Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅世強zh_TW
dc.contributor.advisorShyh-Chyang Luoen
dc.contributor.author陳資穎zh_TW
dc.contributor.authorTzu-Ying Chenen
dc.date.accessioned2024-08-05T16:33:14Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation(1) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
(2) Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward Flexible Polymer and Paper‐based Energy Storage Devices. Advanced Materials 2011, 23 (33), 3751-3769.
(3) Gustafsson, G.; Cao, Y.; Treacy, G.; Klavetter, F.; Colaneri, N.; Heeger, A. Flexible Light-emitting Diodes Made from Soluble Conducting Polymers. Nature 1992, 357 (6378), 477-479.
(4) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron Transport Materials for Organic Light-emitting Diodes. Chemistry of materials 2004, 16 (23), 4556-4573.
(5) Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (4), 150.
(6) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based Supercapacitor Devices and Electrodes. Journal of power sources 2011, 196 (1), 1-12.
(7) Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting Polymer Based Electrochemical Biosensors. Physical Chemistry Chemical Physics 2016, 18 (12), 8264-8277.
(8) Luo, S. C.; Thomas, J. L.; Guo, H. Z.; Liao, W. T.; Lee, M. H.; Lin, H. Y. Electrosynthesis of Nanostructured, Imprinted Poly (hydroxymethyl 3, 4‐ethylenedioxythiophene) for the Ultrasensitive Electrochemical Detection of Urinary Progesterone. ChemistrySelect 2017, 2 (26), 7935-7939.
(9) Chen, C.-H.; Luo, S.-C. Tuning Surface Charge and Morphology for the Efficient Detection of Dopamine Under the Interferences of Uric Acid, Ascorbic Acid, and Protein Adsorption. ACS Applied Materials & Interfaces 2015, 7 (39), 21931-21938.
(10) Helgesen, M.; Søndergaard, R.; Krebs, F. C. Advanced Materials and Processes for Polymer Solar Cell Devices. Journal of Materials Chemistry 2010, 20 (1), 36-60.
(11) Beaujuge, P. M.; Reynolds, J. R. Color Control in π-conjugated Organic Polymers for Use in Electrochromic Devices. Chemical reviews 2010, 110 (1), 268-320.
(12) Jensen, J.; Hösel, M.; Dyer, A. L.; Krebs, F. C. Development and Manufacture of Polymer‐based Electrochromic Devices. Advanced Functional Materials 2015, 25 (14), 2073-2090.
(13) Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS nano 2021, 15 (8), 12687-12722.
(14) Doppalapudi, S.; Jain, A.; Khan, W.; Domb, A. J. Biodegradable Polymers—an Overview. Polymers for Advanced Technologies 2014, 25 (5), 427-435.
(15) Sill, T. J.; Von Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29 (13), 1989-2006.
(16) Jang, J. Conducting Polymer Nanomaterials and Their Applications. Emissive materials nanomaterials 2006, 189-260.
(17) Liu, R.; Lee, S. B. MnO2/Poly (3, 4-ethylenedioxythiophene) Coaxial Nanowires by One-step Coelectrodeposition for Electrochemical Energy Storage. Journal of the American Chemical Society 2008, 130 (10), 2942-2943.
(18) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated Polymer-based Chemical Sensors. Chemical reviews 2000, 100 (7), 2537-2574.
(19) Sotzing, G. A.; Reynolds, J. R.; Steel, P. J. Electrochromic Conducting Polymers via Electrochemical Polymerization of Bis (2-(3, 4-ethylenedioxy) thienyl) Monomers. Chemistry of Materials 1996, 8 (4), 882-889.
(20) Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R. Conducting Poly (3, 4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-contrast Ratios. Chemistry of Materials 1998, 10 (3), 896-902.
(21) Roncali, J. Molecular Engineering of the Band Gap of π‐conjugated Systems: Facing Technological Applications. Macromolecular Rapid Communications 2007, 28 (17), 1761-1775.
(22) Luo, S.-C.; Mohamed Ali, E.; Tansil, N. C.; Yu, H.-h.; Gao, S.; Kantchev, E. A.; Ying, J. Y. Poly (3, 4-ethylenedioxythiophene)(PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24 (15), 8071-8077.
