請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93226
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林新智 | zh_TW |
dc.contributor.advisor | Hsin-Chih Lin | en |
dc.contributor.author | 吳浩宇 | zh_TW |
dc.contributor.author | Hao-Yu Wu | en |
dc.date.accessioned | 2024-07-23T16:23:19Z | - |
dc.date.available | 2024-07-24 | - |
dc.date.copyright | 2024-07-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-17 | - |
dc.identifier.citation | [1] Chauhan, K.P.S., Influence of heat treatment on the mechanical properties of aluminium alloys (6xxx series): A literature review. Int. J. Eng. Res, 2017. 6(03): p. 386-389.
[2] Atwell, M.M., Weldability of dissimiliar 5000 and 6000 series aluminium alloy combinations. 1998, The Ohio State University. [3] Algahtani, A., et al., Erosion resistance of surface engineered 6000 series aluminium alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013. 227(11): p. 1204-1214. [4] Saldanha, F.E., et al., Evaluation of 6000 Al Alloys for Application in Chassis of Electric Vehicles. Materials Research, 2022. 25: p. e20220275. [5] Rambabu, P., et al., Aluminium alloys for aerospace applications. Aerospace materials and material technologies: volume 1: aerospace materials, 2017: p. 29-52. [6] Burger, G., et al., Microstructural control of aluminum sheet used in automotive applications. Materials Characterization, 1995. 35(1): p. 23-39. [7] Poznak, A. and P. Sanders, The Influence Of Low Temperature Clustering On Strengthening Precipitation IN Al‐Mg‐Si Alloys. Light Metals 2016, 2016: p. 235-243. [8] Serizawa, A., S. Hirosawa, and T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy. Metallurgical and materials transactions A, 2008. 39: p. 243-251. [9] Cuniberti, A., et al., Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Materials Science and Engineering: A, 2010. 527(20): p. 5307-5311. [10] Zhen, L., S. Kang, and H. Kim, Effect of natural aging and preaging on subsequent precipitation process of an AI-Mg-Si alloy with high excess silicon. Materials Science and Technology, 1997. 13(11): p. 905-911. [11] He, L., H. Zhang, and J. Cui, Effects of pre-ageing treatment on subsequent artificial ageing characteristics of an Al-1.01 Mg-0.68 Si-1.78 Cu alloy. Journal of Materials Science & Technology, 2010. 26(2): p. 141-145. [12] Stojanovic, B., М. Bukvic, and I. Epler, Application of aluminum and aluminum alloys in engineering. Applied Engineering Letters: Journal of Engineering and Applied Sciences, 2018. 3(2): p. 52-62. [13] Davis, J.R., Aluminum and aluminum alloys. 1993: ASM international. [14] Yahaya, S.N.M., et al., An overview on forming process and heat treatments for heat treatable aluminium alloy. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020. 70(1): p. 112-124. [15] Kaufman, J.G., Introduction to aluminum alloys and tempers. 2000: ASM international. [16] Benedyk, J.C., International temper designation systems for wrought aluminum alloys. Light metal age, 2010. 67: p. 3-6. [17] The aluminum automotive manual. European Aluminum Association.http://www.alueurope.eu/wpcontent/uploads/2012/01/AAMMaterials-2Alloyconstitution.pdf. 2002. [Accessed: 15-June-2016]. [18] Rana, R., R. Purohit, and S. Das, Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and research publications, 2012. 2(6): p. 1-7. [19] Mrówka-Nowotnik, G., J. Sieniawski, and M. Wierzbińska, Intermetallic phase particles in 6082 aluminium alloy. Archives of materials science and engineering, 2007. 28(2): p. 69-76. [20] Zhan, H., et al., The influence of copper content on intergranular corrosion of model AlMgSi (Cu) alloys. Materials and corrosion, 2008. 59(8): p. 670-675. [21] Xu, X., et al., Effect of Mn content on microstructure and properties of 6000 series aluminum alloy. Applied Physics A, 2019. 125: p. 1-9. [22] Sheppard, T., Extrusion of aluminium alloys. 2013: Springer Science & Business Media. [23] Kayser, T., Characterization of microstructure in aluminum alloys based on electron backscatter diffraction. 2011, Universitätsbibliothek Dortmund Germany. [24] Banhart, J., et al., Natural aging in Al‐Mg‐Si alloys–a process of unexpected complexity. Advanced engineering materials, 2010. 12(7): p. 559-571. [25] Abbas, R.A. and M. Radhy, Effect of Precipitation Hardening on Mechanical Properties of Dissimilar Friction Stir Welded AA2024-T3 to AA7075-T73 Aluminum Alloys. 2015, University of Technology. [26] Preston, G., LXXIV. The diffraction of X-rays by an age-hardening alloy of aluminium and copper. The structure of an intermediate phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1938. 26(178): p. 855-871. [27] Hochella Jr, M.F., There’s plenty of room at the bottom: Nanoscience in geochemistry. Geochimica et Cosmochimica Acta, 2002. 66(5): p. 735-743. [28] Torsæter, M., et al., Applying precipitate–host lattice coherency for compositional determination of precipitates in Al–Mg–Si–Cu alloys. Philosophical Magazine, 2012. 92(31): p. 3833-3856. [29] Zain-Ul-Abdein, M. and D. Nélias, Effect of coherent and incoherent precipitates upon the stress and strain fields of 6xxx aluminium alloys: a numerical analysis. International Journal of Mechanics and Materials in Design, 2016. 12: p. 255-271. [30] Awan, I.Z. and A.Q. Khan, Precipitation from Solid Solutions. Journal of the Chemical Society of Pakistan, 2017. 39(3). [31] Proville, L. and B. Bakó, Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping. Acta materialia, 2010. 58(17): p. 5565-5571. [32] Samarendra, R. and R. Shibayan, New-Age Al-Cu-Mn-Zr (ACMZ) Alloy for High Temperature-High Strength Applications: A Review, in Aluminium Alloys, T. Giulio, Editor. 2022, IntechOpen: Rijeka. p. Ch. 2. [33] Ardell, A.J., Precipitation hardening. Metallurgical Transactions A, 1985. 16: p. 2131-2165. [34] Hernandez-Sandoval, J., et al., The Effect of Ni and Zr Additions on the Tensile Properties of Isothermally Aged Ai–Si–Cu–Mg Cast Alloys. International Journal of Metalcasting, 2022. 16(1): p. 435-457. [35] González-Velázquez, J.L., Mechanical behavior and fracture of engineering materials. 2020: Springer. [36] Marth, P., et al., Application of heterogeneous nucleation theory to precipitate nucleation at GP zones. Metallurgical Transactions A, 1976. 7: p. 1519-1528. [37] Wang, X., S. Esmaeili, and D.J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111. Metallurgical and materials transactions A, 2006. 37: p. 2691-2699. [38] Baruah, M. and A. Borah, Processing and precipitation strengthening of 6xxx series aluminium alloys: A review. Int. J. Mater. Sci, 2020. 1(1): p. 40-48. [39] Zhu, S., et al., Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Materialia, 2021. 203: p. 116455. [40] Wang, S., et al., Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si (-Sc) alloys. Journal of Materials Science & Technology, 2022. 110: p. 216-226. [41] Gupta, A. and D. Lloyd, Communications: Study of precipitation kinetics in a super puity A1-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metallurgical and Materials Transactions, 1999. 30(3A): p. 879. [42] Andersen, S., et al., The crystal structure of the β ″phase in Al–Mg–Si alloys. Acta Materialia, 1998. 46(9): p. 3283-3298. [43] Matsuda, K., et al., High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg 2 Si alloy. Metallurgical and Materials Transactions A, 1998. 29: p. 1161-1167. [44] Marioara, C., et al., Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta materialia, 2001. 49(2): p. 321-328. [45] Zang, R., et al., Study on properties and precipitation behavior of 6000 series alloys with high Mg/Si ratios and Cu contents. Materials Characterization, 2022. 194: p. 112402. [46] Marioara, C., et al., The influence of temperature and storage time at RT on nucleation of the β ″phase in a 6082 Al–Mg–Si alloy. Acta Materialia, 2003. 51(3): p. 789-796. [47] Zandbergen, H., S. Andersen, and J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science, 1997. 277(5330): p. 1221-1225. [48] Ding, L., et al., The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Materialia, 2018. 145: p. 437-450. [49] Vissers, R., et al., The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Materialia, 2007. 55(11): p. 3815-3823. [50] Cayron, C. and P. Buffat, Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys) and QC phase (Al–Cu–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Materialia, 2000. 48(10): p. 2639-2653. [51] Matsuda, K., et al., Precipitation sequence of various kinds of metastable phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy. Journal of materials science, 2000. 35: p. 179-189. [52] Andersen, S., et al., Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β ″phases. Materials Science and Engineering: A, 2005. 390(1-2): p. 127-138. [53] Kamarudin, S.R., Microstructure and corrosion behaviour of the extruded high-strength aluminium alloys AA6000 series. 2018, Loughborough University. [54] Zhen, L., et al., Precipitation behaviour of Al-Mg-Si alloys with high silicon content. Journal of Materials Science, 1997. 32: p. 1895-1902. [55] Man, J., L. Jing, and S.G. Jie, The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy. Journal of alloys and Compounds, 2007. 437(1-2): p. 146-150. [56] Cayron, C., et al., Structural phase transition in Al-Cu-Mg-Si alloys by transmission electron microscopy study on an Al-4 wt% Cu-1 wt% Mg-Ag alloy reinforced by SiC particles. Philosophical Magazine A, 1999. 79(11): p. 2833-2851. [57] Marioara, C., et al., The effect of Cu on precipitation in Al–Mg–Si alloys. Philosophical Magazine, 2007. 87(23): p. 3385-3413. [58] Matsuda, K., et al., Metastable phases in an Al-Mg-Si alloy containing copper. Metallurgical and Materials Transactions A, 2001. 32: p. 1293-1299. [59] Arnberg, L. and B. Aurivillius, The Crystal Structure of AlxCu 2 Mg 12--xSi 7,(h-AlCuMgSi). Acta Chemica Scandinavica, 1980. 34: p. 1-5. [60] Ravi, C. and C. Wolverton, First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta materialia, 2004. 52(14): p. 4213-4227. [61] Ding, L., et al., The morphology and orientation relationship variations of Q′ phase in Al–Mg–Si–Cu alloy. Materials Characterization, 2016. 118: p. 279-283. [62] Li, H., Z. Yan, and L. Cao, Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Materials Science and Engineering: A, 2018. 728: p. 88-94. [63] Takaki, Y., et al. Effects of pre-aging and natural aging on bake hardening behavior in Al-Mg-Si alloys. in Materials Science Forum. 2014. Trans Tech Publ. [64] Poznak, A., V. Thole, and P. Sanders, The natural aging effect on hardenability in Al-Mg-Si: A complex interaction between composition and heat treatment parameters. Metals, 2018. 8(5): p. 309. [65] Poznak, A., R. Marceau, and P.G. Sanders, Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography. Materials Science and Engineering: A, 2018. 721: p. 47-60. [66] Zi, Y., et al., Effect of pre-ageing on natural secondary ageing and paint bake hardening in Al–Mg–Si alloys. Materialia, 2019. 7: p. 100413. [67] Starink, M. and S. Wang, The thermodynamics of and strengthening due to co-clusters: general theory and application to the case of Al–Cu–Mg alloys. Acta Materialia, 2009. 57(8): p. 2376-2389. [68] Starink, M.J., L. Cao, and P. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al–Mg–Si-based alloys. Acta Materialia, 2012. 