III–V compound semiconductors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, no. 5, pp. 2113-2132, 1992, doi: 10.1116/1.586179.
[20] M. Heiblum, M. I. Nathan, and C. A. Chang, "Characteristics of AuGeNi ohmic contacts to GaAs," Solid-State Electronics, vol. 25, no. 3, pp. 185-195, 1982/03/01/ 1982, doi: https://doi.org/10.1016/0038-1101(82)90106-X.
[21] G. K. Reeves and H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements," IEEE Electron Device Letters, vol. 3, no. 5, pp. 111-113, 1982, doi: 10.1109/EDL.1982.25502.
[22] I. Barycka and I. Zubel, "Chemical etching of (100) GaAs in a sulphuric acid-hydrogen peroxide-water system," Journal of Materials Science, vol. 22, pp. 1299-1304, 04/01 1987, doi: 10.1007/BF01233125.
[23] "SOP for wet etching." https://terpconnect.umd.edu/~browns/wetetch.html (accessed.
[24] I. Foulds, R. Johnstone, and M. Parameswaran, "Polydimethylglutarimide (PMGI) as a sacrificial material for SU-8 surface-micromachining," Journal of Micromechanics and Microengineering, vol. 18, p. 075011, 05/28 2008, doi: 10.1088/0960-1317/18/7/075011.
[25] T. Lin et al., "Effect of annealing process parameters on N-GaAs ohmic contacts," Microelectronic Engineering, vol. 258, p. 111772, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.mee.2022.111772.
[26] F. Ren, C. R. Abernathy, S. J. Pearton, and J. R. Lothian, "Use of Ti in ohmic metal contacts to p‐GaAs," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 13, no. 2, pp. 293-296, 1995, doi: 10.1116/1.588368.
[27] P. E. Ganrou, W. B. Rogers, D. M. Scheck, A. J. G. Strandjord, Y. Ida, and K. Ohba, "Stress-buffer and passivation processes for Si and GaAs IC's and passive components using photosensitive BCB: process technology and reliability data," IEEE Transactions on Advanced Packaging, vol. 22, no. 3, pp. 487-498, 1999, doi: 10.1109/6040.784503.
[28] S. Vinayak, H. P. Vyas, K. Muraleedharan, and V. D. Vankar, "Ni–Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits," Thin Solid Films, vol. 514, no. 1, pp. 52-57, 2006/08/30/ 2006, doi: https://doi.org/10.1016/j.tsf.2006.02.025.
[29] M. Hafizi, C. R. Crowell, and M. E. Grupen, "The DC characteristics of GaAs/AlGaAs heterojunction bipolar transistors with application to device modeling," IEEE Transactions on Electron Devices, vol. 37, no. 10, pp. 2121-2129, 1990, doi: 10.1109/16.59900.
[30] C. Siu, "Introduction to the BJT," in Electronic Devices, Circuits, and Applications, C. Siu Ed. Cham: Springer International Publishing, 2022, pp. 41-63.
[31] W. Shockley, M. Sparks, and G. K. Teal, "p− n Junction Transistors," Physical Review, vol. 83, no. 1, p. 151, 1951.
[32] J. N. Shive, "The Properties of Germanium Phototransistors," J. Opt. Soc. Am., vol. 43, no. 4, pp. 239-244, 1953/04/01 1953, doi: 10.1364/JOSA.43.000239.
[33] M. S. Park, D. S. Kim, and J. H. Jang, "Floating-base InGaP/GaAs heterojunction phototransistors with low doped extrincsic base," in 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 31 May-4 June 2010 2010, pp. 1-4, doi: 10.1109/ICIPRM.2010.5516108.
[34] S. W. Tan, H. R. Chen, W. T. Chen, M. K. Hsu, A. H. Lin, and W. S. Lour, "The influence of base bias on the collector photocurrent for InGaP∕GaAs heterojunction phototransistors," Journal of Applied Physics, vol. 97, no. 3, p. 034502, 2005, doi: 10.1063/1.1847721.
[35] T. Shih-Wei, C. Hon-Rung, C. Wei-Tien, H. Meng-Kai, L. An-Hung, and L. Wen-Shiung, "Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation," IEEE Transactions on Electron Devices, vol. 52, no. 2, pp. 204-210, 2005, doi: 10.1109/TED.2004.842537.
[36] B. O. Seraphin and N. Bottka, "Franz-Keldysh Effect of the Refractive Index in Semiconductors," Physical Review, vol. 139, no. 2A, pp. A560-A565, 07/19/ 1965, doi: 10.1103/PhysRev.139.A560.
[37] H. Kumar, R. Basu, and G. E. Chang, "Impact of Temperature and Doping on the Performance of Ge/Ge1−xSnx/Ge Heterojunction Phototransistors," IEEE Photonics Journal, vol. 12, no. 3, pp. 1-14, 2020, doi: 10.1109/JPHOT.2020.2996808.
[38] J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," Journal of Applied Physics, vol. 53, no. 10, pp. R123-R181, 1982, doi: 10.1063/1.331665.
[39] "Implementation and verification of decoder/de-multiplexer and encoder using logic gates." https://de-iitr.vlabs.ac.in/exp/decoder-demultiplexer-encoder/theory.html (accessed.
[40] "Priority Encoder and Digital Encoder Tutorial." https://www.electronics-tutorials.ws/combination/comb_4.html (accessed.
[41] "Advanced Design System (ADS) _ Keysight." https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html (accessed.
[42] G. L. Miller, J. V. Ramirez, and D. A. H. Robinson, "A correlation method for semiconductor transient signal measurements," Journal of Applied Physics, vol. 46, no. 6, pp. 2638-2644, 1975, doi: 10.1063/1.321896.
[43] "1.5 Risetime and Overshoot _ Berkeley Nucleonics." https://academy.berkeleynucleonics.com/courses/664435/lectures/11838681 (accessed.
[44] W. C. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers," Journal of Applied Physics, vol. 19, no. 1, pp. 55-63, 1948, doi: 10.1063/1.1697872.
[45] S. Xia and L. Chen, "Theoretical and experimental investigation of optimal capacitor charging process in RC circuit," The European Physical Journal Plus, vol. 132, no. 5, p. 235, 2017/05/26 2017, doi: 10.1140/epjp/i2017-11507-8.
[46] "Capacitor Discharging." http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capdis.html (accessed.
[47] A. Ziauddin, S. Khan, and S. Alam, "Generalized version of Kirchhoff’s Laws for student," 06/12 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93754-
dc.description.abstract隨著5G時代的來臨以及物聯網的快速發展,全球對互聯網的重要性有了更深刻的認識。尤其是在2020年COVID-19全球大流行期間,迫使個人和企業普遍採用遠程工作的模式,使得對高速數據傳輸和強大計算系統的需求變得更為迫切。這種情況突顯了數據傳輸在科技進步中的關鍵作用。
光通訊技術的發展為訊號傳遞提供了全新的可能性。相比傳統的電子訊號傳輸,光通訊具有不受電磁干擾、低損耗、高頻寬、傳輸距離長和傳輸容量大的優勢,顯示出極高的競爭力。在從傳統電子訊號過渡到光通訊的過程中,光電積體電路(OEIC)技術應運而生。OEIC技術將光訊號與電訊號集成在單一晶片上,成為現代光通訊技術發展的重要方向之一。本研究之內容可應用在以發光電晶體為單元的光電積體電路平台,為其在收光元件方面提供更進一步的發展。
本篇論文主要探討帶有量子井結構之單顆光電晶體的光電特性,並將其應用於四對二光電加碼器電路上,同時分析不同磊晶結構對於單一元件和電路響應速度的影響。
本論文分做四部分,第一部分介紹了發光電晶體的結構和歷史,並說明本論文研究動機,為論文概述; 第二部分講述發光電晶體元件的製程與直流電性量測,並比較了不同磊晶與布局之元件在各項量測中的差異; 第三部分著重在以發光電晶體之磊晶製作之量子井光電晶體的光電流特性,並且對於在雙量子井元件之光電流圖中觀察到的突起電流效應之相關實驗結果做出詳細分析; 最後第四部分展示了利用光電晶體製作的四對二光電加碼器電路,從設計、製作到量測進行詳細的說明,並以等效充放電電路說明各部件對於電路操作頻率上限的影響作出說明。
zh_TW
dc.description.abstractWith the advent of the 5G era and the rapid development of the Internet of Things (IoT), the global significance of the internet has been further emphasized. Particularly during the COVID-19 pandemic in 2020, individuals and businesses widely adopted remote working models, increasing the demand for high-speed data transmission and robust computing systems. This situation has highlighted the critical role of data transmission in technological advancement.
The development of optical communication technology has provided new possibilities for signal transmission. Compared to traditional electronic signal transmission, optical communication boasts several advantages: immunity to electromagnetic interference, low loss, high bandwidth, long transmission distances, and large transmission capacities, making it highly competitive. During the transition from traditional electronic signals to optical communication, Opto-Electronic Integrated Circuit (OEIC) technology has emerged. OEIC technology integrates optical and electronic signals on a single chip, becoming a crucial direction in modern optical communication technology development. This research's content can be applied to OEIC platforms using light-emitting transistors as units, providing further development in light-receiving components.
This thesis primarily explores the optoelectronic characteristics of single phototransistors with quantum well structures and applies them to a 4-to-2 optoelectrical encoder circuit, analyzing the impact of different epitaxial structures on the response speed of individual devices and circuits.
The thesis is divided into four parts. The first part introduces the structure and history of light-emitting transistors, explaining the research motivation and providing an overview. The second part discusses the fabrication and DC electrical measurements of light-emitting transistor devices, comparing the differences in measurements among devices with different epitaxial structures and layouts. The third part focuses on the photoelectric characteristics of quantum well phototransistors fabricated with the epitaxial layers of light-emitting transistors, providing a detailed analysis of the experimental results related to the observed bulged current effect in the photocurrent graphs of double quantum well devices. Finally, the fourth part demonstrates the 4-to-2 optoelectrical encoder circuit made using phototransistors, detailing the design, fabrication, and measurement processes, and explains the influence of each component on the circuit's maximum operating frequency through an equivalent charging and discharging circuit model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:03:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:03:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 IV
Abstract V
Table of Contents VII
List of Figures X
List of Table XIV
Chapter 1. Introduction 1
1.1. Background and Motivation 1
1.2. Light Emitting Transistor 5
1.3. Overview 8
Chapter 2. Design and Measurement Result of Single Device 9
2.1. Design of Epitaxial Structure and Photomask 9
2.2. Device Fabrication Process 16
2.2.1. Wafer Dicing and Sample Cleaning 16
2.2.2. Emitter & Base Mesa Etching 17
2.2.3. Emitter & Collector Metal Contact 17
2.2.4. Annealing 18
2.2.5. Base Metal Contact 18
2.2.6. Isolation Etching 18
2.2.7. Passivation 19
2.2.8. Contact Via Etching 19
2.2.9. Ni-Cr Resistor Deposition 20
2.2.10. Coplanar M1 Metal Pad 20
2.3. DC Characteristics Analysis 23
2.4. Conclusion 29
Chapter 3. Analysis of Bulged HPT Photocurrent Phenomenon 31
3.1. HPT and Photocurrent 31
3.2. Photocurrent Measurement 34
3.3. Photocurrent with Base Current Injection 39
3.4. Photocurrent at Different Temperature 44
3.5. Result Discussion 47
3.6. Conclusion 50
Chapter 4. 4-to-2 Optoelectrical Encoder circuit Utilizing QWHPTs 52
4.1. Circuit Design and Simulation 52
4.1.1. Encoder Circuit design 52
4.1.2. PathWave ADS simulation 56
4.1.3. Circuit Layout 59
4.2. Transient Measurement Result 60
4.2.1. Measurement Environment 60
4.2.2. Transient Measurement 61
4.2.3. Performance Analysis 65
4.3. Future Improvement and Discussion 74
4.4. Conclusion 76
Chapter 5. Conclusion and Future Work 79
Acronyms 82
References 84
Appendix 88
-
dc.language.isoen-
dc.subject光電積體電路zh_TW
dc.subject發光電晶體zh_TW
dc.subject光電晶體zh_TW
dc.subject砷化銦鎵/砷化鎵異質接面結構zh_TW
dc.subjectInGaAs/GaAs heterojunction structureen
dc.subjectLight-Emitting Transistoren
dc.subjectOEICen
dc.subjectPhototransistoren
dc.title量子井異質介面光電晶體應用於四對二加碼器電路元件之製作與開發zh_TW
dc.titleDevelopment of 4 to 2 Encoder Circuit Utilizing Quantum Well Heterojunction Phototransistoren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳昱任;黃定洧;李三良zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Ding-wei Huang;San-Liang Leeen
dc.subject.keyword砷化銦鎵/砷化鎵異質接面結構,發光電晶體,光電積體電路,光電晶體,zh_TW
dc.subject.keywordInGaAs/GaAs heterojunction structure,Light-Emitting Transistor,OEIC,Phototransistor,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202402602-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-07-29-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-29
4.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved