Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93478
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國鎮zh_TW
dc.contributor.advisorKuo-Chun Changen
dc.contributor.author楊淽帆zh_TW
dc.contributor.authorChih-Fan Yangen
dc.date.accessioned2024-08-01T16:20:09Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-27-
dc.identifier.citation[1] World Disasters Report 2020. (n.d.). IFRC. https://www.ifrc.org/document/world-disasters-report-2020.
[2] 地震測報中心,中央氣象屬,https://scweb.cwa.gov.tw/zh-TW/Guidance/FAQdetail/55。
[3] 天然災害統計,內政部消防署,https://www.nfa.gov.tw/cht/index.php?code=list&ids=233。
[4] 謝享浩 (2023)。樁型拉脹地震超材料之減振研究 [碩士論文,國立臺灣大學 土木工程學系]。
[5] Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10(4), 509-514.
[6] Huang, H. H., & Sun, C. T. (2009). Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11(1), 013003.
[7] Chan, C. T., Li, J., & Fung, K. H. (2006). On extending the concept of double negativity to acoustic waves. Journal of Zhejiang University-SCIENCE A, 7(1), 24-28.
[8] Yablonovitch, E. (1986). Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58(20), 2059-2062.
[9] Bragg, W. H, & Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London-Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438.
[10] Liu, Z. Y., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally resonant sonic materials. Science, 289(5485), 1734-1736.
[11] Ungureanu, B., Achaoui, Y., Enoch, S., Brûlé, S., & Guenneau, S. (2015). Auxetic-like metamaterials as novel earthquake protections. EPJ Applied Metamaterials, 2(17), 17-24.
[12] Sharma, B., & Sun, C.T. (2016). Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators. Journal of Sound and Vibration, 364, 133-146.
[13] Wu, T. Y., Teng, W. L., Hsieh, H. H., Wang, S. J., & Chang, K. C. (2024). Feasibility studies in applying cork to pile-type two-layered seismic metamaterials. Soil Dynamics and Earthquake Engineering, 182(1), 108698.
[14] Xiang, H. J., Shi, Z. F., Wang, S. J., & Mo, Y. L. (2012). Periodic materials-based vibration attenuation in layered foundations: experimental validation. Smart Materials and Structures, 21(11), 1-10.
[15] Witarto, W. (2018). Periodic materials for seismic base isolation: theory and applications to small modular reactors [Doctoral dissertation, University of Houston].
[16] Gupta, A., Sharma, R., Thakur, A., & Gulia, P. (2023). Metamaterial foundation for seismic wave attenuation for low and wide frequency band. Scientific Reports, 13(1), 2293.
[17] Yan, Y., Cheng, Z., Menq, F., Mo, Y. L., Tang Y., & Shi, Z. (2015). Three dimensional periodic foundations for base seismic isolation. Smart Materials and Structures, 24(7), 075006.
[18] He, C., Zhou, S. H., Li, X. X., Di, H. G., & Zhang, X. H. (2023). Forest trees as a natural metamaterial for surface wave attenuation in stratified soils. Construction and Building Materials, 363.
[19] Colombi, A., Colquitt, D., Roux, P., Guenneau, S., & Craster, R. V. (2016). A seismic metamaterial: The resonant metawedge. Scientific Reports, 6(1), 27717.
[20] Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2014). Experiments on seismic metamaterials: molding surface waves. Physical review letters, 112(13), 133901.
[21] Segol, G., Lee, P. C., & Abel, J.F. (1978). Amplitude reduction of surface waves by trenches. Journal of Engineering Mechanics-asce, 104(3), 621-641.
[22] Gao, L., Cai, C., Ming Mak, C., He, X., Zou, Y., & Wu, D. (2022). Surface wave attenuation by periodic hollow steel trenches with Bragg band gap and local resonance band gap. Construction and Building Materials, 356, 129289.
[23] Ju S., & Li H. C. (2011). 3D Analyses of Open Trench Barriers Filled with Water. Journal of Geotechnical and Geoenvironmental Engineering, 137(11), 1114-1120.
[24] Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., & Guenneau, S. (2017). Clamped seismic metamaterials: ultra-low frequency stop bands. New Journal of Physics, 19(6).
[25] 簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽 (2019)。新型態外部隔減震技術-地震超材料之設計與分析。中國土木水利工程學刊,31(4),395-410。
[26] 吳逸軒、汪向榮、張國鎮、陳東陽 (2019)。多類型複合地震超結構之寬頻帶設計與分析。中國土木水利工程學刊,31(1),103-118。
[27] 李宇軒 (2020)。有限元素法於樁型地震超材料之數值模擬 [碩士論文,國立臺灣大學 土木工程學系]。
[28] 羅川琇 (2021)。樁型地震超材料與共振筒單元之可行性研究 [碩士論文,國立臺灣大學 土木工程學系]。
[29] 許巧臻 (2022)。樁型地震超材料的隔減振效益:單元晶格分析、設計與實驗 [碩士論文,國立臺灣大學 土木工程學系]。
[30] 鄧煒霖 (2024)。軟木於樁型地震超材料應用之可行性研究 [碩士論文,國立臺灣大學 土木工程學系]。
[31] 張雯桂 (2022)。拉脹幾何地震超材料可行性研究 [碩士論文,國立陽明交通大學 土木工程學系]。
[32] Shukla, S., & Behera, B. K. (2022). Auxetic fibrous structures and their composites: A review. Composite Structures, 290(1), 115530.
[33] Hsieh, H. H., Yang, C. F, Wu, T. Y., Wang, S. J., & Chang, K. C. (2024). Experimental Study on a Subwavelength Auxetic Pile-type Metamaterial for Seismic Wave Attenuation. Manuscript submitted for publication.
[34] Ranking of the Best TPU Filaments According to Shore Hardnes. (n.d.). x3d. https://x3d.com.au/blogs/tips-and-tricks/ranking-of-the-best-tpu-filaments-according-to-shore-hardness.
[35] 國家地震工程研究中心,https://www.ncree.narl.org.tw/
[36] Nicoreac, M., Pârv, B., Petrina, M., & Petrina, T. (2010). Similitude theory and applications. Acta Technica Napocensis: Civil Engineering and Architecture, 53(1), 1-11.
[37] Sika. (n.d.). SikaBond® Construction Adhensive.https://usa.sika.com/en/construction-products/residential-homeimprovement/multipurpose-adhesives/sikabond-constructionadhesive.html.
[38] Advanced Simulation Enterprise Company. (n.d.). Product. http://www.ase-company.com.tw/03301-7075-/web-/index-2-tw.
[39] PCB Piezotronics. (n.d.). https://www.pcb.com/.
[40] DEWESoft. (n.d.). IOLITE® Rack (R8, R8R, R12). https://dewesoft.com/products/iolite.
[41] Wang, T., An, J., He, H., Wen, X., & Xi, X. (2021). A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Composite Structures, 262(3), 113663.
[42] Chen, Z., Wu, X., Xie, Y. M., Wang, Z., & Zhou, S. W. (2020). Re-entrant auxetic lattices with enhanced stiffness: A numerical study. International Journal of Mechanical Sciences, 178, 105619.
[43] Mousanezhada, D., Haghpanaha, B., Ghosha, R., Hamouda, A., Nayeb-Hashemi, H., & Vaziri, A. (2016). Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 6(2), 81-96.
[44] UP! Box+工業級3D印表機. (n.d.). https://www.idea-diy.com/products/3d-printer/141-up-3d-printer-box-2.
[45] UP!原廠-PLA線材. (n.d.). https://www.idea-diy.com/products/supplies/pla/35-up-3d%E5%8D%B0%E8%A1%A8%E6%A9%9F%E8%80%97%E6%9D%90pla.
[46] Autograph AGS-X Series. (n.d.). https://www.shimadzu.com.tw/products/materials-testing/uni-ttm/autograph-ags-x-series/index.html.
[47] Tensile Test Methods for Plastics: ASTM D638. SHIMADZU. (n.d.). https://www.shimadzu.com.tw/industries/engineering-materials/film/plastics-astm/index.html.
[48] Gawel, A., Kuciel, S., Liber-Kneć, A., & Mierzwiński, D. (2023). Examination of Low-Cyclic Fatigue Tests and Poisson’s Ratio Depending on the Different Infill Density of Polylactide (PLA) Produced by the Fused Deposition Modeling Method. Polymers, 15(7), 1651.