60(10): p. 4194-4207. [69] Xu, X., et al., Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables. Materials Characterization, 2016. 119: p. 114-119. [70] Gupta, A., D. Lloyd, and S. Court, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Materials Science and Engineering: A, 2001. 316(1-2): p. 11-17. [71] Pogatscher, S., et al., Mechanisms controlling the artificial aging of Al–Mg–Si Alloys. Acta Materialia, 2011. 59(9): p. 3352-3363. [72] Werinos, M., et al., Design strategy for controlled natural aging in Al–Mg–Si alloys. Acta Materialia, 2016. 118: p. 296-305. [73] Pogatscher, S., et al., Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. Physical review letters, 2014. 112(22): p. 225701. [74] Andersson, J.-O., et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002. 26(2): p. 273-312. [75] Wenner, S., et al., Effect of room temperature storage time on precipitation in Al–Mg–Si (–Cu) alloys with different Mg/Si ratios. International journal of materials research, 2012. 103(8): p. 948-954. [76] Ding, L., et al., The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Materials Science and Engineering: A, 2015. 627: p. 119-126. [77] Zandbergen, M., A. Cerezo, and G. Smith, Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions. Acta Materialia, 2015. 101: p. 149-158. [78] Jia, Z., et al., The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys. Metallurgical and Materials Transactions A, 2017. 48: p. 459-473. [79] Esmaeili, S., et al., A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe. Philosophical Magazine, 2007. 87(25): p. 3797-3816. [80] Garrett, R., J. Lin, and T. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. international Journal of Plasticity, 2005. 21(8): p. 1640-1657. [81] Chang, C. and J. Banhart, Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy. Metallurgical and Materials Transactions A, 2011. 42: p. 1960-1964. [82] Sugimoto, T. and T. Kawaguchi, Development of an automatic Vickers hardness testing system using image processing technology. IEEE Transactions on industrial electronics, 1997. 44(5): p. 696-702. [83] Almeida, C.O.L., L.H.L. Lima, and M. dos Santos Pereira, Springback comparison between DP600 and DP800 steel grades. Materials Research Express, 2020. 7(1): p. 016598. [84] Love, G., W.P. Nicholson, and A. Armigliato, Modern developments and applications in microbeam analysis. Vol. 15. 2012: Springer Science & Business Media. [85] Li, Z., et al., The effect of Mg and Si content on the microstructure, texture and bendability of Al–Mg–Si alloys. Materials Science and Engineering: A, 2021. 814: p. 141199. [86] Strobel, K., et al., Relating quench sensitivity to microstructure in 6000 series aluminium alloys. Materials transactions, 2011. 52(5): p. 914-919. [87] Strobel, K., et al., Quench sensitivity in a dispersoid-containing Al-Mg-Si alloy. Metallurgical and Materials Transactions A, 2019. 50: p. 1957-1969. [88] Esmaeili, S., et al., On the precipitation-hardening behavior of the Al− Mg− Si− Cu alloy AA6111. Metallurgical and Materials Transactions A, 2003. 34: p. 751-763. [89] Starink, M. and A. Dion, DSC study of precipitation in an Al–Mg–Mn alloy microalloyed with Cu. Thermochimica acta, 2004. 417(1): p. 5-11. [90] Tao, G., et al., The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys. Materials Science and Engineering: A, 2015. 642: p. 241-248. [91] Zhen, L. and S. Kang, DSC analyses of the precipitation behavior of two Al–Mg–Si alloys naturally aged for different times. Materials letters, 1998. 37(6): p. 349-353. [92] Matsuda, K., et al., Comparison of precipitates between excess Si-type and balanced-type Al-Mg-Si alloys during continuous heating. Metallurgical and materials transactions A, 2005. 36: p. 2007-2012. [93] Chen, H., et al., Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys. Acta Materialia, 2020. 185: p. 193-203. [94] Poole*, W., et al., The shearable–non-shearable transition in Al–Mg–Si–Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture. Philosophical Magazine, 2005. 85(26-27): p. 3113-3135. [95] TIAN, N. and C. LIU, Study on the strain hardening behavior of Al-Mg-Si-Cu alloy sheet for automotive body. Acta Metall Sin, 2010. 46(5): p. 613-617. [96] Bahrami, A., A. Miroux, and J. Sietsma, Modeling of strain hardening in the aluminum alloy AA6061. Metallurgical and Materials Transactions A, 2013. 44: p. 2409-2417. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93226 | - |
dc.description.abstract | 6000系列鋁合金為可析出強化型鋁合金,其主要溶質為鎂與矽,利用時效過程中析出的奈米級Mg2Si序列硬化相使鋁合金強度上升,所以鎂、矽比例與總量會大幅的影響其析出硬化行為,除此之外, 6000系列鋁合金具有遠高於鋼鐵之比強度、抗腐蝕、可鍛、可焊以及表面處理之特性,所以廣泛的應用在建築與交通工具上。在車輛板金應用中,為了使鋁合金強度上升,工廠會實施固溶、淬火與析出強化熱處理,而在固溶熱處理且淬火後之存放與運輸,即,自然時效之導入,將會在烤漆工序時之烘烤硬化產生自然時效之負面效應,造成鋁合金強度不如預期。
本實驗將利用多種熱處理,從而驗證6066與6082鋁合金之自然時效負面效應,接著導入各式預時效參數,分析其減緩負面效應之效力,並且從各種熱處理參數中,比較6066與6082鋁合金在析出行為與機械性質上之差異。 在第一部分中,本實驗將比較6066與6082鋁合金在自然時效與人工時效下析出行為與機械性質之差異,由實驗結果得知,6066鋁合金因具有較高的鎂、矽總量與銅含量,使其在自然時效過程中生成大量細小的團簇,造成硬化速率與T4狀態下的穩定硬度明顯高於6082鋁合金,而在人工時效的部分,銅的加入會細化析出物與加速析出動力學並且會生成熱穩定極高之鋁鎂矽銅(QP2)硬化相,造成6066鋁合金在較短的時間內可以達到尖峰時效並且具有比6082鋁合金更高的尖峰硬度與過時效之熱穩定性。 在第二部分中,本實驗實施NA+PB (175℃ x 30min)與NA + 175℃尖峰時效之熱處理用以驗證自然時效對烘烤硬化後的負面效應以及了解自然時效對尖峰時效後的影響,其中6066 鋁合金因在自然時效過程中生成較多的團簇以及在無自然時效下(NA 0hr + PB狀態)較快的析出速率使烘烤硬化後的硬度縮減率明顯高於6082鋁合金,除此之外,在T4 + 175℃尖峰時效之熱處理條件中,低鎂矽比鋁合金因長時間人工時效過程中,富鎂團簇因熱穩定性較低會溶回基地補充析出所需要的溶質,而富矽團簇不會持續成長消耗溶質且基地內還具有足夠之矽原子,使人工時效中期的過程中,主要強化相β"的析出並不會受到明顯抑制,造成尖峰時效後硬度並沒有因自然時效而有明顯的下降。 在第三部分中,本實驗為了解決第二部分因自然時效對烤烘烤硬化後之負面效應,所以在自然時效前導入預時效熱處理來減緩負面效應之影響,研究結果發現6066與6082鋁合金經過120℃ x 1hr之預時效處理後,有最佳抑制自然時效負面效應之能力,6066鋁合金在120℃ x 1hr預時效加入前(NA+PB)因自然時效造成之硬度縮減率為14.8%,而在加入預時效後則降至1.4%;6082鋁合金在預時效加入前的硬度縮減率為9.6%,加入預時效後則降為3.7%,此結果與6066鋁合金具有較快的析出動力學與鎂矽總量有關,造成預時效過程中大量細小且分散的GP-zone生成,間接減緩了後續自然時效時團簇的形成,所以在烤漆熱處理後,受自然時效造成之硬度縮減率大幅下降。 | zh_TW |
dc.description.abstract | The 6000 series aluminum alloys are precipitation-hardenable alloys that are primarily composed of magnesium and silicon. During the aging process, nano-sized Mg₂Si precipitates form, enhancing the alloy's strength. Consequently, the proportion and total amount of magnesium and silicon exert a significant influence on the precipitation hardening behavior. Furthermore, the 6000 series aluminum alloys exhibit superior specific strength compared to steel, in addition to corrosion resistance, forgeability, weldability, and surface treatment capabilities. As a result, they are widely utilized in the construction and transportation industries. In the automotive industry, factories employ solution treatment, quenching, and precipitation hardening heat treatment to enhance the strength of aluminum alloys. Nevertheless, the introduction of natural aging during storage and transportation after solution treatment and quenching can negatively impact the strength of paint-baking hardening, resulting in a lower-than-anticipated strength.
The objective of this experiment is to verify the negative effects of natural aging on 6066 and 6082 aluminum alloys through the utilization of various heat treatments. Subsequently, different pre-aging parameters will be introduced to analyze their effectiveness in mitigating these negative effects. The differences in precipitation behavior and mechanical properties of 6066 and 6082 aluminum alloys under various heat treatment parameters will also be compared. In the first part of this experiment, the differences in precipitation behavior and mechanical properties of 6066 and 6082 aluminum alloys under natural aging and artificial aging will be compared. Experimental results show that due to the higher total amount of magnesium and silicon and the copper content in 6066 aluminum alloy, a large number of fine clusters form during the natural aging process. This results in a significantly higher hardening rate and stable hardness in the T4 state compared to 6082 aluminum alloy. In the case of artificial aging, the addition of copper refines the precipitates and accelerates the precipitation kinetics, forming the highly thermally stable Al-Mg-Si-Cu (QP2) hardening phase. Consequently, 6066 aluminum alloy can reach peak aging in a shorter time and has a higher peak hardness and thermal stability in the over-aged condition than 6082 aluminum alloy. In the second part of this experiment, NA+PB (175℃ for 30 minutes) and NA + 175℃ peak aging heat treatments were conducted to verify the negative effect of natural aging on bake hardening and to understand the influence of natural aging on post-peak aging. For 6066 aluminum alloy, due to the formation of more clusters during the natural aging process and a faster precipitation rate in the NA 0hr + PB state (without natural ag-ing), the reduction in hardness after bake hardening is significantly higher than that of 6082 aluminum alloy. Additionally, under the heat treatment condition of T4 + 175℃ peak aging, low Mg/Si ratio aluminum alloys exhibit dissolution of Mg-rich clusters back into the matrix to supply the solutes needed for precipitation during long-term artificial aging due to their lower thermal stability. In contrast, Si-rich clusters do not continue to grow and consume solutes, and there are still enough silicon atoms in the matrix. Therefore, during the intermediate stage of artificial aging, the precipitation of the main strengthening phase β'' is not significantly suppressed, resulting in no obvious decrease in hardness after peak aging due to natural aging. In the third part of this experiment, to address the negative effects of natural aging on bake hardening mentioned in the second part, pre-aging heat treatment was introduced before natural aging to mitigate these negative effects. The study found that 6066 and 6082 aluminum alloys, after pre-aging treatment at 120℃ for 1 hour, had the best ability to inhibit the negative effects of natural aging. For 6066 aluminum alloy, the hardness re-duction rate due to natural aging before the introduction of pre-aging (NA+PB) was 14.8%, which decreased to 1.4% after pre-aging. For 6082 aluminum alloy, the hardness reduction rate before pre-aging was 9.6%, and it decreased to 3.7% after pre-aging. This result is related to the faster precipitation kinetics and the total amount of magnesium and silicon in 6066 aluminum alloy, causing the formation of a large number of fine and dispersed GP-zones during the pre-aging process, indirectly mitigating the formation of clusters during subsequent natural aging. Therefore, after the baking heat treatment, the hardness reduction rate caused by natural aging significantly decreased. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:23:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-23T16:23:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝............................................................................I
摘要............................................................................II Abstract........................................................................IV 目次............................................................................VII 圖次............................................................................X 表次............................................................................XVI 第一章 前言....................................................................1 第二章 文獻回顧................................................................3 2.1 鋁合金簡介與應用.........................................................3 2.2 6000系列鋁合金..........................................................6 2.2.1 溶質效應................................................................6 2.2.2 固溶強化................................................................8 2.2.3 析出強化熱處理與析出硬化.................................................9 2.2.4 析出物序列與種類........................................................15 2.3 自然時效負面效應與預時效熱處理...........................................25 2.3.1 鎂矽比例與含量效應......................................................27 2.3.2 銅溶質效應..............................................................33 第三章 實驗方法................................................................35 3.1 材料與實驗流程..........................................................35 3.1.1 材料介紹................................................................35 3.1.2 實驗流程................................................................36 3.1.3 熱處理流程與設計.........................................................37 3.2 機性測試................................................................40 3.2.1 微式硬度測試(Microhardness Test)........................................40 3.2.2 拉伸測試(Tensile Test)..................................................41 3.3 微結構與相分析...........................................................42 3.3.1 X光繞射儀(X-ray Diffraction, XRD)........................................42 3.3.2 差示掃描量熱儀(Differential Scanning Calorimetry, DSC)....................42 3.3.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)........................42 3.3.4 背向散射電子繞射儀(Electron Backscattered Diffraction, EBSD)...............43 3.3.5 電子微探儀(Electron Probe Microanalyzer, EPMA).............................43 3.3.6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM).....................44 第四章 實驗結果與討論..............................................................45 4.1 As-received與As-quenched狀態之微結構與機械性質分析...........................45 4.1.1 微結構演化..................................................................45 4.1.2 機械性質變化................................................................62 4.2 自然與人工時效..............................................................66 4.2.1 微結構演化..................................................................66 4.2.2 機械性質探討................................................................77 4.3 自然時效負面效應.............................................................87 4.3.1 微結構演化..................................................................87 4.3.2 烘烤硬化後之機性變化.........................................................95 4.3.3 尖峰時效後之機性變化.........................................................101 4.4 預時效之影響.................................................................103 4.4.1 微結構演化...................................................................103 4.4.2 自然時效與烘烤硬化後之機性變化.................................................110 第五章 結論.........................................................................117 第六章 參考文獻......................................................................120 | - |
dc.language.iso | zh_TW | - |
dc.title | 預時效和自然時效對6066與6082鋁合金人工時效硬化行為之影響 | zh_TW |
dc.title | The Influence of Pre-aging and Natural Aging on the Artificial Aging Hardening Behavior of 6066 and 6082 Aluminum Alloys | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林昆明;鍾采甫;楊木榮 | zh_TW |
dc.contributor.oralexamcommittee | Kun-Ming Lin;Tsai-Fu Chung;Mu-Rong Yang | en |
dc.subject.keyword | 6000系列鋁合金,銅溶質效應,析出物,自然時效負面效應,預時效熱處理,烘烤硬化, | zh_TW |
dc.subject.keyword | 6000 series aluminum alloys,Copper solute effects,Precipitates,Negative effects of natural aging,Pre-aging heat treatment,Bake hardening, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202401370 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-17 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 17.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。