請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93600
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘敏雄 | zh_TW |
dc.contributor.advisor | Min-Hsiung Pan | en |
dc.contributor.author | 陳彥同 | zh_TW |
dc.contributor.author | Yen-Tung Chen | en |
dc.date.accessioned | 2024-08-06T16:11:38Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2024-08-06 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-30 | - |
dc.identifier.citation | Aiello, I., Fedele, M. M., Román, F., Marpegan, L., Caldart, C., Chiesa, J. J., Golombek, D. A., Finkielstein, C. V., & Paladino, N. (2020). Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Science Advances, 6(42), eaaz4530.
Ajeigbe, O. F., Maruf, O. R., Anyebe, D. A., Opafunso, I. T., Ajayi, B. O., & Farombi, E. O. (2022). 6‐shogaol suppresses AOM/DSS‐mediated colorectal adenoma through its antioxidant and anti‐inflammatory effects in mice. Journal of Food Biochemistry, 46(12), e14422. Akinwumi, B. C., Bordun, K.-A. M., & Anderson, H. D. (2018). Biological activities of stilbenoids. International Journal of Molecular Sciences, 19(3), 792. Albuquerque, T., Neves, A. R., Quintela, T., & Costa, D. (2021). Exploring the link between chronobiology and drug delivery: effects on cancer therapy. Journal of Molecular Medicine, 99(10), 1349-1371. Alhopuro, P., Björklund, M., Sammalkorpi, H., Turunen, M., Tuupanen, S., Biström, M., Niittymäki, I., Lehtonen, H. J., Kivioja, T., & Launonen, V. (2010). Mutations in the circadian gene CLOCK in colorectal cancer. Molecular Cancer Research, 8(7), 952-960. Alzahrani, S. M., Al Doghaither, H. A., & Al‑Ghafari, A. B. (2021). General insight into cancer: an overview of colorectal cancer. Molecular and Clinical Oncology, 15(6), 1-8. Angelousi, A., Kassi, E., Ansari-Nasiri, N., Randeva, H., Kaltsas, G., & Chrousos, G. (2019). Clock genes and cancer development in particular in endocrine tissues. Endocrine-Related Cancer, 26(6), R305-R317. Aroca-Siendones, M. I., Moreno-SanJuan, S., Puentes-Pardo, J. D., Verbeni, M., Arnedo, J., Escudero-Feliu, J., García-Costela, M., García-Robles, A., Carazo, Á., & León, J. (2021). Core circadian clock proteins as biomarkers of progression in colorectal cancer. Biomedicines, 9(8), 967. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., Liu, H., Cross, J. R., Pfeffer, K., & Coffer, P. J. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451-455. Atef, N., Alieldin, N., Sherif, G., Loay, I., Mahmoud, A. M., & Mohamed, G. (2020). Microsatellite instability and life style factors in sporadic colorectal cancer. Asian Pacific Journal of Cancer Prevention, 21(5), 1471. Bachmanov, A. A., Reed, D. R., Beauchamp, G. K., & Tordoff, M. G. (2002). Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behavior Genetics, 32, 435-443. Barber, L. E., VoPham, T., White, L. F., Roy, H. K., Palmer, J. R., & Bertrand, K. A. (2023). Circadian disruption and colorectal cancer incidence in black women. Cancer Epidemiology, Biomarkers & Prevention, 32(7), 927-935. Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8(9), a019505. Bhakkiyalakshmi, E., Dineshkumar, K., Karthik, S., Sireesh, D., Hopper, W., Paulmurugan, R., & Ramkumar, K. M. (2016). Pterostilbene-mediated Nrf2 activation: mechanistic insights on Keap1: Nrf2 interface. Bioorganic & Medicinal Chemistry, 24(16), 3378-3386. Bilic, J., Huang, Y.-L., Davidson, G., Zimmermann, T., Cruciat, C.-M., Bienz, M., & Niehrs, C. (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 316(5831), 1619-1622. Bishayee, A. (2009). Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prevention Research, 2(5), 409-418. Boccellino, M., Donniacuo, M., Bruno, F., Rinaldi, B., Quagliuolo, L., Ambruosi, M., Pace, S., De Rosa, M., Olgaç, A., & Banoglu, E. (2019). Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. European Journal of Medicinal Chemistry, 180, 637-647. Burchett, J. B., Knudsen-Clark, A. M., & Altman, B. J. (2021). MYC ran up the clock: the complex interplay between MYC and the molecular circadian clock in cancer. International Journal of Molecular Sciences, 22(14), 7761. Cabel, C. R., Alizadeh, E., Robbins, D. J., Ahmed, Y., Lee, E., & Thorne, C. A. (2019). Single-cell analyses confirm the critical role of LRP6 for Wnt signaling in APC-deficient cells. Developmental Cell, 49(6), 827-828. Cadigan, K. M., & Waterman, M. L. (2012). TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor Perspectives in Biology, 4(11), a007906. Cao, K., & Tait, S. W. (2018). Apoptosis and cancer: force awakens, phantom menace, or both? International Review of Cell and Molecular Biology, 337, 135-152. Centelles, J. J. (2012). General aspects of colorectal cancer. International Scholarly Research Notices, 2012, 139268. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., & Larsson, E. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401-404. Cervena, K., Siskova, A., Buchler, T., Vodicka, P., & Vymetalkova, V. (2020). Methylation-based therapies for colorectal cancer. Cells, 9(6), 1540. Chalfant, J. M., Daugherty, A., & Pendergast, J. S. (2023). Chronic environmental circadian disruption increases atherosclerosis and dyslipidemia in female, but not male, ApolipoproteinE-deficient mice. Frontiers in Physiology, 14, 1167858. Challet, E. (2019). The circadian regulation of food intake. Nature Reviews Endocrinology, 15(7), 393-405. Chan, E. W. C. (2023). 3'-Hydroxypterostilbene and pinostilbene: Their chemistry, sources, anticancer and other pharmacological properties, pharmacokinetics, and patents. Journal of Applied Pharmaceutical Science, 13(9), 001-008. Chan, E. W. C., Wong, C. W., Tan, Y. H., Foo, J. P. Y., Wong, S. K., & Chan, H. T. (2019). Resveratrol and pterostilbene: a comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. Journal of Applied Pharmaceutical Science, 9(7), 124-129. Chang, C.-S., Liao, Y.-C., Huang, C.-T., Lin, C.-M., Cheung, C. H. Y., Ruan, J.-W., Yu, W.-H., Tsai, Y.-T., Lin, I.-J., & Huang, C.-H. (2021). Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Reports, 37(8), 110016. Chang, Z.-Y., Liu, H.-M., Leu, Y.-L., Hsu, C.-H., & Lee, T.-Y. (2022). Modulation of gut microbiota combined with upregulation of intestinal tight junction explains anti-inflammatory effect of corylin on colitis-associated cancer in mice. International Journal of Molecular Sciences, 23(5), 2667. Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology, 104(1), 15-25. Cheng, T.-C., Lai, C.-S., Chung, M.-C., Kalyanam, N., Majeed, M., Ho, C.-T., Ho, Y.-S., & Pan, M.-H. (2014). Potent anti-cancer effect of 3'-hydroxypterostilbene in human colon xenograft tumors. PloS One, 9(11), e111814. Chung, L., Orberg, E. T., Geis, A. L., Chan, J. L., Fu, K., Shields, C. E. D., Dejea, C. M., Fathi, P., Chen, J., & Finard, B. B. (2018). Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host & Microbe, 23(2), 203-214. Davidson, A., Sellix, M., Daniel, J., Yamazaki, S., Menaker, M., & Block, G. (2006). Chronic jet-lag increases mortality in aged mice. Current Biology, 16(21), R914-R916. De Robertis, M., Massi, E., Poeta, M. L., Carotti, S., Morini, S., Cecchetelli, L., Signori, E., & Fazio, V. M. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. Journal of Carcinogenesis, 10(9), 3072657. Deng, J., Zhao, L., Yuan, X., Li, Y., Shi, J., Zhang, H., Zhao, Y., Han, L., Wang, H., & Yan, Y. (2022). Pre-administration of berberine exerts chemopreventive effects in AOM/DSS-induced colitis-associated carcinogenesis mice via modulating inflammation and intestinal microbiota. Nutrients, 14(4), 726. Dreyer, C. A., VanderVorst, K., & Carraway III, K. L. (2022). Vangl as a master scaffold for Wnt/planar cell polarity signaling in development and disease. Frontiers in Cell and Developmental Biology, 10, 887100. Dzhalilova, D., Zolotova, N., Fokichev, N., & Makarova, O. (2023). Murine models of colorectal cancer: the azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colitis-associated cancer. PeerJ, 11, e16159. Elsherbini, A. M., Sheweita, S. A., & Sultan, A. S. (2021). Pterostilbene as a phytochemical compound induces signaling pathways involved in the apoptosis and death of mutant P53-breast cancer cell lines. Nutrition and Cancer, 73(10), 1976-1984. Fagiani, F., Di Marino, D., Romagnoli, A., Travelli, C., Voltan, D., Di Cesare Mannelli, L., Racchi, M., Govoni, S., & Lanni, C. (2022). Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduction and Targeted Therapy, 7(1), 41. Fan, X., Guo, H., Teng, C., Yang, X., Qin, P., Richel, A., Zhang, L., Blecker, C., & Ren, G. (2023). Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice. Food Chemistry, 408, 135196. Farshadi, E., van Der Horst, G. T., & Chaves, I. (2020). Molecular links between the circadian clock and the cell cycle. Journal of Molecular Biology, 432(12), 3515-3524. Fathi, E., Sanaat, Z., & Farahzadi, R. (2019). Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Research, 54(3), 165-174. Flores-Hernández, E., Velázquez, D. M., Castañeda-Patlán, M. C., Fuentes-García, G., Fonseca-Camarillo, G., Yamamoto-Furusho, J. K., Romero-Avila, M. T., García-Sáinz, J. A., & Robles-Flores, M. (2020). Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cellular Signalling, 72, 109636. Fuhr, L., El-Athman, R., Scrima, R., Cela, O., Carbone, A., Knoop, H., Li, Y., Hoffmann, K., Laukkanen, M. O., & Corcione, F. (2018). The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine, 33, 105-121. Garcia-Saenz, A., de Miguel, A. S., Espinosa, A., Costas, L., Aragonés, N., Tonne, C., Moreno, V., Pérez-Gómez, B., Valentin, A., & Pollán, M. (2020). Association between outdoor light-at-night exposure and colorectal cancer in Spain. Epidemiology, 31(5), 718-727. George, B. P., Chandran, R., & Abrahamse, H. (2021). Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 10(9), 1455. Greenwell, B. J., Trott, A. J., Beytebiere, J. R., Pao, S., Bosley, A., Beach, E., Finegan, P., Hernandez, C., & Menet, J. S. (2019). Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Reports, 27(3), 649-657. Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., & Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350-1356. Guo, Z., Ma, X., Chen, X., Zhang, R. X., & Yan, H. (2023). Oxidative stress–induced temporal activation of ERK1/2 phosphorylates coreceptor of Wnt/β-catenin for myofibroblast formation in human lens epithelial cells. Molecular Vision, 29, 206-216. Hadadi, E., Taylor, W., Li, X.-M., Aslan, Y., Villote, M., Rivière, J., Duvallet, G., Auriau, C., Dulong, S., & Raymond-Letron, I. (2020). Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nature Communications, 11(1), 3193. Haggar, F. A., & Boushey, R. P. (2009). Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics in Colon and Rectal Surgery, 22(04), 191-197. Hagland, H. R., Berg, M., Jolma, I. W., Carlsen, A., & Søreide, K. (2013). Molecular pathways and cellular metabolism in colorectal cancer. Digestive Surgery, 30(1), 12-25. Hamada, T., Nowak, J. A., Masugi, Y., Drew, D. A., Song, M., Cao, Y., Kosumi, K., Mima, K., Twombly, T. S., & Liu, L. (2019). Smoking and risk of colorectal cancer sub-classified by tumor-infiltrating T cells. Journal of the National Cancer Institute, 111(1), 42-51. Hasakova, K., Reis, R., Vician, M., Zeman, M., & Herichova, I. (2019). Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PloS One, 14(10), e0224396. He, A., Huang, Z., Zhang, R., Lu, H., Wang, J., Cao, J., & Feng, Q. (2022). Circadian clock genes are correlated with prognosis and immune cell infiltration in colon adenocarcinoma. Computational and Mathematical Methods in Medicine, 2022, 1709918. He, Y., Chen, Y., Dai, X., & Huang, S. (2022). Dysregulation of circadian clock genes associated with tumor immunity and prognosis in patients with colon cancer. Computational and Mathematical Methods in Medicine, 2022, 4957996. Hossain, M. S., Karuniawati, H., Jairoun, A. A., Urbi, Z., Ooi, D. J., John, A., Lim, Y. C., Kibria, K. K., Mohiuddin, A., & Ming, L. C. (2022). Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers, 14(7), 1732. Hou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation? Cancer Letters, 526, 225-235. Huang, J., Jiang, T., Kang, J., Xu, J., Dengzhang, Y., Zhao, Z., Yang, C., Wu, M., Xu, X., & Zhang, G. (2022). Synergistic effect of huangqin decoction combined treatment with radix actinidiae chinensis on DSS and AOM-induced colorectal cancer. Frontiers in Pharmacology, 13, 933070. Hugen, N., van Beek, J. J., de Wilt, J. H., & Nagtegaal, I. D. (2014). Insight into mucinous colorectal carcinoma: clues from etiology. Annals of Surgical Oncology, 21, 2963-2970. Huisman, S. A., Ahmadi, A. R., IJzermans, J. N., Verhoef, C., van der Horst, G. T., & de Bruin, R. W. (2016). Disruption of clock gene expression in human colorectal liver metastases. Tumor Biology, 37, 13973-13981. Jasemi, S., Emaneini, M., Fazeli, M. S., Ahmadinejad, Z., Nomanpour, B., Sadeghpour Heravi, F., Sechi, L. A., & Feizabadi, M. M. (2020). Toxigenic and non-toxigenic patterns I, II and III and biofilm-forming ability in Bacteroides fragilis strains isolated from patients diagnosed with colorectal cancer. Gut Pathogens, 12, 1-7. Ji, Y., Lv, J., Sun, D., & Huang, Y. (2022). Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer. International Journal of Molecular Medicine, 49(1), 1-17. Jolly, M. K., Ware, K. E., Gilja, S., Somarelli, J. A., & Levine, H. (2017). EMT and MET: necessary or permissive for metastasis? Molecular Oncology, 11(7), 755-769. Jouffe, C., Weger, B. D., Martin, E., Atger, F., Weger, M., Gobet, C., Ramnath, D., Charpagne, A., Morin-Rivron, D., & Powell, E. E. (2022). Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proceedings of the National Academy of Sciences, 119(10), e2200083119. Jung, Y.-S., & Park, J.-I. (2020). Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental and Molecular Medicine, 52(2), 183-191. Kastrinos, F., Samadder, N. J., & Burt, R. W. (2020). Use of family history and genetic testing to determine risk of colorectal cancer. Gastroenterology, 158(2), 389-403. Katoh, M., & Katoh, M. (2017). Molecular genetics and targeted therapy of WNT-related human diseases. International Journal of Molecular Medicine, 40(3), 587-606. Kim, J. J., Shajib, M. S., Manocha, M. M., & Khan, W. I. (2012). Investigating intestinal inflammation in DSS-induced model of IBD. Journal of Visualized Experiments, 60, e3678. Kimura, Y., Sumiyoshi, M., Kiyoi, T., & Baba, K. (2020). Dihydroxystilbenes prevent azoxymethane/dextran sulfate sodium-induced colon cancer by inhibiting colon cytokines, a chemokine, and programmed cell death-1 in C57BL/6J mice. European Journal of Pharmacology, 886, 173445. Klampfer, L. (2011). Cytokines, inflammation and colon cancer. Current Cancer Drug Targets, 11(4), 451-464. Knight, J. A. (2005). Liver function tests: their role in the diagnosis of hepatobiliary diseases. Journal of Infusion Nursing, 28(2), 108-117. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. Koh, Y.-C., Ho, C.-T., & Pan, M.-H. (2021). Recent advances in health benefits of stilbenoids. Journal of Agricultural and Food Chemistry, 69(35), 10036-10057. Kojetin, D. J., & Burris, T. P. (2014). REV-ERB and ROR nuclear receptors as drug targets. Nature Reviews Drug Discovery, 13(3), 197-216. Koni, M., Pinnarò, V., & Brizzi, M. F. (2020). The Wnt signalling pathway: a tailored target in cancer. International Journal of Molecular Sciences, 21(20), 7697. Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E., Chung, D. C., Lochhead, P., & Hold, G. L. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215. Kosuru, R., Rai, U., Prakash, S., Singh, A., & Singh, S. (2016). Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. European Journal of Pharmacology, 789, 229-243. Kuhl, M. (2004). The WNT/calcium pathway: biochemical mediators, tools and future requirements. Frontiers in Bioscience, 9(1), 967-974. Kwon, C., Cheng, P., King, I. N., Andersen, P., Shenje, L., Nigam, V., & Srivastava, D. (2011). Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nature Cell Biology, 13(10), 1244-1251. Kwon, J., Lee, C., Heo, S., Kim, B., & Hyun, C.-K. (2021). DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Scientific Reports, 11(1), 5283. Lévi, F., Dugué, P.-A., Innominato, P., Karaboué, A., Dispersyn, G., Parganiha, A., Giacchetti, S., Moreau, T., Focan, C., & Waterhouse, J. (2014). Wrist actimetry circadian rhythm as a robust predictor of colorectal cancer patients survival. Chronobiology international, 31(8), 891-900. Lai, C.-S., Yang, G., Li, S., Lee, P.-S., Wang, B. N., Chung, M.-C., Nagabhushanam, K., Ho, C.-T., & Pan, M.-H. (2017). 3'-Hydroxypterostilbene suppresses colitis-associated tumorigenesis by inhibition of IL-6/STAT3 signaling in mice. Journal of Agricultural and Food Chemistry, 65(44), 9655-9664. Lauby-Secretan, B., Vilahur, N., Bianchini, F., Guha, N., & Straif, K. (2018). The IARC perspective on colorectal cancer screening. New England Journal of Medicine, 378(18), 1734-1740. Lavoie, S., Chun, E., Bae, S., Brennan, C. A., Comeau, C. A. G., Lang, J. K., Michaud, M., Hoveyda, H. R., Fraser, G. L., & Fuller, M. H. (2020). Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice. Gastroenterology, 158(5), 1359-1372. Law, B. Y. K., Mok, S. W. F., Wu, A. G., Lam, C. W. K., Yu, M. X. Y., & Wong, V. K. W. (2016). New potential pharmacological functions of chinese herbal medicines via regulation of autophagy. Molecules, 21(3), 359. Lazic, S. E., Semenova, E., & Williams, D. P. (2020). Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights. Scientific Reports, 10(1), 6625. Lee, J., Lee, S., Chung, S., Park, N., Son, G. H., An, H., Jang, J., Chang, D.-J., Suh, Y.-G., & Kim, K. (2016). Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochemical and Biophysical Research Communications, 469(3), 580-586. Lee, P.-S., Chiou, Y.-S., Chou, P.-Y., Nagabhushanam, K., Ho, C.-T., & Pan, M.-H. (2021). 3'-Hydroxypterostilbene Inhibits 7, 12-Dimethylbenz [a] anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin carcinogenesis. Phytomedicine, 81, 153432. Lee, P.-S., Chiou, Y.-S., Nagabhushanam, K., Ho, C.-T., & Pan, M.-H. (2020). 3'-Hydroxypterostilbene potently alleviates obesity exacerbated colitis in mice. Journal of Agricultural and Food Chemistry, 68(19), 5365-5374. Lee, Y. (2021). Roles of circadian clocks in cancer pathogenesis and treatment. Experimental and Molecular Medicine, 53(10), 1529-1538. Lemieux, E., Cagnol, S., Beaudry, K., Carrier, J., & Rivard, N. (2015). Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 34(38), 4914-4927. Leppkes, M., Roulis, M., Neurath, M. F., Kollias, G., & Becker, C. (2014). Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. International Immunology, 26(9), 509-515. Lewandowska, A., Rudzki, G., Lewandowski, T., Stryjkowska-Gora, A., & Rudzki, S. (2022). Risk factors for the diagnosis of colorectal cancer. Cancer Control, 29, 10732748211056692. Lewis, P., Oster, H., Korf, H. W., Foster, R. G., & Erren, T. C. (2020). Food as a circadian time cue—evidence from human studies. Nature Reviews Endocrinology, 16(4), 213-223. Li, D.-p., Cui, M., Tan, F., Liu, X.-y., & Yao, P. (2021). High red meat intake exacerbates dextran sulfate-induced colitis by altering gut microbiota in mice. Frontiers in Nutrition, 8, 646819. Li, S., Chen, J., Wang, Y., Zhou, X., & Zhu, W. (2020). Moxibustion for the side effects of surgical therapy and chemotherapy in patients with gastric cancer: a protocol for systematic review and meta-analysis. Medicine, 99(29), e21087. Li, S., Liu, J., Zheng, X., Ren, L., Yang, Y., Li, W., Fu, W., Wang, J., & Du, G. (2022). Tumorigenic bacteria in colorectal cancer: mechanisms and treatments. Cancer Biology & Medicine, 19(2), 147-162. Li, Y., Wang, S., Sun, Y., Xu, W., Zheng, H., Wang, Y., Tang, Y., Gao, X., Song, C., & Long, Y. (2020). Apple polysaccharide protects ICR mice against colitis associated colorectal cancer through the regulation of microbial dysbiosis. Carbohydrate Polymers, 230, 115726. Lin, M., Fang, Z., Lin, X., Zhou, W., Wang, Y., Han, S., Ye, M., & Zhu, F. (2023). TRIM55 inhibits colorectal cancer development via enhancing protein degradation of c‐Myc. Cancer Medicine, 12(12), 13511-13521. Liu, N., Zou, S., Xie, C., Meng, Y., & Xu, X. (2023). Effect of the β-glucan from Lentinus edodes on colitis-associated colorectal cancer and gut microbiota. Carbohydrate Polymers, 316, 121069. Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., & Jiang, X. (2021). The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research, 165, 105420. Liu, W. (2022). The intersection between Wnt signaling pathway and cancer metabolism. AIP Conference Proceedings, 2589(1), 020016. Liu, Y., You, Y., Lu, J., Chen, X., & Yang, Z. (2020). Recent advances in synthesis, bioactivity, and pharmacokinetics of pterostilbene, an important analog of resveratrol. Molecules, 25(21), 5166. Logan, R. W., & McClung, C. A. (2019). Rhythms of life: circadian disruption and brain disorders across the lifespan. Nature Reviews Neuroscience, 20(1), 49-65. Luo, J., Yan, R., He, X., & He, J. (2017). Constitutive activation of STAT3 and cyclin D1 overexpression contribute to proliferation, migration and invasion in gastric cancer cells. American Journal of Translational Research, 9(12), 5671. Ma, Y., Hu, M., Zhou, L., Ling, S., Li, Y., Kong, B., & Huang, P. (2018). Dietary fiber intake and risks of proximal and distal colon cancers: a meta-analysis. Medicine, 97(36), e11678. Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., & Wong, C. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 6(1), 6734. Magzoub, M. M., Prunello, M., Brennan, K., & Gevaert, O. (2019). The impact of DNA methylation on the cancer proteome. PLOS Computational Biology, 15(7), e1007245. Malki, A., ElRuz, R. A., Gupta, I., Allouch, A., Vranic, S., & Al Moustafa, A.-E. (2020). Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements. International Journal of Molecular Sciences, 22(1), 130. Marafini, I., Sedda, S., Dinallo, V., & Monteleone, G. (2019). Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opinion on Biological Therapy, 19(11), 1207-1217. Marcolino, T. F., Pimenta, C. A. M., Neto, R. A., Castelo, P., Silva, M. S., Forones, N. M., & Oshima, C. T. F. (2020). p53, Cyclin-D1, β-catenin, APC and c-myc in tumor tissue from colorectal and gastric cancer patients with suspected lynch syndrome by the Bethesda criteria. Asian Pacific Journal of Cancer Prevention, 21(2), 343. McCormack, D., & McFadden, D. (2013). A review of pterostilbene antioxidant activity and disease modification. Oxidative Medicine and Cellular Longevity, 2013, 575482. McNabney, S. M., & Henagan, T. M. (2017). Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients, 9(12), 1348. Menter, D. G., Davis, J. S., Broom, B. M., Overman, M. J., Morris, J., & Kopetz, S. (2019). Back to the colorectal cancer consensus molecular subtype future. Current Gastroenterology Reports, 21, 1-12. Ministry of Health and Welfare. (2023). Top 10 Causes of Death in 2022. Ministry of Health and Welfare. Miki, T., Matsumoto, T., Zhao, Z., & Lee, C. C. (2013). p53 regulates Period2 expression and the circadian clock. Nature communications, 4(1), 1-11. Millar, A. J. (2016). The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annual Review of Plant Biology, 67, 595-618. Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., & Rodriguez Yoldi, M. J. (2017). Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences, 18(1), 197. Mohammadian, M., Zeynali, S., Azarbaijani, A. F., Ansari, M. H. K., & Kheradmand, F. (2017). Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Research in Pharmaceutical Sciences, 12(6), 517-525. Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience, 35, 445-462. Mojarad, E. N., Kuppen, P. J., Aghdaei, H. A., & Zali, M. R. (2013). The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterology and Hepatology from Bed to Bench, 6(3), 120-128. Molzof, H. E., Peterson, C. M., Thomas, S. J., Gloston, G. F., Johnson Jr, R. L., & Gamble, K. L. (2022). Nightshift work and nighttime eating are associated with higher insulin and leptin levels in hospital nurses. Frontiers in Endocrinology, 13, 876752. Mure, L. S., Le, H. D., Benegiamo, G., Chang, M. W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., & Cooper, H. M. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 359(6381), eaao0318. Nagarajan, S., Mohandas, S., Ganesan, K., Xu, B., & Ramkumar, K. M. (2022). New insights into dietary pterostilbene: sources, metabolism, and health promotion effects. Molecules, 27(19), 6316. Nagtegaal, I. D., & Hugen, N. (2015). The increasing relevance of tumour histology in determining oncological outcomes in colorectal cancer. Current Colorectal Cancer Reports, 11, 259-266. Naithani, R., Huma, L. C., Moriarty, R. M., McCormick, D. L., & Mehta, R. G. (2008). Comprehensive review of cancer chemopreventive agents evaluated in experimental carcinogenesis models and clinical trials. Current Medicinal Chemistry, 15(11), 1044-1071. Neiheisel, A., Kaur, M., Ma, N., Havard, P., & Shenoy, A. K. (2022). Wnt pathway modulators in cancer therapeutics: an update on completed and ongoing clinical trials. International Journal of Cancer, 150(5), 727-740. Neto, Í., Rocha, J., Gaspar, M. M., & Reis, C. P. (2023). Experimental murine models for colorectal cancer research. Cancers, 15(9), 2570. Neves, A. R., Albuquerque, T., Quintela, T., & Costa, D. (2022). Circadian rhythm and disease: relationship, new insights, and future perspectives. Journal of Cellular Physiology, 237(8), 3239-3256. Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of colorectal carcinogenesis. Gastroenterology, 158(2), 291-302. Nie, Q., Peng, W. W., Wang, Y., Zhong, L., Zhang, X., & Zeng, L. (2022). β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway. Gene, 818, 146207. Nie, X., Liu, H., Liu, L., Wang, Y.-D., & Chen, W.-D. (2020). Emerging roles of Wnt ligands in human colorectal cancer. Frontiers in Oncology, 10, 1341. Nojadeh, J. N., Sharif, S. B., & Sakhinia, E. (2018). Microsatellite instability in colorectal cancer. EXCLI journal, 17, 159-168. Nounou, M. I., ElAmrawy, F., Ahmed, N., Abdelraouf, K., Goda, S., & Syed-Sha-Qhattal, H. (2015). Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer: Basic and Clinical Research, 9, S29420. Ogino, S., Nosho, K., Irahara, N., Shima, K., Baba, Y., Kirkner, G. J., Meyerhardt, J. A., & Fuchs, C. S. (2009). Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. Journal of Clinical Oncology, 27(27), 4591. Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., Izumi, Y., Nishiumi, S., Yoshida, M., & Usami, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 20(5), 425-442. Orihara, K., Haraguchi, A., & Shibata, S. (2020). Crosstalk among circadian rhythm, obesity and allergy. International Journal of Molecular Sciences, 21(5), 1884. Ozer, J., Ratner, M., Shaw, M., Bailey, W., & Schomaker, S. (2008). The current state of serum biomarkers of hepatotoxicity. Toxicology, 245(3), 194-205. Pan, J., Shi, M., Li, L., Liu, J., Guo, F., Feng, Y., Ma, L., & Fu, P. (2019). Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomedicine and Pharmacotherapy, 109, 1802-1808. Papagiannakopoulos, T., Bauer, M. R., Davidson, S. M., Heimann, M., Subbaraj, L., Bhutkar, A., Bartlebaugh, J., Vander Heiden, M. G., & Jacks, T. (2016). Circadian rhythm disruption promotes lung tumorigenesis. Cell Metabolism, 24(2), 324-331. Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10, 424615. Parang, B., Barrett, C. W., & Williams, C. S. (2016). AOM/DSS model of colitis-associated cancer. Gastrointestinal Physiology and Diseases: Methods and Protocols, 1422, 297-307. Parichha, A., Suresh, V., Chatterjee, M., Kshirsagar, A., Ben-Reuven, L., Olender, T., Taketo, M. M., Radosevic, V., Bobic-Rasonja, M., & Trnski, S. (2022). Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nature Communications, 13(1), 633. Patke, A., Young, M. W., & Axelrod, S. (2020). Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular Cell Biology, 21(2), 67-84. Petrelli, F., Tomasello, G., Borgonovo, K., Ghidini, M., Turati, L., Dallera, P., Passalacqua, R., Sgroi, G., & Barni, S. (2017). Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis. JAMA Oncology, 3(2), 211-219. Poggiogalle, E., Jamshed, H., & Peterson, C. M. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11-27. Priego, S., Feddi, F., Ferrer, P., Mena, S., Benlloch, M., Ortega, A., Carretero, J., Obrador, E., Asensi, M., & Estrela, J. M. (2008). Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2-and superoxide dismutase 2-dependent mechanism. Molecular Cancer Therapeutics, 7(10), 3330-3342. Qie, S., & Diehl, J. A. (2016). Cyclin D1, cancer progression, and opportunities in cancer treatment. Journal of Molecular Medicine, 94, 1313-1326. Raisch, J., Côté-Biron, A., Langlois, M.-J., Leblanc, C., & Rivard, N. (2021). Unveiling the roles of low-density lipoprotein receptor-related protein 6 in intestinal homeostasis, regeneration and oncogenesis. Cells, 10(7), 1792. Ramos, S. (2008). Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Molecular Nutrition & Food Research, 52(5), 507-526. Rangan, P., Choi, I., Wei, M., Navarrete, G., Guen, E., Brandhorst, S., Enyati, N., Pasia, G., Maesincee, D., & Ocon, V. (2019). Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Reports, 26(10), 2704-2719. Rao, X., & Lin, L. (2022). Circadian clock as a possible control point in colorectal cancer progression. International Journal of Oncology, 61(6), 1-12. Rogers, S., & Scholpp, S. (2022). Vertebrate Wnt5a–at the crossroads of cellular signalling. Seminars in Cell and Developmental Biology, 125, 3-10. Rossi, M., Jahanzaib Anwar, M., Usman, A., Keshavarzian, A., & Bishehsari, F. (2018). Colorectal cancer and alcohol consumption—populations to molecules. Cancers, 10(2), 38. Ruiz-Casado, A., Martín-Ruiz, A., Pérez, L. M., Provencio, M., Fiuza-Luces, C., & Lucia, A. (2017). Exercise and the hallmarks of cancer. Trends in Cancer, 3(6), 423-441. Rupasinghe, H. V. (2015). Application of NMR spectroscopy in plant polyphenols associated with human health. Applications of NMR Spectroscopy, 2, 3-92. Russo, E., Giudici, F., Fiorindi, C., Ficari, F., Scaringi, S., & Amedei, A. (2019). Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Frontiers in Immunology, 10, 2754. Safiri, S., Sepanlou, S. G., Ikuta, K. S., Bisignano, C., Salimzadeh, H., Delavari, A., Ansari, R., Roshandel, G., Merat, S., & Fitzmaurice, C. (2019). The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet Gastroenterology & Hepatology, 4(12), 913-933. Schmitt, M., & Greten, F. R. (2021). The inflammatory pathogenesis of colorectal cancer. Nature Reviews Immunology, 21(10), 653-667. Sears, C. L., Geis, A. L., & Housseau, F. (2014). Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. The Journal of Clinical Investigation, 124(10), 4166-4172. Shafi, A. A., & Knudsen, K. E. (2019). Cancer and the circadian clock. Cancer Research, 79(15), 3806-3814. Shao, X., Chen, X., Badmaev, V., Ho, C. T., & Sang, S. (2010). Structural identification of mouse urinary metabolites of pterostilbene using liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 24(12), 1770-1778. Sharma, A., Mir, R., & Galande, S. (2021). Epigenetic regulation of the Wnt/β-catenin signaling pathway in cancer. Frontiers in Genetics, 12, 681053. Shi, J., Li, F., Luo, M., Wei, J., & Liu, X. (2017). Distinct roles of Wnt/β-catenin signaling in the pathogenesis of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Mediators of Inflammation, 2017, 3520581. Shishido, A., Miyo, M., Oishi, K., Nishiyama, N., Wu, M., Yamamoto, H., Kouda, S., Wu, X., Shibata, S., & Yokoyama, Y. (2023). The relationship between LRP6 and Wnt/β-catenin pathway in colorectal and esophageal cancer. Life, 13(3), 615. Silva, A.-L., Dawson, S. N., Arends, M. J., Guttula, K., Hall, N., Cameron, E. A., Huang, T. H., Brenton, J. D., Tavaré, S., & Bienz, M. (2014). Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer, 14, 1-10. Sivaprakasam, S., Bhutia, Y. D., Yang, S., & Ganapathy, V. (2017). Short-chain fatty acid transporters: role in colonic homeostasis. Comprehensive Physiology, 8(1), 299. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-y, M., Glickman, J. N., & Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569-573. Solomon, L., Mansor, S., Mallon, P., Donnelly, E., Hoper, M., Loughrey, M., Kirk, S., & Gardiner, K. (2010). The dextran sulphate sodium (DSS) model of colitis: an overview. Comparative Clinical Pathology, 19, 235-239. Song, M., Emilsson, L., Bozorg, S. R., Nguyen, L. H., Joshi, A. D., Staller, K., Nayor, J., Chan, A. T., & Ludvigsson, J. F. (2020). Risk of colorectal cancer incidence and mortality after polypectomy: a swedish record-linkage study. The Lancet Gastroenterology & Hepatology, 5(6), 537-547. Soofiyani, S. R., Ahangari, H., Soleimanian, A., Babaei, G., Ghasemnejad, T., Safavi, S. E., Eyvazi, S., & Tarhriz, V. (2021). The role of circadian genes in the pathogenesis of colorectal cancer. Gene, 804, 145894. Spaander, M. C., Zauber, A. G., Syngal, S., Blaser, M. J., Sung, J. J., You, Y. N., & Kuipers, E. J. (2023). Young-onset colorectal cancer. Nature Reviews Disease Primers, 9(1), 21. Sun, H., Liu, X., Long, S. R., Ge, H., Wang, Y., Yu, S., Xue, Y., Zhang, Y., Li, X., & Li, W. (2019). Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. European Journal of Pharmacology, 859, 172526. Taciak, B., Pruszynska, I., Kiraga, L., Bialasek, M., & Król, M. (2018). Wnt signaling pathway in development and cancer. Journal of Physiology and Pharmacology, 69(2), 185-196. Tajasuwan, L., Kettawan, A., Rungruang, T., Wunjuntuk, K., & Prombutara, P. (2023). Role of dietary defatted rice bran in the modulation of gut microbiota in AOM/DSS-induced colitis-associated colorectal cancer rat model. Nutrients, 15(6), 1528. Takemoto, J. K., Remsberg, C. M., & Davies, N. M. (2015). Pharmacologic activities of 3'-Hydroxypterostilbene: cytotoxic, anti-oxidant, anti-adipogenic, anti-inflammatory, histone deacetylase and sirtuin 1 inhibitory activity. Journal of Pharmaceutical Sciences, 18(4), 713-727. Tartour, K., & Padmanabhan, K. (2022). The clock takes shape—24 h dynamics in genome topology. Frontiers in Cell and Developmental Biology, 9, 799971. Teka, T., Zhang, L., Ge, X., Li, Y., Han, L., & Yan, X. (2022). Stilbenes: source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical application-a comprehensive review. Phytochemistry, 197, 113128. Terzić, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138(6), 2101-2114. Testa, U., Pelosi, E., & Castelli, G. (2018). Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Medical Sciences, 6(2), 31. Tewari, D., Bawari, S., Sharma, S., DeLiberto, L. K., & Bishayee, A. (2021). Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacology & Therapeutics, 227, 107876. Tolomeo, M., Grimaudo, S., Di Cristina, A., Roberti, M., Pizzirani, D., Meli, M., Dusonchet, L., Gebbia, N., Abbadessa, V., & Crosta, L. (2005). Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. The International Journal of Biochemistry & Cell Biology, 37(8), 1709-1726. Tran, L., Jochum, S. B., Shaikh, M., Wilber, S., Zhang, L., Hayden, D. M., Forsyth, C. B., Voigt, R. M., Bishehsari, F., & Keshavarzian, A. (2021). Circadian misalignment by environmental light/dark shifting causes circadian disruption in colon. PloS One, 16(6), e0251604. Tsai, H.-Y., Ho, C.-T., & Chen, Y.-K. (2017). Biological actions and molecular effects of resveratrol, pterostilbene, and 3'-hydroxypterostilbene. Journal of Food and Drug Analysis, 25(1), 134-147. Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: present and future perspectives. Biomedical and Environmental Sciences, 28(11), 808-819. Ullman, T. A., & Itzkowitz, S. H. (2011). Intestinal inflammation and cancer. Gastroenterology, 140(6), 1807-1816. Ulman, E. A., Compton, D., & Kochanek, J. (2008). Measuring food and water intake in rats and mice. ALN Mag, 12, 17-20. van der Hee, B., & Wells, J. M. (2021). Microbial regulation of host physiology by short-chain fatty acids. Trends in Microbiology, 29(8), 700-712. Vuong, L. T., & Mlodzik, M. (2022). Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Current Topics in Developmental Biology, 149, 59-89. Wang, Qin, L., Cao, J., Zhang, L., Liu, M., Qu, C., & Miao, J. (2023). κ-selenocarrageenan oligosaccharides prepared by deep-sea enzyme alleviate inflammatory responses and modulate gut microbiota in ulcerative colitis mice. International Journal of Molecular Sciences, 24(5), 4672. Wang, Zhou, B., Cong, W., Zhang, M., Li, Z., Li, Y., Liang, S., Chen, K., Yang, D., & Wu, Z. (2021). Amelioration of AOM/DSS-induced murine colitis-associated cancer by evodiamine intervention is primarily associated with gut microbiota-metabolism-inflammatory signaling axis. Frontiers in Pharmacology, 12, 797605. Wang, J., Feng, D., & Gao, B. (2021). An overview of potential therapeutic agents targeting WNT/PCP signaling. Pharmacology of the WNT Signaling System, 269, 175-213. Wang, S., Li, F., Lin, Y., & Wu, B. (2020). Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics, 10(9), 4168. Wang, W., Kandimalla, R., Huang, H., Zhu, L., Li, Y., Gao, F., Goel, A., & Wang, X. (2019). Molecular subtyping of colorectal cancer: recent progress, new challenges and emerging opportunities. Seminars in Cancer Biology, 55, 37-52. Wang, Y., Guo, H., & He, F. (2023). Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer and Metastasis Reviews, 42(1), 297-322. Wang, Y., Liu, D., Jin, X., Song, H., & Lou, G. (2019). Genome-wide characterization of aberrant DNA methylation patterns and the potential clinical implications in patients with endometrial cancer. Pathology-Research and Practice, 215(1), 137-143. Ward, E. M., Germolec, D., Kogevinas, M., McCormick, D., Vermeulen, R., Anisimov, V. N., Aronson, K. J., Bhatti, P., Cocco, P., & Costa, G. (2019). Carcinogenicity of night shift work. The Lancet Oncology, 20(8), 1058-1059. West, A. C., & Bechtold, D. A. (2015). The cost of circadian desynchrony: evidence, insights and open questions. Bioessays, 37(7), 777-788. Wong, S. H., & Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology, 16(11), 690-704. Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174. Xue, K., Li, F.-F., Chen, Y.-W., Zhou, Y.-H., & He, J. (2017). Body mass index and the risk of cancer in women compared with men: a meta-analysis of prospective cohort studies. European Journal of Cancer Prevention, 26(1), 94-105. Yamamoto, D., Oshima, H., Wang, D., Takeda, H., Kita, K., Lei, X., Nakayama, M., Murakami, K., Ohama, T., & Takemura, H. (2022). Characterization of RNF43 frameshift mutations that drive Wnt ligand‐and R‐spondin‐dependent colon cancer. The Journal of Pathology, 257(1), 39-52. Yang, C., & Merlin, D. (2024). Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflammatory Bowel Diseases, 30(5), 844-853. Yang, J., & Yu, J. (2018). The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein & Cell, 9(5), 474-487. Yang, Y., Lindsey-Boltz, L. A., Vaughn, C. M., Selby, C. P., Cao, X., Liu, Z., Hsu, D. S., & Sancar, A. (2021). Circadian clock, carcinogenesis, chronochemotherapy connections. Journal of Biological Chemistry, 297(3), 101068. Yu, W., Hu, X., & Wang, M. (2018). Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264. 7 cells. Journal of Functional Foods, 40, 272-279. Zhang, H. L., Wang, P., Lu, M. Z., Zhang, S. D., & Zheng, L. (2019). c‑Myc maintains the self‑renewal and chemoresistance properties of colon cancer stem cells. Oncology Letters, 17(5), 4487-4493. Zhang, J., Chang, M., Wang, X., Zhou, X., Bai, Q., Lang, H., Zhang, Q., Yi, L., Mi, M., & Chen, K. (2024). Pterostilbene targets the molecular oscillator RORγ to restore circadian rhythm oscillation and protect against sleep restriction induced metabolic disorders. Phytomedicine, 125, 155327. Zhang, L., Ji, Q., Chen, Q., Wei, Z., Liu, S., Zhang, L., Zhang, Y., Li, Z., Liu, H., & Sui, H. (2023). Akkermansia muciniphila inhibits tryptophan metabolism via the AhR/β-catenin signaling pathway to counter the progression of colorectal cancer. International Journal of Biological Sciences, 19(14), 4393. Zhang, Y., Pu, W., Bousquenaud, M., Cattin, S., Zaric, J., Sun, L.-k., & Rüegg, C. (2021). Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Frontiers in Oncology, 10, 564674. Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., Tao, Q., & Xu, H. (2022). Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144. Zhao, X., Hirota, T., Han, X., Cho, H., Chong, L.-W., Lamia, K., Liu, S., Atkins, A. R., Banayo, E., & Liddle, C. (2016). Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell, 165(7), 1644-1657. Zheng, Z., Zhang, L., & Hou, X. (2022). Potential roles and molecular mechanisms of phytochemicals against cancer. Food & Function, 13(18), 9208-9225. Zhong, Z. A., Michalski, M. N., Stevens, P. D., Sall, E. A., & Williams, B. O. (2021). Regulation of Wnt receptor activity: implications for therapeutic development in colon cancer. Journal of Biological Chemistry, 296, 100782. Zhu, Y., & Li, X. (2023). Advances of Wnt signalling pathway in colorectal cancer. Cells, 12(3), 447. Zitvogel, L., Galluzzi, L., Viaud, S., Vétizou, M., Daillère, R., Merad, M., & Kroemer, G. (2015). Cancer and the gut microbiota: an unexpected link. Science Translational Medicine, 7(271), 271. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93600 | - |
dc.description.abstract | 結直腸癌 (colorectal cancer, CRC) 為目前全球罹癌率高居第三的癌症,許多研究指出 Wnt/β-catenin 訊號路徑參與結直腸癌的各個發展階段,為影響結直腸癌起始的重要分子路徑之一,目前也有許多開發中藥物針對此路徑進行調控抑制。另一方面,全球目前也在面臨結直腸癌患病年齡在不斷下降的問題,各方學者認為年輕化趨勢的出現可能與肥胖、少運動和輪班性質工作等因子高度相關。現代人基於生活型態改變,全球約有 15-20% 的工作者長時間從事輪班性質工作,可能因此導致身體出現生理時鐘紊亂 (circadian rhythm disorder, CRD)。隨著時間的推移,諸多流行病學研究揭示,輪班工作與罹患結直腸癌的風險具有正相關。因此本研究旨在探討生理時鐘紊亂是否加劇結直腸癌的嚴重性,同時評估紫檀芪 (pterostilbene, PSB) 和3'-羥基紫檀芪 (3'-hydroxypterostilbene, 3'-HPSB) 對於 AOM/DSS 誘導合併 CRD 的結直腸癌的改善效果,並探究其背後機制是否經由調節生理時鐘相關蛋白表現或抑制 Wnt/β-catenin 路徑。實驗結果顯示,生理時鐘紊亂下除了會加劇小鼠疾病活動指數 (disease activity index, DAI)、腸道縮短、腸道癮窩構造紊亂及腫瘤數目等表型,提升促發炎細胞激素 IL-1β、IL-6、TNF-α 和 MCP-1 含量加劇發炎反應,亦會降低生理時鐘重要蛋白 BMAL1、CLOCK 和 PER2 表現量,並且透過增加輔助受器 LRP6 蛋白磷酸化、降低破壞複合體組成元件蛋白 APC 和 GSK3β 表現量及提升 β-catenin 穩定性,進而活化 Wnt/β-catenin 訊號路徑,增加下游目標蛋白 c-Myc 和 Cyclin D1 表現量,促進腸道上皮細胞的增生;當介入樣品 PSB 和 3'-HPSB 後,除了改善小鼠各項腸癌表型,降低腸道促發炎細胞激素,亦可恢復生理時鐘相關蛋白的表現,並且抑制 Wnt/β-catenin 訊號路徑,藉由降低LRP6 蛋白磷酸化、增加破壞複合體穩定性、促使 β-catenin 及其下游蛋白表現量下降,進而減少腸道上皮細胞的過度增生,此外,根據腸道菌相分析結果,PSB 和 3'-HPSB 可調節小鼠腸道菌相組成,減少疾病有害菌 Dubosiella 的含量,同時提升 Clostridium、Erysipelatoclostridium、Duncaniella 及 Akkermansia 等有益菌的相對豐富度,增加短鏈脂肪酸的產生,進而改善結直腸癌進程。綜合以上結果,紫檀芪和 3'-羥基紫檀芪對於改善 AOM/DSS 誘導且受 CRD 惡化的結直腸癌方面具有相當大的潛力。 | zh_TW |
dc.description.abstract | Colorectal cancer (CRC) currently ranks third globally in cancer incidence. Numerous studies have indicated the involvement of the Wnt/β-catenin signaling pathway in various stages of CRC development, making it one of the crucial molecular pathways influencing the onset of CRC. Currently, many drugs in development targeting this pathway for regulation and inhibition. On the other hand, the global trend of decreasing age at diagnosis for CRC poses a challenge. Researches have attributed this to certain factors highly correlated with modern lifestyles such as obesity, lack of exercise, and shift work. Approximately 15-20% of the global workforce engages in shift work, which may lead to circadian rhythm disrorder (CRD) in the body. Epidemiological studies have revealed a positive correlation between shift work and the risk of developing CRC. Therefore, this study aims to investigate whether circadian rhythm disorder exacerbates the severity of CRC and to evaluate the potential effects of pterostilbene (PSB) and 3'-hydroxypterostilbene (3'-HPSB) on AOM/DSS-induced and CRD-exacerbated CRC. Additionally, the study aims to explore whether their mechanisms operate through regulating the expression of circadian clock-related proteins or inhibiting the Wnt/β-catenin pathway. Results demonstrated that under circadian rhythm disorder, various CRC phenotypes in mice were exacerbated. These included increased disease activity index (DAI), colon shortening, disrupted colon crypt structure, and increased number of tumors. Additionally, CRD enhanced the inflammatory response by elevating pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and MCP-1, while reducing the expression of key circadian rhythm-related proteins BMAL1, CLOCK, and PER2. Furthermore, CRD activated the Wnt/β-catenin signaling pathway by increasing the phosphorylation of co-receptor LRP6, decreasing the expression of the destruction complex components APC and GSK3β, and enhancing the stability of β-catenin, thereby promoting the proliferation of intestinal epithelial cells. However, treatment with PSB and 3'-HPSB not only improved various CRC phenotypes in mice and reduced intestinal pro-inflammatory cytokines but also restored the expression of circadian-related proteins. Moreover, they could inhibit the Wnt/β-catenin signaling pathway by reducing the phosphorylation of LRP6 and increasing the stability of the destruction complex component, leading to a decrease expression of β-catenin and its target genes c-Myc and Cyclin D1, therefore reducing excessive proliferation of intestinal epithelial cells. Based on intestinal microbiota analysis, PSB and 3'-HPSB modulated the composition of microbiota in mice by reducing the content of the pathogenic bacteria Dubosiella while increasing the relative abundance of beneficial bacteria such as Clostridium, Erysipelatoclostridium, Duncaniella, and Akkermansia, thereby increasing the gut microbial SCFA level, resulting in suppressing the progression of CRC. In conclusion, pterostilbene and 3'-hydroxypterostilbene show great potential for improving AOM/DSS-induced CRD-exacerbated CRC. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:11:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-06T16:11:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
謝誌 i 摘要 vi Abstract viii Graphical Abstract xi 目次 xii 附圖次 xvi 附表次 xvii 圖次 xviii 縮寫表 xx 第一章、文獻回顧 1 第一節、結直腸癌 1 (一)、結直腸癌流行病學 1 (二)、結直腸癌病灶發展 2 (三)、結直腸癌分類 3 (四)、結直腸癌分子亞型 7 (五)、結直腸癌好發因素 8 (六)、短鏈脂肪酸與結直腸癌 9 (七)、腸道菌與結直腸癌 11 (八)、結直腸癌治療 12 第二節、生理時鐘 (Circadian rhythm) 15 (一)、生理時鐘簡介 15 (二)、生理時鐘分子機制 16 (三)、生理時鐘紊亂與疾病關聯 18 (四)、生理時鐘紊亂與結直腸癌 20 第三節、Wnt 訊號路徑 (Wnt signaling pathway) 22 (一)、Wnt 訊號路徑簡介 22 (二)、Wnt 訊號路徑與結直腸癌 26 第四節、芪類化合物 (Stilbenoid) 26 (一)、芪類化合物簡介 26 (二)、紫檀芪 (Pterostilbene, PSB) 27 (三)、3'-羥基紫檀芪 (3'-hydroxypterostilbene, 3'-HPSB) 28 第二章、實驗目的與架構 30 第一節、實驗目的 30 第二節、實驗架構 30 第三章、材料方法 31 第一節、實驗材料與儀器 31 (一)、樣品與誘導劑 31 (二)、試藥與耗材 31 (三)、抗體 32 (四)、實驗儀器設備 33 第二節、實驗方法 35 (一)、實驗動物品系與飼養 35 (二)、實驗動物分組 35 (三)、動物實驗方式 36 (四)、飼料及 DSS 飲用水配製 37 (五)、體重及攝食飲水量測定 37 (六)、疾病活動指數 (Disease activity index, DAI) 測定 37 (七)、動物犧牲及腸道腫瘤計數 38 (八)、血液生化數值測定 38 (九)、組織石蠟包埋切片 38 (十)、蘇木精-伊紅染色 39 (十一)、腸道細胞激素與趨化因子測定 41 (十二)、盲腸短鏈脂肪酸含量測定 42 (十三)、16S 核糖體RNA (16S ribosomal RNA, 16S rRNA) 分析 43 (十四)、組織蛋白質萃取 44 (十五)、蛋白質定量 45 (十六)、西方墨點法 (Western blotting) 46 (十七)、統計分析 50 第四章、結果與討論 51 第一節、PSB 及 3'-HPSB 對 AOM/DSS 誘導且受生理時鐘紊亂惡化結直腸癌小鼠腸道表徵之影響 51 (一)、PSB 及 3'-HPSB 對小鼠外觀、體重、攝食量及飲水量變化之影響 51 (二)、PSB 及 3'-HPSB 對小鼠疾病活動指數 (Disease activity index, DAI) 之影響 53 (三)、PSB 及 3'-HPSB 對小鼠臟器重量之影響 55 (四)、PSB 及 3'-HPSB 對小鼠血清生化數值之影響 57 (五)、PSB 及 3'-HPSB 對小鼠腸道長度、重量及腫瘤數目之影響 59 (六)、PSB 及 3'-HPSB 對小鼠腸道組織結構之影響 62 第二節、PSB 及 3'-HPSB 對 AOM/DSS 誘導且受生理時鐘紊亂惡化結直腸癌小鼠生理時鐘表現之影響 68 (一)、PSB 及 3'-HPSB 對小鼠肝臟組織生理時鐘蛋白之影響 68 (二)、PSB 及 3'-HPSB 對小鼠腸道組織生理時鐘蛋白之影響 71 (三)、PSB 及 3'-HPSB 對小鼠腫瘤組織生理時鐘蛋白之影響 75 第三節、PSB 及 3'-HPSB 對 AOM/DSS 誘導且受生理時鐘紊亂惡化結直腸癌小鼠腸道 Wnt/β-catenin pathway 之影響 78 (一)、PSB 及 3'-HPSB 對小鼠腸道中 Wnt 配體與其細胞膜上受器之影響 78 (二)、PSB 及 3'-HPSB 對小鼠腸道細胞破壞複合體穩定性及轉錄因子 β-catenin 之影響 80 (三)、PSB 及 3'-HPSB 對小鼠腸道細胞 β-catenin 下游目標基因之影響 83 (四)、PSB 及 3'-HPSB 對小鼠腸道腫瘤中 Wnt 配體與其細胞膜上受器之影響 85 第四節、PSB 及 3'-HPSB 對 AOM/DSS 誘導且受生理時鐘紊亂惡化結直腸癌小鼠短鏈脂肪酸及腸道菌相之影響 92 (一)、PSB 及 3'-HPSB 對小鼠盲腸短鏈脂肪酸之影響 92 (二)、PSB 及 3'-HPSB 對小鼠腸道菌相之影響 94 第五章、結論 99 參考文獻 101 | - |
dc.language.iso | zh_TW | - |
dc.title | 紫檀芪及 3'-羥基紫檀芪對 AOM/DSS 誘導且受生理時鐘紊亂惡化之小鼠結直腸癌的改善功效 | zh_TW |
dc.title | Ameliorative effect of pterostilbene and 3'-hydroxypterostilbene in azoxymethane/dextran sodium sulfate-induced and circadian rhythm disorder-exacerbated colorectal cancer in mice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 羅翊禎 | zh_TW |
dc.contributor.coadvisor | Yi-Chen Lo | en |
dc.contributor.oralexamcommittee | 何元順;黃步敏;魏宗德 | zh_TW |
dc.contributor.oralexamcommittee | Yuan-Soon Ho;Bu-Miin Huang;Tzong-Der Way | en |
dc.subject.keyword | 結直腸癌,生理時鐘紊亂,Wnt/β-catenin 路徑,紫檀芪,3'-羥基紫檀芪, | zh_TW |
dc.subject.keyword | colorectal cancer,circadian rhythm disorder,Wnt/β-catenin pathway,pterostilbene,3'-hydroxypterostilbene, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202402666 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-01 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
dc.date.embargo-lift | 2029-07-30 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-07-30 | 8.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。