[49] E.C., G, & G.L., P. (1969). Acoustic Impedance of Tissue. Investigative Radiology , 4(6), 357-363.
[50] 吳逸軒(2018)。寬頻帶地震超材料設計與模擬 [碩士論文,國立成功大學 土木工程研究所]。
[51] Toygar, O., & Ulgen, D. (2021). A full-scale field study on mitigation of environmental ground vibrations by using open trenches. Building and Environment, 203, 108070.
[52] Huang, H., Zhang, B., Wang, J., Menq, F. Y., Nakshatrala, K. B., Mo, Y. L., & Stokoe, K. (2021). Experimental study on wave isolation performance of periodic barriers. Soil Dynamics and Earthquake Engineering, 144(114), 106602.
[53] Ramaswamy, N., Joshi, B., Wang, J., Li, X., Menq, F. Y., Shan, X., Babu Nakshatrala, K., Stokoe, K., & Mo, Y. L. (2023). Experimental study of passive seismic vibration isolation by trench-type periodic barrier. Engineering Structures, 276, 115308.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93478-
dc.description.abstract全世界大部分的地震均發生於活躍的環太平洋地震帶,而坐落於上的臺灣每年平均發生約上萬次的地震,令抗震技術的研究與精進持續成為非常重要的議題。近年興起一種新抗震概念稱作地震超材料(Seismic metamaterials),利用阻擋地震波之傳遞的方式避免災害,透過此概念有望達成在不改動既有建物的情況下保護整個目標區域之理想。
本研究持續先前對樁型拉脹地震超材料之探索,進行比例1/15之縮尺試驗證實樁型拉脹地震超材料符合試驗前數值掃頻分析得到之帶隙位置且在帶隙範圍內具波傳折減效果。另外進行排數試驗證實週期性排列確實為超材料展現波傳折減特性的基本假設,亦觀察針對此樁型拉脹地震超材料,為使帶隙效果開始明顯展現,所需之最小排列行數為三排。
另外,樁型拉脹地震超材料之設計帶隙範圍符合地震超材料之設計目標:具有低帶隙下界以及寬帶寬,因此本研究認為此設計單元晶格具未來進行更多延伸研究之可行性。基於樁型拉脹地震超材料的複雜結構,為使後續延伸模擬之可行性提升,本研究致力發展運用於此超材料之層疊排列拉脹結構等值模型,簡化原設計樁型拉脹地震超材料,目標使數值模擬過程簡單化並降低計算成本。
zh_TW
dc.description.abstractThe majority of seismic events worldwide occurred within the Pacific Ring of Fire, also known as Circum- Pacific belt, where Taiwan is located in. Tens of thousands of earthquakes strikes Taiwan annually, making ongoing research and advancement in earthquake-resistant technology a crucial topic. In recent years, a new passive control technology, Seismic Metamaterials has aroused. These metamaterials aim to block seismic waves from passing, offering the potential to protect the entire target area without altering the current states of already- existing structures.
This study extends the exploration of auxetic pile- type seismic metamaterials, conduct 1/ 15 scale- down experiments in order to validate that the range of band gap is actually the same as where previous studies have predicted by numerical analysis, and also observe whether the input waves are attenuated while the frequencies of the waves are within the designed band gap. On top of that, row tests are also carried out to prove that periodic arrangement is indeed a crucial precondition for wave attenuation characteristic of metamaterial to show, while the minimum rows of periodic arrangement of auxetic pile- type seismic metamaterials to exhibit band gap were observed to be three rows.
In addition, since the designed band gap of auxetic pile- type seismic metamaterials actually fits the design goal quite well: possesses relatively low lower bound frequency and decent width of band gap, this study consider auxetic pile- type seismic metamaterials feasible for conducting extended research. Limited by the complicated structures of auxetic pile- type seismic metamaterial unit cell, in order to improve the feasibility of follow- up extended numerical analyses, this study aims to use equivalent model of this non-typical arrangement of auxetic structures for the development of simplified model, intent to simplify the process and modeling of numerical analyses and reduce the computation cost.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:20:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:20:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 II
誌 謝 IV
中文摘要 VI
ABSTRACT VIII
目 次 X
圖 次 XIV
表 次 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 本文架構 3
第二章 文獻回顧 5
2.1 超材料理論回顧 5
2.2 地震超材料回顧 6
2.2.1 地震超材料數值掃頻分析研究方法 7
2.2.2 地震超材料設計目標 9
2.2.3 基礎型地震超材料 10
2.2.4 屏障型地震超材料 12
2.3 樁型地震超材料設計回顧 13
2.3.1 樁型地震超材料參數分析 14
2.3.2 樁型地震超材料單元晶格設計 16
2.4 拉脹材料與拉脹結構簡介 20
2.4.1 拉脹材料簡介 20
2.4.2 拉脹結構簡介 21
2.4.3 拉脹地震超材料回顧 22
2.5 地震超材料縮尺試驗回顧 24
2.6 文獻回顧啟發 24
第三章 樁型拉脹地震超材料縮尺試驗 27
3.1 試驗目的 27
3.2 試驗對象 27
3.2.1 試驗目標超材料單元晶格設計 27
3.2.2 縮尺尺度設計 31
3.2.3 縮尺試體製作 32
3.3 縮尺試驗規劃與配置 34
3.3.1 試驗環境及試驗方法 34
3.3.2 試驗組合規劃 36
3.3.3 試驗步驟 38
3.4 試驗結果與討論 40
3.4.1 SDSC試驗組 40
3.4.2 RNAC試驗組 42
3.4.3 試驗結果討論與修正 44
3.5 縮尺試驗設計討論 47
第四章 拉脹結構等值模型 49
4.1 典型拉脹結構等值模型 49
4.2 層疊拉脹結構等值模型 51
4.3 層疊排列拉脹結構等值模型計算驗證 55
4.3.1. 單元數值模擬驗證 55
4.3.2. 二維數值模擬與抗拉試驗驗證 58
4.3.3. 三維數值模擬與抗壓試驗驗證 62
4.4 層疊拉脹結構排列方式優勢 65
第五章 拉脹超材料單元簡化模型 67
5.1 拉脹結構的頻散曲線 67
5.1.1 單一拉脹結構的帶隙展現 67
5.1.2 非拉脹結構的帶隙展現 68
5.2 樁型拉脹地震超材料簡化模型 70
5.2.1 等值柏松比的公式修正 70
5.2.2 原樁型拉脹地震超材料簡化模型發展 72
5.2.3 原樁型拉脹地震超材料簡化模型驗證 73
5.3 樁型拉脹地震超材料簡化模型驗證 77
5.3.1 排數驗證 77
5.3.2 厚度驗證 79
5.3.3 幾何驗證 80
5.3.4 章節小結 81
5.4 簡化模型的優勢 82
第六章 拉脹超材料簡化模型單元時間域分析 86
6.1 樁型拉脹地震超材料簡化模型二維時間域分析 86
6.2 簡化模型時間域分析的材料阻抗 88
6.3 樁型拉脹地震超材料簡化模型三維時間域分析 91
第七章 結論與未來建議 93
7.1 本文結論 93
7.1.1 縮尺試驗結果討論 93
7.1.2 樁型拉脹地震超材料簡化模型發展結果討論 93
7.2 建議與未來展望 94
7.2.1 樁型拉脹地震超材料 94
7.2.2 簡化模型 95
7.2.3 未來現地試驗規劃建議 95
參考文獻 97
-
dc.language.isozh_TW-
dc.subject地震超材料zh_TW
dc.subject拉脹結構zh_TW
dc.subject等值研究zh_TW
dc.subject縮尺試驗zh_TW
dc.subjectSeismic metamaterialsen
dc.subjectScale- down experimenten
dc.subjectEquivalent studiesen
dc.subjectAuxetic structuresen
dc.title拉脹超材料之縮尺試驗及簡化模型研究zh_TW
dc.titleExperimental Study and Simplified Model Development of Auxetic Metamaterialsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor吳東諭zh_TW
dc.contributor.coadvisorTung-Yu Wuen
dc.contributor.oralexamcommittee汪向榮;林子剛zh_TW
dc.contributor.oralexamcommitteeShiang-Jung Wang;Tzu-Kang Linen
dc.subject.keyword地震超材料,拉脹結構,等值研究,縮尺試驗,zh_TW
dc.subject.keywordSeismic metamaterials,Auxetic structures,Equivalent studies,Scale- down experiment,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202402101-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved