請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁俞文 | zh_TW |
| dc.contributor.advisor | Yu-Wen Ting | en |
| dc.contributor.author | 王惠鵬 | zh_TW |
| dc.contributor.author | Patsakorn Watcharapongphan | en |
| dc.date.accessioned | 2024-08-07T16:22:39Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | 1. Metcalfe, D. D.; Sampson, H. A.; Simon, R. A. Food allergy: adverse reactions to foods and food additives; John Wiley & Sons, 2011.
2. Mahr, T. A.; Lieberman, J. A.; Haselkorn, T.; Damle, V.; Ali, Y.; Chidambaram, A.; Griffin, N. M.; Sublett, J. W. Characteristics of Peanut Allergy Diagnosis in a US Health Care Claims Database (2011-2017). The Journal of Allergy and Clinical Immunology: In Practice 2021, 9 (4), 1683-1694.e5 3. Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science & Technology 2016, 49, 24-34 4. Török, K.; Horváth, V.; Horváth, Á.; Hajas, L.; Bugyi, Z.; Tömösközi, S. Investigation of incurred single-and multi-component model food matrices for determination of food proteins triggering allergy and coeliac disease. European Food Research and Technology 2014, 239 (6), 923-932 5. Cabanillas, B.; Pedrosa, M. M.; Rodríguez, J.; Muzquiz, M.; Maleki, S. J.; Cuadrado, C.; Burbano, C.; Crespo, J. F. Influence of Enzymatic Hydrolysis on the Allergenicity of Roasted Peanut Protein Extract. International Archives of Allergy and Immunology 2012, 157 (1), 41-50. 6. Pi, X.; Wan, Y.; Yang, Y.; Li, R.; Wu, X.; Xie, M.; Li, X.; Fu, G. Research progress in peanut allergens and their allergenicity reduction. Trends in Food Science & Technology 2019, 93, 212-220 7. Greenhawt, M.; Shaker, M.; Wang, J.; Oppenheimer, J. J.; Sicherer, S.; Keet, C.; Swaggart, K.; Rank, M.; Portnoy, J. M.; Bernstein, J.; Chu, D. K.; Dinakar, C.; Golden, D.; Horner, C.; Lang, D. M.; Lang, E. S.; Khan, D. A.; Lieberman, J.; Stukus, D.; Wallace, D. Peanut allergy diagnosis: A 2020 practice parameter update, systematic review, and GRADE analysis. Journal of Allergy and Clinical Immunology 2020, 146 (6), 1302-1334. 8. Yu, J.; Smith, I. N.; Idris, N.; Gregory, N.; Mikiashvili, N. Oxidative Stability of Protease Treated Peanut with Reduced Allergenicity. Foods 2020, 9 (6), 762. 9. Zhang, T.; Shi, Y.; Zhao, Y.; Wang, J.; Wang, M.; Niu, B.; Chen, Q. Different thermal processing effects on peanut allergenicity. Journal of the Science of Food and Agriculture 2019, 99 (5), 2321-2328 10. Shah, F.; Shi, A.; Ashley, J.; Kronfel, C.; Wang, Q.; Maleki, S. J.; Adhikari, B.; Zhang, J. Peanut Allergy: Characteristics and Approaches for Mitigation. Comprehensive Reviews in Food Science and Food Safety 2019, 18 (5), 1361-1387. 11. Zhou, Y.; Wang, J.-s.; Yang, X.-j.; Lin, D.-h.; Gao, Y.-f.; Su, Y.-j.; Yang, S.; Zhang, Y.-j.; Zheng, J.-j. Peanut Allergy, Allergen Composition, and Methods of Reducing Allergenicity: A Review. International Journal of Food Science 2013, 2013, 909140. 12. Ma, Y., Kerr, W. L., Swanson, R. B., Hargrove, J. L., & Pegg, R. B. (2014). Peanut skins-fortified peanut butters: Effect of processing on the phenolics content, fibre content and antioxidant activity. Food Chemistry, 145, 883–891. 13. Oilseeds: World markets and trade. USDA Foreign Agricultural Service. (2015). 14. Tate, P. V., Chavan, J. K., Patil, P. B., & Kadam, S. S. (1990). Processing of commercial peanut cake into food-grade meal and its utilization in preparation of cookies. Plant Foods for Human Nutrition, 40(2), 115–121. 15. Singh, B., & Singh, U. (1991). Peanut as a source of protein for human foods. Plant Foods for Human Nutrition, 41(2), 165–177. 16. Wang, Q. Relationship between raw material quality and product quality of peanut. In Peanut Processing Characteristics and Quality Evaluation, Springer, 2018; pp 151-209 16 17. Boukid, F. Peanut protein – an underutilised by-product with great potential: a review. International Journal of Food Science & Technology 2022, 57 (9), 5585-5591. 18. Çiftçi, S.; Suna, G. Functional components of peanuts (Arachis Hypogaea L.) and health benefits: A review. Future Foods 2022, 5, 100140. 19. Zhang J., Liu L., Jiang Y., Faisal S., Wei L., Cao C., Yan W., Wang Q. (2019) Converting peanut protein biomass waste into “double green” meat substitutes using a high-moisture extrusion process: A multiscale method to explore a process for forming a meat-like fibrous structure. Journal of Agricultural and Food Chemistry 67:10713–10725 20. Thomas, S.; Mozetič, M.; Cvelbar, U.; Špatenka, P.; Praveen, K.M. Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-813153-4 21. Misra, N. N., Schlüter, O., & Cullen, P. J. (2016b). Plasma in food and agriculture. In Cold plasma in food and agriculture: fundamentals and applications (pp. 1–13). Academic Press, Massachusetts. 22. Misra, N. N., Schlüter, O., & Cullen, P. J. (2016a). Cold Plasma in Food and Agriculture (1st edn). Academic Press. 10.1016/b978-0-12-801365-6.09991-1. 23. Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(1), 125–142. 24. Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Non-thermal plasma–A tool for decontamination and disinfection. Biotechnology Advances, 33(6 Pt 2), 33, 1108–1119. 25. Domonkos, M., Tich´ a, P., Trejbal, J., & Demo, P. (2021). Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Applied Sciences (Switzerland), 11(11), 4809. 26. Wenske, S., Lackmann, J.-W., Bekeschus, S., Weltmann, K.-D., von Woedtke, T., & Wende, K. (2020). Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases, 15(6), Article 061008. 27. Muhammad, A. I., Xiang, Q., Liao, X., Liu, D., & Ding, T. (2018). Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure—a review. Food and Bioprocess Technology, 11(3), 463–486. 28. Rehman MU, Jawaid P, Uchiyama H, Kondo T (2016) Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Archives of Biochemistry and Biophysics 605:19–25. 29. Privat-Maldonado, A., Gorbanev, Y., Dewilde, S., Smits, E., & Bogaerts, A. (2018). Reduction of human glioblastoma spheroids using cold atmospheric plasma: The combined effect of short-and long-lived reactive species. Cancers, 10(11). 30. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55,39–47. 31. Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2018). Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition, 58(15), 2583–2597. 32. Venkataratnam, H., Sarangapani, C., Cahill, O., & Ryan, C. B. (2019). Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h 1. Innovative Food Science and Emerging Technologies, 52, 368–375. 33. Jiang, Y. H., Cheng, J. H., & Sun, D. W. (2020). Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends in Food Science and Technology, 98, 129–139. 34. Zhu F (2017) Plasma modification of starch. Food Chemistry 232:476–486. 35. Sarangapani, C., Yamuna Devi, R., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017b). Physico-chemical properties of low-pressure plasma treated black gram. LWT – Food Science and Technology, 79, 102–110. 36. Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H., & Ghorbani, M. (2018). Pectin modification assisted by nitrogen glow discharge plasma. International Journal of Biological Macromolecules, 120, 2572–2578. 37. Ulbin-Figlewicz, N., & Jarmoluk, A. (2015). Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage. Food Science and Technology International, 22(4), 313–324. 38. Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Barker, R.J. (Eds.), 2005. NonEquilibrium Air Plasmas at Atmospheric Pressure. Institute of Physics Publishing, Bristol, UK. 39. Kogelschatz, U., 2003. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23, 1–46. 40. Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L., Ranadheera, C.S., Borges, F.O., Mathias, S. P., Fernandes, F.A.N., Rodrigues, S., Cruz, A.G., 2018. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 74, 56–68. 41. Scholtz V, Pazlarova J, Souskova H, et al (2015) Nonthermal plasma — a tool for decontamination and disinfection. Biotechnology Advances 33:1108–1119. 42. Misra, N.N., Schluter, O., Cullen, P.J., 2016b. Cold Plasma in Food and Agriculture, Cold Plasma in Food and Agriculture. Elsevier, London. 43. Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O., Kostov, K.G., 2017. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coating. Technol. 312, 19–24. 44. Scally, L., Behan, S., Aguiar de Carvalho, A.M., Sarangapani, C., Tiwari, B., Malone, R.,Byrne, H.J., Curtin, J., Cullen, P.J., 2021. Diagnostics of a large volume pin-to-plate atmospheric plasma source for the study of plasma species interactions with cancer cell cultures. Plasma Process. Polym. 1–12. 45. Bermudez-Aguirre, D., 2020. Advances in Cold Plasma Applications for Food Safety and Preservation. Elsevier, Richland. 46. Chabert, P., Braithwaite, N., 2011. Physics of Radio-Frequency Plasmas. Cambridge University Press, New York. 47. Ekezie, F.-G.C., Sun, D.-W., Cheng, J.-H., 2017a. A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci. Technol. 69, 46–58. 48. Thomas, M., Mittal, K.L., 2013. Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley, Salem. 49. Muhammad, A.I., Liao, X., Cullen, P.J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X., Ding, T., 2018a. Effects of nonthermal plasma technology on functional food components. Compr. Rev. Food Sci. Food Saf. 17, 1379–1394. 50. Chen, Z., Chen, G., Obenchain, R., Zhang, R., Bai, F., Fang, T., Wang H., Lu Y., Wirz E. R., Gu, Z. (2022). Cold atmospheric plasma delivery for biomedical applications. Materials Today, 54, 153–188. 51. Kettler W (2019) V. Instrumental Color Difference Assessment. Color Technology of Coatings 98–116. 52. Venkataratnam, H., Cahill, O., Sarangapani, C., Cullen, P. J., & Barry-Ryan, C. (2020). Impact of cold plasma processing on major peanut allergens. Scientific Reports, 10(1). 53. Hsieh K-C, Cheng K-C, Lu T-J, Chou Y-J, Hu J-Y, Yuwen Ting (2023) Effect of plasma processing gas on ara H 1 in peanut protein extract. Food Control 152:109848. 54. Toyokawa, Y., Yagyu, Y., Misawa, T., & Sakudo, A. (2017). A new roller conveyer system of non-thermal gas plasma as a potential control measure of plant pathogenic bacteria in primary food production. Food Control, 72, 62–72. 55. Cullen, P. J., Lalor, J., Scally, L., Boehm, D., Milosavljević, V., Bourke, P., & Keener, K. (2017). Translation of plasma technology from the lab to the Food Industry. Plasma Processes and Polymers, 15(2). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93681 | - |
| dc.description.abstract | none | zh_TW |
| dc.description.abstract | The demand for peanut consumption has been rising globally over the past few decades due to its complete nutrient profile. Despite its benefits, one significant drawback is the presence of an allergen called Ara h 1, which is majority of peanut allergen and poses potential health risks. This necessitates a treatment during the food processing stage to ensure public safety for peanut consumption. Among a variety of food processing methods, cold plasma is a nonthermal food processing that can improve food properties without compromising nutritional content. Several studies have suggested that cold plasma has the potential to reduce the allergenicity of peanuts, though further research is mandatory to improve its efficiency. This study aims to investigate a type of cold plasma generator called rotary cold plasma treatment and validate its ability to reduce peanut allergenicity. In the experiment, air and argon gas were utilized to treat peanuts under various conditions, including different treatment times (0, 10, 20, 30, 40, 50 and 60 min) and chamber conditions (non-rotated and rotated peanut). The peanut samples were then analyzed for the peanut protein causing antigenicity (Ara h 1) using Western blotting. As the results from Western blotting remained inconclusive, the ELISA method was employed which showed the reductions of Ara h 1 by 47% and 45% after 60 minutes of air gas treatment for non-rotated and rotated peanuts, respectively. Additionally, argon gas treatment resulted in the decrease of Ara h 1 by 44% and 19% at 60 minutes in non-rotated and rotated peanut, respectively. Therefore, the rotary plasma possesses the potential to enhance the effectiveness of cold plasma systems in reducing peanut allergens. Nevertheless, additional research is needed to not only achieve greater reductions of Ara h 1, but also gain deeper understanding of the interactions between cold plasma and peanut allergens. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:22:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:22:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENT I ABSTRACT III LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1: INTRODUCTION 1 CHAPTER 2: LITERATURE REVIEW 2 2.1 Food Allergy 2 2.1.1 Peanut allergens 2 2.2 Peanut 5 2.2.1 Peanut products 5 2.2.2 Peanut protein 6 2.3 Cold Plasma 7 2.3.1 Plasma 7 2.3.2 Reactive species in cold plasma 9 2.3.3 Cold Plasma Machine 13 2.3.3.1 Dielectric barrier discharge (DBD) 14 2.3.3.2 Plasma jet (PJ) 14 2.3.3.3 Corona discharges (CD) 14 2.3.3.4 Radiofrequency (RF) 15 2.3.3.5 Microwave (MW) 15 CHAPTER 3: OBJETIVE AND EXPERIMENTAL DESIGN 16 3.1 Hypothesis & Objective 16 3.1.1 Hypothesis 16 3.1.2 Objectives 16 3.2 Experiment flowchart 16 CHAPTER 4: MATERIAL AND METHOD 18 4.1 Materials 18 4.1.1 Reagents and drugs 18 4.1.2 Instruments and equipment 21 4.2 Methods 23 4.2.1 Protein Quantitation 23 4.2.2 SDS-PAGE electrophoresis 23 4.2.3 Western Blotting method 25 4.2.4 Enzyme-binding immunosorbent assay (ELISA) 27 4.2.5 Protein carbonyl content analysis 29 4.2.6 In Vitro Protein Digestibility 31 CHAPTER 5: RESULT AND DISSCUSION 32 5.1 Comparison among different cold plasma generators 32 5.2 Rotary Plasma 32 5.3.1 Residual of Ara h 1: air gas treatment 36 5.3.2 Residual of Ara h 1: argon gas treatment 40 5.4 Color and degree of browning 44 5.4.1 Color and degree of browning: air gas treatment 45 5.4.2 Color and degree of browning: argon gas treatment 46 5.5 Protein Oxidation 48 5.6 In vitro protein digestibility 50 CHAPTER 6: CONCLUSION AND FUTURE WORK 52 CHAPTER 7: REFERENCES 54 APPENDIX 1 59 | - |
| dc.language.iso | en | - |
| dc.subject | 旋轉電漿 | zh_TW |
| dc.subject | Ara h 1 | zh_TW |
| dc.subject | 花生過敏 | zh_TW |
| dc.subject | 花生 | zh_TW |
| dc.subject | 冷電漿 | zh_TW |
| dc.subject | peanut | en |
| dc.subject | peanut allergy | en |
| dc.subject | Ara h 1 | en |
| dc.subject | cold plasma | en |
| dc.subject | rotary plasma | en |
| dc.title | 新型旋轉式電漿設備減少花生過敏原 Ara h 1之研究 | zh_TW |
| dc.title | A Novel Rotary Plasma machine for the reduction of peanut allergen Ara h 1 content | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳瑞碧;沈賜川;鄭光成;謝昌衛 | zh_TW |
| dc.contributor.oralexamcommittee | James Swi-Bea Wu;Szu-Chuan Shen;Kuan-Chen Cheng;Hsieh Chang-Wei | en |
| dc.subject.keyword | 花生,花生過敏,Ara h 1,冷電漿,旋轉電漿, | zh_TW |
| dc.subject.keyword | peanut,peanut allergy,Ara h 1,cold plasma,rotary plasma, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202402256 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