(23) Luo, S.-C. Conducting Polymers as Biointerfaces and Biomaterials: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews 2013, 53 (3), 303-310.
(24) Arias-Pardilla, J.; Otero, T.; Yu, H.-h. Electropolymerization and Characterization of COOH-Functionalized Poly (3, 4-ethylenedioxythiophene): Ionic Exchanges. Electrochimica acta 2011, 56 (27), 10238-10245.
(25) Luo, S.-C.; Kantchev, E. A. B.; Zhu, B.; Siang, Y. W.; Yu, H.-h. Tunable, Dynamic and Electrically Stimulated Lectin–carbohydrate Recognition on a Glycan-grafted Conjugated Polymer. Chemical communications 2012, 48 (55), 6942-6944.
(26) Zhu, B.; Luo, S.-C.; Zhao, H.; Lin, H.-A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H.-h. Large Enhancement in Neurite Outgrowth on a Cell Membrane-Mimicking Conducting Polymer. Nature communications 2014, 5 (1), 4523.
(27) Lee, J.-E.; Kwak, J.-W.; Park, J. W.; Luo, S.-C.; Zhu, B.; Yu, H.-h. Nanoscale Analysis of a Functionalized Polythiophene Surface by Adhesion Mapping. Analytical chemistry 2014, 86 (14), 6865-6871.
(28) Lee, J.-E.; Luo, S.-C.; Zhu, B.; Park, J. W.; Yu, H.-h. Nanoscale Analysis of Functionalized Polythiophene Surfaces: the Effects of Electropolymerization Methods and Thermal Treatment. RSC Advances 2014, 4 (107), 62666-62672.
(29) Rasheed, P. A.; Lee, J.-S. Recent Advances in Optical Detection of Dopamine Using Nanomaterials. Microchimica Acta 2017, 184, 1239-1266.
(30) Liu, X.; Liu, J. Biosensors and Sensors for Dopamine Detection. View 2021, 2 (1), 20200102.
(31) Choi, Y.; Choi, J.-H.; Liu, L.; Oh, B.-K.; Park, S. Optical Sensitivity Comparison of Multiblock Gold–silver Nanorods Toward Biomolecule Detection: Quadrupole Surface Plasmonic Detection of Dopamine. Chemistry of Materials 2013, 25 (6), 919-926.
(32) Liu, X.; He, F.; Zhang, F.; Zhang, Z.; Huang, Z.; Liu, J. Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer-based Label-free Colorimetric Sensing. Analytical Chemistry 2020, 92 (13), 9370-9378.
(33) Choi, J.-H.; Lee, J.-H.; Oh, B.-K.; Choi, J.-W. Localized Surface Plasmon Resonance-based Label-free Biosensor for Highly Sensitive Detection of Dopamine. Journal of Nanoscience and Nanotechnology 2014, 14 (8), 5658-5661.
(34) Namkung, S. M.; Choi, J. S.; Park, J. H.; Yang, M. G.; Lee, M. W.; Kim, S. W. Detection of Dopamine and Serotonin by Competitive Enzyme-linked Immunosorbent Assay. Korean Journal of Clinical Laboratory Science 2017, 49 (3), 220-226.
(35) Shinohara, H.; Wang, F. Real-time Detection of Dopamine Released from a Nerve Model Cell by an Enzyme-catalyzed Luminescence Method and Its Application to Drug Assessment. Analytical sciences 2007, 23 (1), 81-84.
(36) Shinohara, H.; Wang, F.; Hossain, S. Z. A Convenient, High-throughput Method for Enzyme-luminescence Detection of Dopamine Released from PC12 Cells. Nature protocols 2008, 3 (10), 1639-1644.
(37) Li, Z.; Zheng, Y.; Gao, T.; Liu, Z.; Zhang, J.; Zhou, G. Fabrication of Biosensor Based on Core–shell and Large Void Structured Magnetic Mesoporous Microspheres Immobilized with Laccase for Dopamine Detection. Journal of materials science 2018, 53, 7996-8008.
(38) Li, H.; Yang, M.; Liu, J.; Zhang, Y.; Yang, Y.; Huang, H.; Liu, Y.; Kang, Z. A Practical and Highly Sensitive C3N4-TYR Fluorescent Probe for Convenient Detection of Dopamine. Nanoscale 2015, 7 (28), 12068-12075.
(39) Min, K.; Yoo, Y. J. Amperometric Detection of Dopamine Based on Tyrosinase–SWNTs–Ppy Composite Electrode. Talanta 2009, 80 (2), 1007-1011.
(40) Maciejewska, J.; Pisarek, K.; Bartosiewicz, I.; Krysiński, P.; Jackowska, K.; Bieguński, A. Selective Detection of Dopamine on Poly (indole-5-carboxylic acid)/Tyrosinase Electrode. Electrochimica Acta 2011, 56 (10), 3700-3706.
(41) Fritea, L.; Tertiș, M.; Cosnier, S.; Cristea, C.; Săndulescu, R. A Novel Reduced Graphene Oxide/β-cyclodextrin/Tyrosinase Biosensor for Dopamine Detection. International Journal of Electrochemical Science 2015, 10 (9), 7292-7302.
(42) Palomar, Q.; Gondran, C.; Lellouche, J.-P.; Cosnier, S.; Holzinger, M. Functionalized Tungsten Disulfide Nanotubes for Dopamine and Catechol Detection in a Tyrosinase-based Amperometric Biosensor Design. Journal of materials chemistry B 2020, 8 (16), 3566-3573.
(43) Venton, B. J.; Cao, Q. Fundamentals of Fast-scan Cyclic Voltammetry for Dopamine Detection. Analyst 2020, 145 (4), 1158-1168.
(44) Kook, G.; Lee, S. W.; Lee, H. C.; Cho, I.-J.; Lee, H. J. Neural Probes for Chronic Applications. Micromachines 2016, 7 (10), 179.
(45) Robinson, D. L.; Venton, B. J.; Heien, M. L.; Wightman, R. M. Detecting Subsecond Dopamine Release with Fast-scan Cyclic Voltammetry in Vivo. Clinical chemistry 2003, 49 (10), 1763-1773.
(46) Ganesana, M.; Lee, S. T.; Wang, Y.; Venton, B. J. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Analytical chemistry 2017, 89 (1), 314-341.
(47) Hersey, M.; Berger, S. N.; Holmes, J.; West, A.; Hashemi, P. Recent Developments in Carbon Sensors for At-source Electroanalysis. Analytical Chemistry 2018, 91 (1), 27-43.
(48) Roberts, J. G.; Sombers, L. A. Fast-scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Analytical chemistry 2018, 90 (1), 490.
(49) Lane, R. F.; Hubbard, A. T.; Fukunaga, K.; Blanchard, R. J. Brain Catecholamines: Detection in Vivo by Means of Differential Pulse Voltammetry at Surface-modified Platinum Electrodes. Brain Research 1976, 114 (2), 346-352.
(50) Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Monitoring Rapid Chemical Communication in the Brain. Chemical reviews 2008, 108 (7), 2554-2584.
(51) Rodeberg, N. T.; Sandberg, S. G.; Johnson, J. A.; Phillips, P. E.; Wightman, R. M. Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-scan Cyclic Voltammetry. ACS chemical neuroscience 2017, 8 (2), 221-234.
(52) Venton, B. J.; Wightman, R. M. Psychoanalytical Electrochemistry: Dopamine and Behavior. ACS Publications: 2003.
(53) Wenzel, J. M.; Oleson, E. B.; Gove, W. N.; Cole, A. B.; Gyawali, U.; Dantrassy, H. M.; Bluett, R. J.; Dryanovski, D. I.; Stuber, G. D.; Deisseroth, K. Phasic Dopamine Signals in the Nucleus Accumbens that Cause Active Avoidance Require Endocannabinoid Mobilization in the Midbrain. Current Biology 2018, 28 (9), 1392-1404. e1395.
(54) Willuhn, I.; Burgeno, L. M.; Groblewski, P. A.; Phillips, P. E. Excessive Cocaine Use Results from Decreased Phasic Dopamine Signaling in the Striatum. Nature neuroscience 2014, 17 (5), 704-709.
(55) Schindler, A. G.; Soden, M. E.; Zweifel, L. S.; Clark, J. J. Reversal of Alcohol-induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making. Journal of Neuroscience 2016, 36 (13), 3698-3708.
(56) Pihel, K.; Hsieh, S.; Jorgenson, J. W.; Wightman, R. M. Electrochemical Detection of Histamine and 5-hydroxytryptamine at Isolated Mast Cells. Analytical chemistry 1995, 67 (24), 4514-4521.
(57) Travis, E. R.; Wang, Y.-M.; Michael, D. J.; Caron, M. G.; Wightman, R. M. Differential Quantal Release of Histamine and 5-hydroxytryptamine from Mast Cells of Vesicular Monoamine Transporter 2 Knockout Mice. Proceedings of the National Academy of Sciences 2000, 97 (1), 162-167.
(58) Puthongkham, P.; Venton, B. J. Recent Advances in Fast-Scan Cyclic Voltammetry. Analyst 2020, 145 (4), 1087-1102.
(59) Sahasrabuddhe, K.; Khan, A. A.; Singh, A. P.; Stern, T. M.; Ng, Y.; Tadić, A.; Orel, P.; LaReau, C.; Pouzzner, D.; Nishimura, K. The Argo: a High Channel Count Recording System for Neural Recording in Vivo. Journal of neural engineering 2021, 18 (1), 015002.
(60) Luo, S.-C.; Sekine, J.; Zhu, B.; Zhao, H.; Nakao, A.; Yu, H.-h. Polydioxythiophene Nanodots, Nonowires, Nano-networks, and Tubular Structures: the Effect of Functional Groups and Temperature in Template-free Electropolymerization. Acs Nano 2012, 6 (4), 3018-3026.
(61) Yu, C.-C.; Ho, B.-C.; Juang, R.-S.; Hsiao, Y.-S.; Naidu, R. V. R.; Kuo, C.-W.; You, Y.-W.; Shyue, J.-J.; Fang, J.-T.; Chen, P. Poly (3, 4-ethylenedioxythiophene)-based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. ACS applied materials & interfaces 2017, 9 (36), 30329-30342.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93555-
dc.description.abstract神經科學家會使用微電極植入動物的大腦來記錄不同活動下所產生的電訊號,然而,我們希望能同時去捕捉一些重要神經傳導物質的訊號。我們選擇的是多巴胺(Dopamine, DA),這種物質在人體中參與了非常多種反應,包括但不限於運動、學習、成癮等。根據研究,羧酸官能化的3, 4-乙烯二氧基噻吩(3,4-ethylenedioxythiophene, EDOT)聚合後會形成poly(EDOT-COOH),因為擁有帶負電的官能基,能夠吸引帶正電的DA,增加對低濃度的偵測效果,再加上poly(EDOT-COOH)受生物體內其他蛋白質或離子的干擾不大,對於在生物體內偵測相當有優勢。除此之外,快速掃描循環伏安法(Fast-scan cyclic voltammetry, FSCV)因為掃描速率遠高於傳統電化學偵測技術,像是循環伏安法(Cyclic voltammetry, CV)或微分脈衝伏安法分析(Differential pulse voltammetry, DPV),所以FSCV可以提供即時的偵測結果,增加了時間上的解析度與動態變化的探索。將導電高分子聚合在微電極表面後,利用FSCV的技術偵測DA訊號,發現即使是在小鼠大腦切片的活組織中,依然能夠偵測的到0.5 μM的DA訊號,而一般小鼠大腦釋放的DA濃度約為1、2 μM,這代表我們的做法的確可以在生物體的複雜環境下偵測DA訊號。zh_TW
dc.description.abstractNeuroscientists employ microelectrodes implanted into the brains of animals to record electrical signals generated during various activities. However, we aim to simultaneously capture signals of certain important neurotransmitters. Our choice is dopamine (DA), which participates in numerous bodily responses, including but not limited to movement, learning, and addiction. Research suggests that carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOT) polymerizes to form poly(EDOT-COOH), which, owing to its negatively charged functional groups, can attract positively charged DA, enhancing detection at low concentrations. Moreover, poly(EDOT-COOH) exhibits excellent antifouling properties, advantageous for detection within biological systems. Furthermore, fast-scan cyclic voltammetry (FSCV), with scan rates much higher than traditional electrochemical detection techniques like cyclic voltammetry (CV) or differential pulse voltammetry (DPV), can provide real-time detection results, increasing temporal resolution and dynamic exploration. By polymerizing conductive polymers on the surface of microelectrodes and utilizing FSCV, we discovered that even in live tissue slices of mice brains, DA signals as low as 0.5 μM could be detected. Typically, the concentration of DA released in mice brains is around 1-2 μM, indicating the efficacy of our approach in detecting DA signals within the complex environment of a living organism.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:33:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:33:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………..……………. i
原創性比對聲明書……………………………………………………………………………….. ii
致謝………………………………………………………………………………………………. iii
摘要…….………………………………………………………………………………………… iv
Abstract…………………………………………………………………………………..……..... v
目次……………………………………………………………………………………………..... vi
圖次..…………………………………………………………………………………………..... viii
表次…………...………………………………………………………………………………….. ix
第一章 前言與文獻回顧……………………………………………………….. 1
1.1 導電高分子介紹與在生醫領域的應用…......……………………….……………….... 1
1.2 多巴胺的介紹與偵測的方法…………………………………………………………... 4
1.3 微電極…………………………………………………………………………………... 6
1.4 快速掃描循環伏安法…………………………………………………………………... 8
1.5 研究目標………………………………………………………………………………... 9
第二章 實驗材料與方法……………………………………………………………………… 11
2.1 實驗藥品與儀器………………………………………………………………………. 11
2.2 微電極的銳化…………………………………………………………………………. 12
2.3 電化學…………………………………………………………………………………. 12
2.3.1 導電高分子層的製作………………………………………………………….. 12
2.3.1.1 Poly(EDOT-OH-co-EDOT-COOH)的聚合…………………………… 12
2.3.1.2 交聯結構………………………………………………………………... 13
2.3.2 電化學阻抗頻譜法分析……………………………………………………….. 14
2.3.3 循環伏安法分析……………………………………………………………….. 14
2.3.4 微分脈衝伏安法分析………………………………………………………….. 14
2.3.5 快速掃描循環伏安法分析…………………………………………………….. 15
2.3.5.1 對多巴胺溶液的測量…………………………………………………... 15
2.3.5.2 在小鼠大腦切片中測量………………………………………………... 15
2.4 掃描式電子顯微鏡……………………………………………………………………. 16
第三章 結果與討論……..…………………………………………………………………….. 17
3.1 銳化效果與顯微形貌…………………………………………………………………. 17
3.2 高分子層的電化學性質與表面形貌…………………………………………………. 18
3.2.1 電化學聚合…………………………………………………………………….. 18
3.2.2 電化學阻抗頻譜法…………………………………………………………….. 19
3.2.3 表面形貌……………………………………………………………………….. 20
3.3 交聯結構對高分子層結構穩定的影響………………………………………………. 20
3.4 高分子層對多巴胺偵測的效果………………………………………………………. 22
3.4.1 不同高分子層配方對多巴胺偵測的差異…………………………………….. 22
3.4.2 不同測量方法對多巴胺偵測濃度的極限…………………………………….. 24
3.4.2.1 微分脈衝伏安法………………………………………………………... 24
3.4.2.2 快速掃描循環伏安法…………………………………………………... 24
3.5 小鼠大腦切片的偵測…………………………………………………………………. 28
第四章 結論…………………………………………………………………………………… 30
第五章 未來工作……………………………………………………………………………… 31
參考文獻…………………………………………………………………….………………...… 32
-
dc.language.isozh_TW-
dc.title官能化3, 4-乙烯二氧基噻吩聚合物塗層與快速掃描循環伏安法在多巴胺偵測之應用zh_TW
dc.titleEnhanced Dopamine Detection Using Functionalized PEDOT-Coated PtIr Microelectrodes and Fast-Scan Cyclic Voltammetryen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳玉威;陳建甫zh_TW
dc.contributor.oralexamcommitteeYu-Wei Wu;Chien-Fu Chenen
dc.subject.keyword微電極,3, 4-乙烯二氧基噻吩(EDOT),多巴胺(DA),快速掃描循環伏安法(FSCV),體內偵測,zh_TW
dc.subject.keywordmicroelectrode,3,4-ethylenedioxythiophene(EDOT),dopamine(DA),fast-scan cyclic voltammetry(FSCV),in vivo detection,en
dc.relation.page36-
dc.identifier.doi10.6342/NTU202402640-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved