請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 周郁庭 | zh_TW |
| dc.contributor.author | Yu-Ting Chou | en |
| dc.date.accessioned | 2024-08-06T16:11:17Z | - |
| dc.date.available | 2024-08-07 | - |
| dc.date.copyright | 2024-08-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459.
Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901. Alonso-Herranz, L., Albarrán-Juárez, J., & Bentzon, J. F. (2023). Mechanisms of fibrous cap formation in atherosclerosis. Frontiers in Cardiovascular Medicine, 10, 1254114. Andrés-Manzano, M. J., Andrés, V., & Dorado, B. (2015). Oil red o and hematoxylin and eosin staining for quantification of atherosclerosis burden in mouse aorta and aortic root. Methods in Molecular Biology, 1339, 85-99. Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S. G., Gueimonde, M., & Arias, J. L. (2020). The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients, 12(8), 2340. Baldrighi, M., Mallat, Z., & Li, X. (2017). NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis, 267, 127-138. Bene, J., Hadzsiev, K., & Melegh, B. (2018). Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutrition and Diabetes, 8(1), 8. Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. Cai, Y. Y., Huang, F. Q., Lao, X., Lu, Y., Gao, X., Alolga, R. N., Yin, K., Zhou, X., Wang, Y., Liu, B., Shang, J., Qi, L. W., & Li, J. (2022). Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms Microbiomes, 8(1), 11. Cao, R. Y., Zhang, Y., Feng, Z., Liu, S., Liu, Y., Zheng, H., & Yang, J. (2021). The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: Novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Frontiers in Pharmacology, 12, 764994. Cao, Y., Leng, C., Lin, K., Li, Y., Zhou, M., Zhou, M., Shu, X., & Liu, W. (2024). Tangeretin mitigates trimethylamine oxide induced arterial inflammation by disrupting choline–trimethylamine conversion through specific manipulation of intestinal microflora. Molecules, 29(6), 1323. Cenariu, D., Iluta, S., Zimta, A. A., Petrushev, B., Qian, L., Dirzu, N., Tomuleasa, C., Bumbea, H., & Zaharie, F. (2021). Extramedullary hematopoiesis of the liver and spleen. Journal of Clinical Medicine, 10(24), 527–531. Charla, E., Mercer, J., Maffia, P., & Nicklin, S. A. (2020). Extracellular vesicle signalling in atherosclerosis. Cellular Signalling, 75, 109751. Chen, C. Y., Leu, H. B., Wang, S. C., Tsai, S. H., Chou, R. H., Lu, Y. W., Tsai, Y. L., Kuo, C. S., Huang, P. H., Chen, J. W., & Lin, S. J. (2023). Inhibition of trimethylamine N-oxide attenuates neointimal formation through reduction of inflammasome and oxidative stress in a mouse model of carotid artery ligation. Antioxidants & Redox Signaling, 38(1-3), 215-233. Chen, M. L., Yi, L., Zhang, Y., Zhou, X., Ran, L., Yang, J., Zhu, J. D., Zhang, Q. Y., & Mi, M. T. (2016). Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio, 7(2), e02210-02215. Chen, M. L., Zhu, X. H., Ran, L., Lang, H. D., Yi, L., & Mi, M. T. (2017). Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of the American Heart Association, 6(9), e002238. Chen, P. Y., Li, S., Koh, Y. C., Wu, J. C., Yang, M. J., Ho, C. T., & Pan, M. H. (2019). Oolong tea extract and citrus peel polymethoxyflavones reduce transformation of l-carnitine to trimethylamine-N-oxide and decrease vascular inflammation in l-carnitine feeding mice. Journal of Agricultural and Food Chemistry, 67(28), 7869-7879. Chen, S., Henderson, A., Petriello, M. C., Romano, K. A., Gearing, M., Miao, J., Schell, M., Sandoval-Espinola, W. J., Tao, J., Sha, B., Graham, M., Crooke, R., Kleinridders, A., Balskus, E. P., Rey, F. E., Morris, A. J., & Biddinger, S. B. (2019). Trimethylamine-N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metabolism, 30(6), 1141-1151 e1145. Chiang, J. Y. L., Ferrell, J. M., Wu, Y., & Boehme, S. (2020). Bile acid and cholesterol metabolism in atherosclerotic cardiovascular disease and therapy. Cardiology Plus, 5(4), 159-170. Deng, Y., Tu, Y., Lao, S., Wu, M., Yin, H., Wang, L., & Liao, W. (2022). The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Critical Reviews in Food Science and Nutrition, 62(27), 7591-7614. Din, A. U., Hassan, A., Zhu, Y., Yin, T., Gregersen, H., & Wang, G. (2019). Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Applied Microbiology and Biotechnology, 103, 9217-9228. Ding, L., Chang, M., Guo, Y., Zhang, L., Xue, C., Yanagita, T., Zhang, T., & Wang, Y. (2018). Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids in Health and Disease, 17(1), 286. Elavarasan, J., Velusamy, P., Ganesan, T., Ramakrishnan, S. K., Rajasekaran, D., & Periandavan, K. (2012). Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart. Journal of Pharmacy and Pharmacology, 64(10), 1472-1482. Gao, X., Sun, C., Zhang, Y., Hu, S., & Li, D. (2022). Dietary supplementation of l-carnitine ameliorates metabolic syndrome independent of trimethylamine-N-oxide produced by gut microbes in high-fat diet-induced obese mice. Food & Function, 13(23), 12039-12050. Gatarek, P., & Kaluzna-Czaplinska, J. (2021). Trimethylamine-N-oxide (TMAO) in human health. Experimental and Clinical Sciences, 20, 301-319. Geng, J., Yang, C., Wang, B., Zhang, X., Hu, T., Gu, Y., & Li, J. (2018). Trimethylamine-N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomedicine & Pharmacotherapy, 97, 941-947. Gill, G. W. (2013). H&E Stain. In G. W. Gill (Ed.), Cytopreparation: Principles & Practice (pp. 207-216). Springer New York. Gu, X., Xie, S., Hong, D., & Ding, Y. (2019). An in vitro model of foam cell formation induced by a stretchable microfluidic device. Scientific Reports, 9(1), 7461. Gui, Y., Zheng, H., & Cao, R. Y. (2022). Foam cells in atherosclerosis: Novel insights into its origins, consequences, and molecular mechanisms. Frontiers in Cardiovascular Medicine, 9, 845942. He, M., Tan, C.-P., Xu, Y.-J., & Liu, Y. (2020). Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? Food Research International, 138, 109812. He, Z., Zhu, H., Liu, J., Kwek, E., Ma, K. Y., & Chen, Z.-Y. (2023). Mangiferin alleviates trimethylamine-N-oxide (TMAO)-induced atherogenesis and modulates gut microbiota in mice. Food & Function, 14(20), 9212-9225. Hou, C.-Y., Chen, Y.-W., Hazeena, S. H., Tain, Y.-L., Hsieh, C.-W., Chen, D.-Q., Liu, R.-Y., & Shih, M.-K. (2024). Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio, 14(3), 358-379. Huynh, U., & Zastrow, M. L. (2023). Metallobiology of Lactobacillaceae in the gut microbiome. Journal of Inorganic Biochemistry, 238, 112023. Itabe, H., Obama, T., & Kato, R. (2011). The dynamics of oxidized LDL during atherogenesis. Journal of Lipids, 2011, 418313. Javadifar, A., Rastgoo, S., Banach, M., Jamialahmadi, T., Johnston, T. P., & Sahebkar, A. (2021). Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. International Journal of Molecular Sciences, 22(5), 2529. Jebari-Benslaiman, S., Galicia-Garcia, U., Larrea-Sebal, A., Olaetxea, J. R., Alloza, I., Vandenbroeck, K., Benito-Vicente, A., & Martin, C. (2022). Pathophysiology of atherosclerosis. International Journal of Molecular Sciences, 23(6), 3346. Jiang, C., Wang, S., Wang, Y., Wang, K., Huang, C., Gao, F., Peng Hu, H., Deng, Y., Zhang, W., Zheng, J., Huang, J., & Li, Y. (2024). Polyphenols from hickory nut reduce the occurrence of atherosclerosis in mice by improving intestinal microbiota and inhibiting trimethylamine-N-oxide production. Phytomedicine, 128, 155349. Jin, L., Shi, X., Yang, J., Zhao, Y., Xue, L., Xu, L., & Cai, J. (2021). Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein & Cell, 12(5), 346-359. Jin, Q., Zhang, C., Chen, R., Jiang, L., Li, H., Wu, P., & Li, L. (2024). Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. Journal of Translational Medicine, 22(1), 352. Jing, L., Zhang, H., Xiang, Q., Shen, L., Guo, X., Zhai, C., & Hu, H. (2022). Targeting trimethylamine-N-oxide: A new therapeutic strategy for alleviating atherosclerosis. Frontiers in Cardiovascular Medicine, 9, 864600. Kers, J. G., & Saccenti, E. (2022). The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Frontiers in Microbiology, 12, 796025. Khan, S. Q., & Ludman, P. F. (2022). Percutaneous coronary intervention. Medicine, 50(7), 437-444. Kim, K. W., Ivanov, S., & Williams, J. W. (2020). Monocyte recruitment, specification, and function in atherosclerosis. Cells, 10(1), 15. Ko, J., Wong, E. Y., Tran, H. N., Tran, R. J. C., & Cao, D. X. (2023). The glycemic, cholesterol, and weight effects of l-carnitine in diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Epidemiology and Management, 10, 100122. Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y., & Li, L. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576-585. Kulczynski, B., Sidor, A., & Gramza-Michalowska, A. (2019). Characteristics of selected antioxidative and bioactive compounds in meat and animal origin products. Antioxidants, 8(9), 335. Larsen, J. M. (2017). The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 151(4), 363-374. Lazic, S. E., Semenova, E., & Williams, D. P. (2020). Determining organ weight toxicity with bayesian causal models: Improving on the analysis of relative organ weights. Scientific Reports, 10(1), 6625. Lee, H., Liu, X., An, J. P., & Wang, Y. (2023). Identification of polymethoxyflavones (PMFs) from orange peel and their inhibitory effects on the formation of trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) using cntA/B and cutC/D enzymes and molecular docking. Journal of Agricultural and Food Chemistry, 71(43), 16114-16124. Li, X., Hong, J., Wang, Y., Pei, M., Wang, L., & Gong, Z. (2021). Trimethylamine-N-oxide pathway: A potential target for the treatment of MAFLD. Frontiers in Molecular Biosciences, 8, 733507. Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., Zhang, X., Du, Y., Zhang, J., Wang, L., Jiang, J., & Hong, B. (2021). Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. npj Biofilms and Microbiomes, 7(1), 36. Lim, T., Lee, K., Kim, R. H., Cha, K. H., Koo, S. Y., Moon, E. C., & Hwang, K. T. (2022). Black raspberry extract can lower serum LDL cholesterol via modulation of gut microbial composition and serum bile acid profile in rats fed trimethylamine-N-oxide with a high-fat diet. Food Science and Biotechnology, 31(8), 1041-1051. Liu, J., Himemiya-Hakucho, A., Liu, X., Yoshimura, K., & Fujimiya, T. (2018). The chronic complex stress combined atherogenic diet accelerates the process of atherosclerosis in mice. Integrative Molecular Medicine, 5(4), 2056-6360. Liu, N., Li, X., Zhao, P., Zhang, X., Qiao, O., Huang, L., Guo, L., & Gao, W. (2021). A review of chemical constituents and health-promoting effects of citrus peels. Food Chemistry, 365, 130585. Liu, Y., & Dai, M. (2020). Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators of Inflammation, 2020, 4634172. Lv, S., Li, X., & Wang, H. (2021). The role of the effects of endoplasmic reticulum stress on NLRP3 inflammasome in diabetes. Frontiers in Cell and Developmental Biology, 9, 663528. Ma, G., Pan, B., Chen, Y., Guo, C., Zhao, M., Zheng, L., & Chen, B. (2017). Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Bioscience Reports, 37(2), BSR20160244. Ma, S.-R., Tong, Q., Lin, Y., Pan, L.-B., Fu, J., Peng, R., Zhang, X.-F., Zhao, Z.-X., Li, Y., Yu, J.-B., Cong, L., Han, P., Zhang, Z.-W., Yu, H., Wang, Y., & Jiang, J.-D. (2022). Berberine treats atherosclerosis via a vitamine-like effect down-regulating choline-TMA-TMAO production pathway in gut microbiota. Signal Transduction and Targeted Therapy, 7(1), 207. Maqbool, Z., Khalid, W., Atiq, H. T., Koraqi, H., Javaid, Z., Alhag, S. K., Al-Shuraym, L. A., Bader, D. M. D., Almarzuq, M., Afifi, M., & AL-Farga, A. (2023). Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules, 28(4), 1636. Marais, A. D. (2019). Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology, 51(2), 165-176. Martin, S. S., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Baker-Smith, C. M., Gibbs, B. B., Beaton, A. Z., Boehme, A. K., Commodore-Mensah, Y., Currie, M. E., Elkind, M. S. V., Evenson, K. R., Generoso, G., Heard, D. G., Hiremath, S., Johansen, M. C., Kalani, R., Kazi, D. S., Ko, D., Liu, J., Magnani, J. W., Michos, E. D., Mussolino, M. E., Navaneethan, S. D., Parikh, N. I., Perman, S. M., Poudel, R., Rezk-Hanna, M., Roth, G. A., Shah, N. S., St-Onge, M.-P., Thacker, E. L., Tsao, C. W., Urbut, S. M., Spall, H. G. C. V., Voeks, J. H., Wang, N.-Y., Wong, N. D., Wong, S. S., Yaffe, K., & Palaniappan, L. P. (2024). 2024 Heart disease and stroke statistics: A report of US and global data from the american heart association. Circulation, 149(8), e347-e913. Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., & Crescenti, A. (2020). Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients, 12(5), 1488. Mateus Pereira, G., & Júlia Scherer, S. (2023). Introductory chapter: World citrus production and research. Citrus Research (pp. Ch. 1). IntechOpen. Ministry of health and welfare (2023). Analysis of statistical results on causes of death in 111 years. From https://www.mohw.gov.tw/dl-83733-80fb9ab8-ea2d-4e3e-ba06-f70f28aca036.html National Heart, Lung and Blood Institute. (2022). ATHEROSCLEROSIS from https://www.nhlbi.nih.gov/health/atherosclerosis/diagnosis Oktaviono, Y. H., Dyah Lamara, A., Saputra, P. B. T., Arnindita, J. N., Pasahari, D., Saputra, M. E., & Suasti, N. M. A. (2023). The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomolecules and Biomedicine, 23(6), 936-948. Olas, B. (2021). A review of in vitro studies of the anti-platelet potential of citrus fruit flavonoids. Food and Chemical Toxicology, 150, 112090. Ouyang, Z., Zhong, J., Shen, J., & Zeng, Y. (2023). The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis. Frontiers in Physiology, 14, 1179828. Pan, M.-H., Shahidi, F., Ho, C.-T., & Chen, P.-Y. (2018). Potential effects of natural dietary compounds on trimethylamine-N-oxide (TMAO) formation and TMAO-induced atherosclerosis. Journal of Food Bioactives, 3, 87-94. Park, Y. M. (2014). CD36, a scavenger receptor implicated in atherosclerosis. Experimental & Molecular Medicine, 46(6), e99. Poznyak, A. V., Nikiforov, N. G., Markin, A. M., Kashirskikh, D. A., Myasoedova, V. A., Gerasimova, E. V., & Orekhov, A. N. (2020). Overview of oxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Frontiers in Pharmacology, 11, 613780. Qiu, L., Tao, X., Xiong, H., Yu, J., & Wei, H. (2018). Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food & Function, 9(8), 4299-4309. Quareshy, M., Shanmugam, M., Townsend, E., Jameson, E., Bugg, T. D. H., Cameron, A. D., & Chen, Y. (2021). Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. Journal of Biological Chemistry, 296, 100038. Rana, A., Samtiya, M., Dhewa, T., Mishra, V., & Aluko, R. E. (2022). Health benefits of polyphenols: A concise review. Journal of Food Biochemistry, 46(10), e14264. Randrianarisoa, E., Lehn-Stefan, A., Wang, X., Hoene, M., Peter, A., Heinzmann, S. S., Zhao, X., Königsrainer, I., Königsrainer, A., Balletshofer, B., Machann, J., Schick, F., Fritsche, A., Häring, H. U., Xu, G., Lehmann, R., & Stefan, N. (2016). Relationship of Serum Trimethylamine N-Oxide (TMAO) Levels with early Atherosclerosis in Humans. Scientific reports, 6, 26745. Rath, S., Heidrich, B., Pieper, D. H., & Vital, M. (2017). Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 5, 1-14. Ren, H.-W., Lu, H.-Y., Zhang, H.-B., Zhang, R.-J., & Bian, C. (2024). The role of FMO3 in metabolic diseases. Traditional Medicine Research, 9(9), 53. Riccardi, G., Giosuè, A., Calabrese, I., & Vaccaro, O. (2022). Dietary recommendations for prevention of atherosclerosis. Cardiovascular Research, 118(5), 1188-1204. Rodrigues, V. F., Elias-Oliveira, J., Pereira Í, S., Pereira, J. A., Barbosa, S. C., Machado, M. S. G., & Carlos, D. (2022). Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Frontiers in Immunology, 13, 934695. Rodríguez-Negrete, E. V., Morales-González, Á., Madrigal-Santillán, E. O., Sánchez-Reyes, K., Álvarez-González, I., Madrigal-Bujaidar, E., Valadez-Vega, C., Chamorro-Cevallos, G., Garcia-Melo, L. F., & Morales-González, J. A. (2024). Phytochemicals and their usefulness in the maintenance of health. Plants, 13(4), 523. Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio, 6(2), e02481. Sandesara, P. B., Virani, S. S., Fazio, S., & Shapiro, M. D. (2019). The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocrine Reviews, 40(2), 537-557. Satheesh Babu, A. K., Petersen, C., Paz, H. A., Iglesias-Carres, L., Li, Y., Zhong, Y., Neilson, A. P., Wankhade, U. D., & Anandh Babu, P. V. (2024). Gut microbiota depletion using antibiotics to investigate diet-derived microbial metabolites: An efficient strategy. Molecular Nutrition & Food Research, 68(3), 2300386. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. Shaito, A., Thuan, D. T. B., Phu, H. T., Nguyen, T. H. D., Hasan, H., Halabi, S., Abdelhady, S., Nasrallah, G. K., Eid, A. H., & Pintus, G. (2020). Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Frontiers in Pharmacology, 11, 422. Singh, G. B., Zhang, Y., Boini, K. M., & Koka, S. (2019). High mobility group box 1 mediates TMAO-induced endothelial dysfunction. International Journal of Molecular Sciences, 20(14), 3570. Stofan, M., & Guo, G. L. (2020). Bile acids and FXR: Novel targets for liver diseases. Frontiers in Medicine, 7, 544. Su, C.-C., Chang, C.-S., Chou, C.-H., Wu, Y.-H. S., Yang, K.-T., Tseng, J.-K., Chang, Y.-Y., & Chen, Y.-C. (2015). L-carnitine ameliorates dyslipidemic and hepatic disorders induced by a high-fat diet via regulating lipid metabolism, self-antioxidant capacity, and inflammatory response. Journal of Functional Foods, 15, 497-508. Sukhorukov, V., Khotina, V., Ekta, M., Ivanova, E., Sobenin, I., & Orekhov, A. (2020). Endoplasmic reticulum stress in macrophages: The vicious circle of lipid accumulation and pro-inflammatory response. Biomedicines, 8, 210. Sun, X., Jiao, X., Ma, Y., Liu, Y., Zhang, L., He, Y., & Chen, Y. (2016). Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 481(1-2), 63-70. Tian, K., Xu, Y., Sahebkar, A., & Xu, S. (2020). CD36 in atherosclerosis: Pathophysiological mechanisms and therapeutic implications. Current Atherosclerosis Reports, 22(10), 59. Vaiyapuri, S., Ali, M. S., Moraes, L. A., Sage, T., Lewis, K. R., Jones, C. I., & Gibbins, J. M. (2013). Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(12), 2740-2749. Van Beek, J. H., de Moor, M. H. M., de Geus, E. J. C., Lubke, G. H., Vink, J. M., Willemsen, G., & Boomsma, D. I. (2013). The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behavior Genetics, 43(4), 329-339. Wang, B., Qiu, J., Lian, J., Yang, X., & Zhou, J. (2021). Gut metabolite trimethylamine-N-oxide in atherosclerosis: From mechanism to therapy. Frontiers in Cardiovascular Medicine, 8, 723886. Willemsen, L., & de Winther, M. P. (2020). Macrophage subsets in atherosclerosis as defined by single-cell technologies. The Journal of Pathology, 250(5), 705-714. Word Health Organization. (2021). Cardiovascular diseases (CVDs) from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Xie, G., Yan, A., Lin, P., Wang, Y., & Guo, L. (2021). Trimethylamine N-oxide—a marker for atherosclerotic vascular disease. Reviews in Cardiovascular Medicine, 22(3), 787-797. Yang, G., Lin, C. C., Yang, Y., Yuan, L., Wang, P., Wen, X., Pan, M. H., Zhao, H., Ho, C. T., & Li, S. (2019). Nobiletin -prevents trimethylamine oxide-induced vascular inflammation via inhibition of the NF-kappaB/MAPK pathways. Journal of Agricultural and Food Chemistry, 67(22), 6169-6176. Yang, J. Y., Lee, Y. S., Kim, Y., Lee, S. H., Ryu, S., Fukuda, S., Hase, K., Yang, C. S., Lim, H. S., Kim, M. S., Kim, H. M., Ahn, S. H., Kwon, B. E., Ko, H. J., & Kweon, M. N. (2017). Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunology, 10(1), 104-116. Yao, S., Miao, C., Tian, H., Sang, H., Yang, N., Jiao, P., Han, J., Zong, C., & Qin, S. (2014). Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. Journal of Biological Chemistry, 289(7), 4032-4042. Zhang, X., & Gérard, P. (2022). Diet-gut microbiota interactions on cardiovascular disease. Computational and Structural Biotechnology Journal, 20, 1528-1540. Zhang, X., Shi, L., Chen, R., Zhao, Y., Ren, D., & Yang, X. (2021). Chlorogenic acid inhibits trimethylamine-N-oxide formation and remodels intestinal microbiota to alleviate liver dysfunction in high l-carnitine feeding mice. Food & Function, 12, 10500-10511. Zhen, J., Zhou, Z., He, M., Han, H. X., Lv, E. H., Wen, P. B., Liu, X., Wang, Y. T., Cai, X. C., Tian, J. Q., Zhang, M. Y., Xiao, L., & Kang, X. X. (2023). The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Frontiers in Endocrinology, 14, 1085041. Zhong, X., Zhao, Y., Huang, L., Liu, J., Wang, K., Gao, X., Zhao, X., & Wang, X. (2023). Remodeling of the gut microbiome by Lactobacillus johnsonii alleviates the development of acute myocardial infarction. Frontiers in Microbiology, 14, 1140498. Zhu, L., Zhang, D., Zhu, H., Zhu, J., Weng, S., Dong, L., Liu, T., Hu, Y., & Shen, X. (2018). Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe(-/-) mice. Atherosclerosis, 268, 117-126. Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111-124. Zhu, Y., Li, Q., & Jiang, H. (2020). Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 128(5), 353-366. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93599 | - |
| dc.description.abstract | 根據美國心臟學會統計,全球心血管疾病死亡人數逐年攀升,至 2021 年已上升至 1991 萬人,因此全球應更密切關注心血管疾病相關議題。動脈硬化為心血管疾病前期進程,研究發現腸道菌代謝產物氧化三甲胺 (Trimethylamine-N-oxide, TMAO),會藉由多條路徑促進動脈硬化形成。TMAO 形成來源,為人體攝取富含肉鹼、膽鹼或甜菜鹼等飲食,這些物質在大腸中被含有特定代謝酵素基因 cutC/D、cntA/B 及 yeaW/X 之菌種代謝為三甲胺 (Trimethylamine, TMA),再至肝臟中被 Flavin monooxygenase 3 (FMO3) 酵素轉化為 TMAO。先前已有研究證實多甲氧基黃酮 (Polymethoxyflavone, PMF) 可降低 TMAO 形成,減緩動脈硬化。PMF 為柑橘皮中,主要具生物活性之成分。因此本實驗以柑橘皮萃取物作為樣品,目的為探討柑橘皮萃取物對肉鹼飲水誘導小鼠心血管疾病之影響,期望開發潛在的新型健康食品。實驗利用 ApoE-/- 小鼠探討樣品對腸道菌相及減緩斑塊形成之效果。研究結果顯示,低劑量樣品組 (CLPM) 可顯著減少 carnitine 代謝並降低血液 TMAO 含量、增加糞便 carnitine 的排出。而高劑量樣品組 (CHPM) 降低 TMAO 生成之效果較弱。在氧化低密度脂蛋白 (oxLDL) 與動脈脂質堆積部分,低高劑量樣品皆可顯著提升血清 oxLDL 及降低動脈脂質堆積。除此之外,低高劑量樣品也能顯著減緩肝臟 FMO3 酵素表現量。在泡沫細胞生成路徑、PERK 接受器及發炎因子 mRNA 表現量,CLPM 組同樣可顯著降低相關基因表現量,而 CHPM 效果未如 CLPM 顯著。最後腸道菌方面,低高劑量樣品可顯著減少糞便中,特定代謝基因 cntA 及 yeaW 之表現量。而誘導組與控制組相比,腸道菌相組成迥異。給予低劑量樣品會使腸道菌相改變,與誘導組相比,CLPM 減少與促進 TMAO 生成相關之 Prevotella,增加有益菌 Bacteroides、Lactobacillus、Akkermansia。而高劑量樣品無法有效改善腸道菌相組成,其腸道菌群與誘導組相近。總結上述結果,低劑量樣品的介入可顯著降低血液 TMAO、特定基因 mRNA 表現量、減緩動脈脂質堆積、調控腸道菌相並增加有益菌之豐富度,說明低劑量樣品可減緩 carnitine 誘導之動脈病灶形成。高劑量樣品介入之組別,其 TMAO 含量、特定 mRNA 表現量無顯著差異,且腸道菌相調控能力較弱,但在減緩動脈脂質堆積有顯著效果,推測可能原因為高劑量樣品抑制有益菌生長,但可能透過其他途徑影響脂質堆積,原因尚需進一步探討。本次實驗結果證實,柑橘皮萃取物可望作為預防心血管疾病健康食品之開發新導向。 | zh_TW |
| dc.description.abstract | According to American Heart Association statistics, deaths from cardiovascular disease (CVD) rose to 19.91 million in 2021, indicating that the mortality rate of CVD has climbed year by year. This trend highlights the need for a greater focus on cardiovascular health. Atherosclerosis, an inflammatory disease of the large arteries, is a major cause of CVD and stroke. Recent research has identified trimethylamine-N-oxide (TMAO) as a novel and independent risk factor for promoting atherosclerosis. Dietary choline, carnitine, and betaine are metabolized into trimethylamine (TMA) by gut microbiota, and TMA is subsequently converted to TMAO by the hepatic enzyme flavin monooxygenase 3 (FMO3). Studies suggest that polymethoxyflavone (PMF) can reduce TMAO formation. In this context, citrus peel extract, which contains the bioactive compound PMF, was investigated for its ameliorative effect on carnitine-induced CVD in mice. The experiment sought to investigate the regulatory effect of citrus peel on intestinal bacteria to mitigate cardiovascular disease in mice, focusing on arterial plaque formation. The results revealed that the low dosage PMF (CLPM) significantly reduced carnitine metabolise and decreased blood TMAO levels, and increased fecal carnitine levels. However, the high dosage PMF (CHPM) only showed weaker ability to reduce TMAO. Both groups demonstrated an increase in plasma oxLDL levels and a reduction in lipid accumulation in aortic arches. Also, reduced the expression of liver FMO3. Additionally, the CLPM group was able to attenuate foam cell formation by inhibiting the CD36/LYN/JNK pathway, PERK receptor, and inflammation-related gene expression in the aorta. And the expression of fecal specific metabolic genes cntA and yeaW, were significantly reduced in CLPM and CHPM group. In terms of gut microbiota composition, the induced group exhibited significant changes compared to the control group. The CLPM group inhibited the growth of the negative bacterium Prevotella and increased the presence of beneficial bacteria such as Bacteroides, Lactobacillus, and Akkermansia. However, the CHPM group displayed a gut microbiota composition similar to that of the induced group in β diversity. In summary, 1% PMF significantly attenuated plasma TMAO levels, specific gene relative mRNA expression, lipid accumulation in aortic arches, and promoted the abundance of healthy bacteria. The 2.5% PMF dosage had a lesser effect on plasma TMAO levels, mRNA expression, and gut microbiota composition but still reduced lipid accumulation in the aorta. It is speculated that a high dosage of PMF may inhibit beneficial bacteria or affect lipid accumulation through alternative pathways. These findings suggest that citrus peel extract may be a promising direction for developing functional foods to prevent cardiovascular diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:11:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-06T16:11:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 IV Abstract VI Graphical Abstract VIII 目次 IX 附圖目次 XIII 附表目次 XIV 圖目次 XV 表目次 XVI 縮寫表 XVII 第一章、 文獻回顧 1 第一節、 心血管疾病 (Cardiovascular disease, CVD) 1 第二節、 動脈硬化 (Atherosclerosis) 2 (一)、 定義 2 (二)、 成因 3 (三)、 治療及預防 5 第三節、 動脈硬化與 TMAO 6 (一)、 TMAO 生成來源及途徑 6 (二)、 TMAO 造成動脈硬化路徑 7 第四節、 泡沫細胞形成與 TMAO 10 (一)、 單核球分化及巨噬細胞種類 10 (二)、 膽固醇平衡與泡沫細胞形成 10 (三)、 TMAO 對 CD36 之影響 11 第五節、 TMAO 與腸道菌相 12 第六節、 植化素與 TMAO 14 第七節、 柑橘類水果 (Citrus fruits) 15 (一)、 柑橘簡介 15 (二)、 多酚與類黃酮 16 (三)、 類黃酮與心血管疾病 16 第二章、 研究目的與實驗架構 18 第一節、 研究目的 18 第二節、 實驗架構 19 第三章、 材料與方法 20 第一節、 實驗材料 20 (一)、 儀器設備 20 (二)、 藥品試劑 21 (三)、 分析套組 23 (四)、 抗體 23 (五)、 qPCR 使用之引子 (primer) 23 (六)、 樣品來源 24 第二節、 動物實驗 (in vivo) 方法 26 (一)、 動物品系與飼養環境 26 (二)、 動物實驗組別設計 26 (三)、 飼料配製 27 (四)、 氧化三甲胺及肉鹼 (TMAO and carnitine) 含量測定 28 (五)、 動物犧牲 31 (六)、 血清生化數值分析 (Serum biochemistry) 31 (七)、 組織石蠟包埋及切片 (Paraffin embedded and section) 31 (八)、 組織冷凍包埋及切片 (Forzen embedded and section) 32 (九)、 組織蘇木精-伊紅染色 (Hematoxylin and Eosin staining) 33 (十)、 組織油紅染色 (Oil red o staining) 34 (十一)、 血清氧化低密度膽固醇 (Oxidized low-density lipoprotein, oxLDL) 含量測定 35 (十二)、 肝臟三酸甘油酯 (Triacylglycerol, TG) 含量測定 36 (十三)、 蛋白質定量 38 (十四)、 西方墨點法 (Western blotting) 39 (十五)、 微生物全長 16S 擴增子定序分析 (Full-Length 16S Amplicon Sequencing) 43 (十六)、 組織均質及 mRNA 萃取 44 (十七)、 RNA品質管控 (Quality control) 46 (十八)、 即時定量聚合酶連鎖反應 (Real-time polymerase chain reaction, qPCR) 49 第三節、 統計分析 51 第四章、 結果與討論 52 第一節、 PMF 對肉鹼飲水誘導小鼠動脈病灶之影響 52 (一)、 PMF 對肉鹼飲水誘導 ApoE-/- 血液糞便代謝物含量之影響 52 (二)、 PMF 對肉鹼飲水誘導 ApoE-/- 體重、攝食及飲水量之影響 57 (三)、 PMF 對肉鹼飲水誘導 ApoE-/- 小鼠臟器外觀及重量之影響 59 (四)、 PMF 對肉鹼飲水誘導 ApoE-/- 小鼠血液膽固醇之影響 61 (五)、 肉鹼飲水誘導對 ApoE-/- 小鼠三酸甘油脂之影響 63 (六)、 PMF 對肉鹼飲水誘導 ApoE-/- 小鼠臟器傷害之影響 65 (七)、 PMF 對肉鹼飲水誘導 ApoE-/- 小鼠血清 OxLDL 之影響 68 (八)、 PMF 對肉鹼飲水 ApoE-/- 小鼠動脈切片油紅染色之影響 69 第二節、 PMF 減緩動脈病灶之相關機制 72 (一)、 PMF 對肉鹼飲水 ApoE-/- 小鼠肝臟 FMO3 酵素表現影響 72 (二)、 PMF 對肉鹼飲水 ApoE-/- 動脈泡沫細胞相關基因表現影響 74 (三)、 PMF 對肉鹼飲水 ApoE-/- 小鼠動脈 PERK 接受器及發炎相關基因表現之影響 76 第三節、 PMF 調控肉鹼飲水誘導小鼠之腸道菌相 79 (一)、 PMF 對肉鹼飲水誘導 ApoE-/- 小鼠糞便特定代謝酵素基因之影響 79 (二)、 PMF 對小鼠腸道菌相 β 多樣性之影響 81 (三)、 PMF 對小鼠腸道菌相優勢物種氣泡圖之影響 84 (四)、 PMF 對小鼠物種相對豐度排名之影響 86 (五)、 PMF 對小鼠腸道菌相組間 Biomarkers 熱聚圖之影響 88 (六)、 小鼠腸道菌相組間差異物種與疾病之相關性 90 第五章、 結論 97 參考文獻 98 附錄 113 (一)、 預試實驗 113 (二)、 柑橘皮萃取物 PMFs 分析條件及圖譜 119 (三)、 血液糞便代謝物 TMAO 及 Carnitine 分析圖譜 121 (四)、 國立台灣大學動物實驗申請同意書 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 柑橘皮萃取物 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 動脈硬化 | zh_TW |
| dc.subject | 氧化三甲胺 | zh_TW |
| dc.subject | 多甲氧基黃酮類 | zh_TW |
| dc.subject | Polymethoxyflavones | en |
| dc.subject | Atherosclerosis | en |
| dc.subject | Citrus peel extract | en |
| dc.subject | Gut microbiota | en |
| dc.subject | Trimethylamine-N-oxide | en |
| dc.title | 柑橘皮萃取物改善肉鹼飲水誘導 ApoE-/- 小鼠 TMAO 生成及相關之動脈病灶 | zh_TW |
| dc.title | Citrus peel extracts improve carnitine-induced TMAO production related to aorta lesion in ApoE -/- mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何元順;黃步敏;羅翊禎;魏宗德 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Soon Ho;Bu-Miin Huang;Yi-Chen Lo;Tzong-Der Way | en |
| dc.subject.keyword | 柑橘皮萃取物,多甲氧基黃酮類,氧化三甲胺,動脈硬化,腸道菌相, | zh_TW |
| dc.subject.keyword | Citrus peel extract,Polymethoxyflavones,Trimethylamine-N-oxide,Atherosclerosis,Gut microbiota, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202402477 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2029-07-28 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-28 | 8.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
