請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宇修 | zh_TW |
| dc.contributor.advisor | Yu-Hsiu Lee | en |
| dc.contributor.author | 袁楷翔 | zh_TW |
| dc.contributor.author | Kai-Shiang Yuan | en |
| dc.date.accessioned | 2024-08-05T16:28:55Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | [1] 衛生福利部. 8 成肝癌與 b、c 肝炎有關 篩檢及治療!守護您的肝!, 2021.
[2] openPR. Tumor ablation market worldwide major players to wtness huge expansion throughout forecast period during 2022 to 2028, 2022. [3] Matthew W Gilbertson and Brian W Anthony. Force and position control system for freehand ultrasound. IEEE Transactions on Robotics, 31(4):835–849, 2015. [4] Jienan Ding, Dan Swerdlow, Shuxin Wang, Emmanuel Wilson, Jonathan Tang, and Kevin Cleary. Robotically assisted ultrasound interventions. In Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, volume 6918, pages 746–753. SPIE, 2008. [5] Ting-Yun Fang, Haichong K Zhang, Rodolfo Finocchi, Russell H Taylor, and Emad M Boctor. Force-assisted ultrasound imaging system through dual force sensing and admittance robot control. International journal of computer assisted radiology and surgery, 12:983–991, 2017. [6] Christoph Hennersperger, Bernhard Fuerst, Salvatore Virga, Oliver Zettinig, Benjamin Frisch, Thomas Neff, and Nassir Navab. Towards mri-based autonomous robotic us acquisitions: a first feasibility study. IEEE transactions on medical imaging, 36(2):538–548, 2016. [7] Risto Kojcev, Bernhard Fuerst, Oliver Zettinig, Javad Fotouhi, Sing Chun Lee, Benjamin Frisch, Russell Taylor, Edoardo Sinibaldi, and Nassir Navab. Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop. International journal of computer assisted radiology and surgery, 11:1173–1181, 2016. [8] Dongrui Li, Zhigang Cheng, Gang Chen, Fangyi Liu, Wenbo Wu, Jie Yu, Ying Gu, Fengyong Liu, Chao Ren, and Ping Liang. A multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors: a preclinical study. InternationalJournal of Hyperthermia, 34(8):1194– 1201, 2018. [9] Jian Zhan, Joao Cartucho, and Stamatia Giannarou. Autonomous tissue scanning under free-form motion for intraoperative tissue characterisation. In 2020 IEEE international conference on robotics and automation (ICRA), pages 11147–11154. IEEE, 2020. [10] WCRF International. Worldwide cancer data, 2020. [11] Jordi Bruix and Morris Sherman. Management of hepatocellular carcinoma: an up date. Hepatology (Baltimore, Md.), 53(3):1020, 2011. [12] Cancer.net. Liver cancer: Statistics, 2023. [13] 周宜群 and 許景盛. 肝癌診斷與治療的新進展. Taiwan Medical Journal, 66(7):367–372, 2023. [14] Riccardo Lencioni and Laura Crocetti. Radiofrequency ablation of liver cancer. Techniques in vascular and interventional radiology, 10(1):38–46, 2007. [15] Shaunagh McDermott and Debra A Gervais. Radiofrequency ablation of liver tumors. In Seminars in interventional radiology, volume 30, pages 049–055. Thieme Medical Publishers, 2013. [16] Young Jun Kim, Min Woo Lee, and Hee Sun Park. Small hepatocellular carcinomas: ultrasonography guided percutaneous radiofrequency ablation. Abdominal imaging, 38:98–111, 2013. [17] Jin Woong Kim, Sang Soo Shin, Suk Hee Heo, Jun Hyung Hong, Hyo Soon Lim, Hyun Ju Seon, Young Hoe Hur, Chang Hwan Park, Yong Yeon Jeong, and Heoung Keun Kang. Ultrasound-guided percutaneous radiofrequency ablation of liver tumors: how we do it safely and completely. Korean journal of radiology, 16(6):1226–1239, 2015. [18] Maria Franca Meloni, Tito Livraghi, Carlo Filice, Sergio Lazzaroni, Fabrizio Calliada, and Leonardo Perretti. Radiofrequency ablation of liver tumors: the role of microbubble ultrasound contrast agents. Ultrasound quarterly, 22(1):41–47, 2006. [19] Keyu Li, Yangxin Xu, and Max Q-H Meng. An overview of systems and techniques for autonomous robotic ultrasound acquisitions. IEEE Transactions on Medical Robotics and Bionics, 3(2):510–524, 2021. [20] Alan M Priester, Shyam Natarajan, and Martin O Culjat. Robotic ultrasound systems in medicine. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 60(3):507–523, 2013. [21] Daniel R Swerdlow, Kevin Cleary, Emmanuel Wilson, Bamshad Azizi-Koutenaei, and Reza Monfaredi. Robotic arm–assisted sonography: Review of technical developments and potential clinical applications. American Journal of Roentgenology, 208(4):733–738, 2017. [22] Hao-Fang Cheng, Yi-Ching Ho, and Cheng-Wei Chen. Dentibot: System design and 6-dof hybrid position/force control for robot-assisted endodontic treatment. arXiv preprint arXiv:2310.09691, 2023. [23] John J Craig. Introduction to robotics. 2005. [24] STAVROS Vougioukas. Bias estimation and gravity compensation for force-torque sensors. In Proceedings of International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, pages 82–85. Citeseer, 2001. [25] Can Erdogan, Munzir Zafar, and Mike Stilman. Gravity and drift in force/torque measurements. 2014. [26] Fotios Dimeas and Nikos Aspragathos. Online stability in human-robot cooperation with admittance control. IEEE transactions on haptics, 9(2):267–278, 2016. [27] Christian Ott, Ranjan Mukherjee, and Yoshihiko Nakamura. A hybrid system frame work for unified impedance and admittance control. Journal of Intelligent & Robotic Systems, 78:359–375, 2015. [28] Arvid QL Keemink, Herman van der Kooij, and Arno HA Stienen. Admittance control for physical human–robot interaction. The International Journal of Robotics Research, 37(11):1421–1444, 2018. [29] Ganwen Zeng and Ahmad Hemami. An overview of robot force control. Robotica, 15(5):473–482, 1997. [30] Raouf Fareh, Sofiane Khadraoui, Mahmoud Y Abdallah, Mohammed Baziyad, and Maamar Bettayeb. Active disturbance rejection control for robotic systems: A re view. Mechatronics, 80:102671, 2021. [31] Homayoun Seraji. Adaptive admittance control: An approach to explicit force con trol in compliant motion. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pages 2705–2712. IEEE, 1994. [32] Mohammad A Khosravi and Hamid D Taghirad. Robust pid control of fully constrained cable driven parallel robots. Mechatronics, 24(2):87–97, 2014. [33] Alireza Izadbakhsh and Saeed Khorashadizadeh. Robust task-space control of robot manipulators using differential equations for uncertainty estimation. Robotica, 35(9):1923–1938, 2017. [34] Bernard Widrow and Eugene Walach. Adaptive inverse control: A signal processing approach, reissue ed, 2008. [35] Pawel Konrad Orzechowski, Neil Yinan Chen, James Steven Gibson, and Tsu-Chin Tsao. Optimal suppression of laser beam jitter by high-order rls adaptive control. IEEE Transactions on Control Systems Technology, 16(2):255–267, 2008. [36] Yu-Hsiu Lee, Xinzhou Li, James Simonelli, David Lu, Holden H Wu, and Tsu-Chin Tsao. Adaptive tracking control of one-dimensional respiration induced moving tar gets by real-time magnetic resonance imaging feedback. IEEE/ASME Transactions on Mechatronics, 25(4):1894–1903, 2020. [37] Simon Haykin. Adaptive filter theory. prentice hall google schola, 2:286–292, 2002. [38] Bruce A Francis and Walter Murray Wonham. The internal model principle of control theory. Automatica, 12(5):457–465, 1976. [39] Yu-Hsiu Lee and Shih-Mei Su. An all-pass based internal model principle controller for galvanometer mirror steering. Control Engineering Practice, 141:105696, 2023. [40] Phillip A Regalia. An improved lattice-based adaptive iir notch filter. IEEE transactions on signal processing, 39(9):2124–2128, 1991. [41] Phillip A Regalia, Sanjit K Mitra, and PP Vaidyanathan. The digital all-pass filter: A versatile signal processing building block. Proceedings of the IEEE, 76(1):19–37, 1988. [42] Ljung Lennart. System identification: theory for the user. PTR Prentice Hall, Upper Saddle River, NJ, 28:540, 1999. [43] Kim Mathiassen, Jørgen Enger Fjellin, Kyrre Glette, Per Kristian Hol, and Ole Jakob Elle. An ultrasound robotic system using the commercial robot ur5. Frontiers in Robotics and AI, 3:1, 2016. [44] Edward D Brandner, Andrew Wu, Hungcheng Chen, Dwight Heron, Shalom Kalnicki, Krishna Komanduri, Kristina Gerszten, Steve Burton, Irfan Ahmed, and Zhenyu Shou. Abdominal organ motion measured using 4d ct. International Journal of Radiation Oncology* Biology* Physics, 65(2):554–560, 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93546 | - |
| dc.description.abstract | 在肝臟射頻消融手術中,外科醫生面臨著同時操作針頭和超聲探頭的挑戰。本作提出了一機器人輔助的超音波探頭力控制系統,為超音波導引的腹部介入性治療提供穩定的超音波成像。
該系統包含六自由度機械手臂、六自由度力與力矩感測器和一個超音波探頭模型,其具有實時補償呼吸擾動的特點。按照既有的手術流程,提出了兩種運行模式。初始註冊模式基於導納控制,透過人機互動的方式迅速定位機器手臂末端的超音波探頭模型,以實現高效的註冊。呼吸擾動消除模式採用自適應控制(Adaptive control)和內部模型原理(Internal model principle)控制,確保在呼吸運動下保持穩定的接觸,從而增強手術的適應性和有效性。自適應控制器通過擾動的頻率成分遞迴最小化其影響,而內部模型控制器則消除擾動的主要頻率成分。 本系統透過一海綿腹部模型的模擬和實驗驗證了該控制結構的有效性,結果顯示相比於基礎導納控制結構,系統性能有了顯著的改善。 | zh_TW |
| dc.description.abstract | In liver radiofrequency ablation, the surgeon faces the challenge of manipulating the needle and the ultrasound probe simultaneously.To address this, a robot-assisted force control system for stable ultrasound imaging has been developed for ultrasound-guided abdominal intervention.This system integrates a 6-DoF robot arm, a 6-DoF force/torque sensor, and an ultrasound probe model, featuring real-time compensation for respiratory disturbances.
Following the procedural workflow, the system operates in two modes.The initial registration mode, rooted in admittance control, swiftly positions the robot-held ultrasound for efficient registration by physical human-robot interaction.The respiratory disturbance rejection mode employs adaptive control and internal model principle control, ensuring stable contact despite respiratory motion, thereby enhancing procedural resilience and effectiveness.The adaptive controller recursively minimizes disturbance effects by their frequency components, while the internal model controller eliminates the primary frequency component of the disturbance. The efficacy of this control structure has been verified through simulations and experiments with a sponge abdomen phantom, demonstrating significant improvements compared to the baseline admittance control structure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:28:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:28:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 圖次 ix 表次 xi 符號列表 xiii 第一章 介紹 1 1.1 背景 1 1.1.1 肝癌 1 1.1.2 射頻燒灼術 2 1.1.3 超音波成像 3 1.1.4 輔助超音波成像的機器人系統 4 1.2 動機 6 1.3 方法 7 第二章 系統配置與分析 9 2.1 RFA 流程與要求 9 2.2 系統組成 10 2.3 初始註冊模式 12 2.3.1 機器人運動學 13 2.3.2 末端執行器 (End-effector) 重力補償 17 2.3.3 力感測器讀值座標轉換 22 2.3.4 導納控制 23 第三章 呼吸擾動消除模式 27 3.1 適應性控制架構 29 3.2 內部模型控制架構 32 3.2.1 擾動觀測器 33 3.2.2 頻率估測 34 3.2.3 適應性 IMP 控制器 35 3.3 適應性控制 + 內部模型控制架構 38 第四章 實驗結果 41 4.1 硬體配置 41 4.2 動態系統識別 42 4.3 接觸力定力控制與呼吸擾動消除 45 4.3.1 呼吸擾動設定 46 4.3.2 軟體在環 (Software-in-the-loop) 46 4.3.3 硬體在環 (Hardware-in-the-loop) 與實驗 57 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 63 參考文獻 65 附錄 A — 系統技術規格 71 A.1 Meca500 R3 六維機器手臂 71 A.2 ATI-Mini40-E 六軸力/力矩感測器 71 A.3 L12-P 線性制動器 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 協作機器人 | zh_TW |
| dc.subject | 超音波導引介入式治療 | zh_TW |
| dc.subject | 力控制 | zh_TW |
| dc.subject | 適應性逆控制 | zh_TW |
| dc.subject | 內部模型原理 | zh_TW |
| dc.subject | 人機互動 | zh_TW |
| dc.subject | Co-robotic | en |
| dc.subject | human-robot interaction | en |
| dc.subject | internal model principle | en |
| dc.subject | adaptive inverse control | en |
| dc.subject | force control | en |
| dc.subject | ultrasound-guided intervention | en |
| dc.title | 機器人輔助的呼吸運動下超聲波探頭力控制 | zh_TW |
| dc.title | Robot-Assisted Ultrasound Probe Force Control Under Respiration-Induced Motion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳政維;張秉純 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Wei Chen;Biing-Chwen Chang | en |
| dc.subject.keyword | 協作機器人,超音波導引介入式治療,力控制,適應性逆控制,內部模型原理,人機互動, | zh_TW |
| dc.subject.keyword | Co-robotic,ultrasound-guided intervention,force control,adaptive inverse control,internal model principle,human-robot interaction, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202402755 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 23.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
