請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡怡雯 | zh_TW |
| dc.contributor.advisor | Yi-Wen Chien | en |
| dc.contributor.author | 羅捷 | zh_TW |
| dc.contributor.author | Jieh Lou | en |
| dc.date.accessioned | 2024-07-23T16:18:02Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-19 | - |
| dc.identifier.citation | ASUS VivoWatch BP (HC-A04) (2018,10月)。華碩。https://www.asus.com/tw/mobile-handhelds/wearable-healthcare/asus-vivowatch/asus-vivowatch-bp-hc-a04/
FaceHeart (2021)。鉅怡智慧。https://faceheart.com/technology.php 什麼是AIoT智慧聯網?AIoT的發展與趨勢 (2022,6月1日)。工研院產業學院。https://college.itri.org.tw/Home/InfoData/f6e19f2d-f81c-421c-bc36-ea6409ba0a5d/2c3c2efb-04bd-4ad5-8607-1494de2f4022 周文賢 (2002)。多變量統計分析─SAS/STAT 使用方法。元照出版(智勝經管系列)。ISBN/ISSN 9577292518。 林育瑋 (2023,9月1日)。Advisers財務顧問雜誌。心臟疾病連續36年蟬聯台灣10大死因前3名,死亡率在10年內不斷增加。https://www.advisers.com.tw/?p=14921 物聯網穿戴式聽診器 (2023)。矽響先創。https://www.dbio-tech.com/wearablestethoscope 冠狀動脈心臟病與心導管檢查及治療後居家注意事項 (2023,10月)。奇美醫院衛教資訊網。https://www.chimei.org.tw/main/cmh_department/59012/info/7320/A7320105.html 健康醫院教您「識」時變通 簡單懂「識能」,醫病更「溝通」!(2019,4月9日)。衛生福利部。https://www.mohw.gov.tw/cp-4258-47221-1.html 許永昕 (2023,3月10日)。AI 工具就是你的神隊友!快速生成簡報、影像、文案,7大應用一次看。經理人雜誌。https://www.managertoday.com.tw/articles/view/66533 提高警覺與防護,心血管疾病不用心驚驚!(2020,3月27日)。衛生福利部。https://www.mohw.gov.tw/cp-4634-52471-1.html 黃姵嫙 (2018)。綠色招募活動對組織人才吸引力之影響:以個人組織配適知覺為中介變數與個人環保態度為干擾變數。未出版之碩士論文。東海大學。 照護線上編輯部 (2021,5月4日)。PanSci泛科學。一年心肌梗塞住院人數破萬!關於心臟支架,你知道多少?https://pansci.asia/archives/319318 認識冠心病 (2004,11月04日)。衛生福利部國民健康署。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=632&pid=1188 線性回歸模型進行特徵重要性分析 (2023,10月16日)。CSDN。https://blog.csdn.net/as472780551/article/details/133685530 Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A survey on Explainable Artificial Intelligence (XAI). IEEE Journals & Magazine | IEEE Xplore.https://ieeexplore.ieee.org/document/8466590 Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., & Serrano, E. (2014). Internet of Intelligent Things: Bringing Artificial Intelligence into Things and Communication Networks. vol 495. Springer.https://doi.org/10.1007/978-3-642-35016-0_1 Bhayani, M., Patel, M., & Bhatt, C. (2016). Internet of Things (IoT): In a Way of Smart World. Advances in Intelligent Systems and Computing, vol 438. Springer.https://doi.org/10.1007/978-981-10-0767-5_37 Boksberger, P. E., & Melsen L. (2011) . Perceived value: a critical examination of definitions, concepts and measures for the service industry. Journal of Services Marketing. vol. 25, no. 3, pp, 229–240. Cardiomatics Platform (2017). Cardiomatics.https://cardiomatics.com/ Cardiomo (2016). Cardiomo.https://cardiomo.com/ Char, K. (2021, June 1). What is the AI of things (AIOT)? Embedded.https://www.embedded.com/what-is-the-ai-of-things-aiot/ Chen, Y. N. K., & Wen, C. H. R. (2021). Impacts of Attitudes Toward Government and Corporations on Public Trust in Artificial Intelligence. Communication Studies. 72(1), 115-131. DOI: 10.1080/10510974.2020.1807380. Chimento-Díaz S., Sánchez-García P., Franco-Antonio C., Santano-Mogena E., Espino-Tato I., & Cordovilla-Guardia S. (2022). Factors Associated with the Acceptance of New Technologies for Ageing in Place by People over 64 Years of Age. International Journal of Environmental Research and Public Health. 19(5):2947.https://doi.org/10.3390/ijerph19052947 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003 Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC Med Inform Decis Mak 20, 170https://doi.org/10.1186/s12911-020-01191-1 García de Blanes Sebastián, M., Sarmiento Guede, J. R., & Antonovica A. (2022). Application and extension of the UTAUT2 model for determining behavioral intention factors in use of the artificial intelligence virtual assistants. Front Psychol. 18(13):993935. doi: 10.3389/fpsyg.2022.993935. PMID: 36329748; PMCID: PMC9624285. Grassini S. & Ree S.A. (2023). Hope or Doom AI-ttitude? Examining the Impact of Gender, Age, and Cultural Differences on the Envisioned Future Impact of Artificial Intelligence on Humankind. 10.1145/3605655.3605669. Idoven Platform(2018). Idoven.https://www.idoven.ai/ Karunasingha, A., & Abeysekera, N. (2022). The mediating effect of trust on consumer behavior in social media marketing environments. South Asian Journal of Marketing. 10.1108/SAJM-10-2021-0126. Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine, Gastrointestinal Endoscopy, Volume 92, Issue 4, Pages 807-812, ISSN 0016-5107.https://doi.org/10.1016/j.gie.2020.06.040. Khan, J.Y., & Yuce, M.R. (2019). Internet of Things (IoT). 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). IEEE. Kotler P., & Keller, K. L. (2020). Marketing Management. Pearson Education Australia. 065570261X, 9780655702610. Kurniawan, I., Mugiono, M., & Wijayanti, R. (2022). THE EFFECT OF PERCEIVED USEFULNESS, PERCEIVED EASE OF USE, AND SOCIAL INFLUENCE TOWARD INTENTION TO USE MEDIATED BY TRUST. Jurnal Aplikasi Manajemen, 20(1), 117-127. http://dx.doi.org/10.21776/ub.jam.2022.020.01.12 Lambert, S.I., Madi, M., Sopka, S., Lenes A., Stange H., Buszello, C.P. & Stephen A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. npj Digit. Med. 6, 111.https://doi.org/10.1038/s41746-023-00852-5 Liang, Y., Lee, S.-H., & Workman, J. E. (2020). Implementation of Artificial Intelligence in Fashion: Are Consumers Ready? Clothing and Textiles Research Journal, 38(1), 3-18.https://doi.org/10.1177/0887302X19873437 Linge, A. A., Singh, S., Kakde, B. B., & Singh, M. (2022). Impact of Hedonic Motivation, Utilitarian Motivation and Safety on Customer Loyalty in Online Shopping. 13. 96-107. Lucas, A. (2017). Editor’s Note: Journal of Clinical & Experimental Cardiology (Volume 8, Issue 3). Journal of Clinical & Experimental Cardiology, 08(3), Article e152. doi: 10.4172/2155-9880.1000511.https://pdfs.semanticscholar.org/ea51/9ba7fbffa514f5ab9b94982fe8e7698c7ee4.pdf Nicodeme C. (2020). Build confidence and acceptance of AI-based decision support systems - Explainable and liable AI. 2020 13th International Conference on Human System Interaction (HSI), pp. 20-23. doi: 10.1109/HSI49210.2020.9142668. Oktavia, R. (2023). THE ROLE OF TRUST AS MEDIATION ON SALESPERSON’S EXPERTISE TO REPURCHASE INTENTION. Inspirasi Ekonomi : Jurnal Ekonomi Manajemen, 5(1), 1 - 10.https://doi.org/10.32938/ie.v5i1.4215 Petrick J. F. (2002) Development of a multi-dimensional scale for measuring the perceived value of a service. Journal of Leisure Research, vol. 34, no. 2, 119–134. Rasiah S., Jaafar S., Yusof S., Ponnudurai G., Chung K.P.Y., & Amirthalingam S.D. (2020). A study of the nature and level of trust between patients and healthcare providers, its dimensions and determinants: a scoping review protocol. BMJ Open. 10(1): e028061. doi: 10.1136/bmjopen-2018-028061. Ribeiro, M. A., Gursoy, D., & Chi, O. H. (2022). Customer Acceptance of Autonomous Vehicles in Travel and Tourism. Journal of Travel Research, 61(3), 620-636.https://doi.org/10.1177/0047287521993578 Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Introduction to Special Topic Forum: Not so Different after All: A Cross-Discipline View of Trust. The Academy of Management Review, 23(3), 393–404.http://www.jstor.org/stable/259285 Tecuci G. (2011). Artificial Intelligence. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2), 168–180. 10.1002/wics.200 Tsao C.W., Aday A.W., Almarzooq Z.I., Alonso A., Beaton A.Z., Bittencourt M.S., Boehme A.K., Buxton A.E., Carson A.P., Commodore-Mensah Y., Elkind M.S.V., Evenson K.R., Eze-Nliam C., Ferguson J.F., Generoso G., Ho J.E., Kalani R., Khan S.S., Kissela B.M., …Yaffe K, Martin S.S. (2022). Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478 Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178 Yang, R. B., & Wibowo, S., (2022). User trust in artificial intelligence: A comprehensive conceptual framework. Electronic Market, Volume32, Issue4, Page2053-2077. DOI10.1007/s12525-022-00592-6 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93208 | - |
| dc.description.abstract | 隨著時代的演進,AI與IoT產品逐漸成為市場的主流,深受廣大消費者的喜愛。然而,即便生物技術產業積極採用AI科技開發各種終端產品,這些創新卻未能像其他領域那樣輕易地獲得廣泛推廣。本研究旨在探究消費者對於生技產業中與生命疾病相關的AIoT產品使用意向會受到哪些因素影響,以及可能存在的中介變數。透過問卷調查深入了解消費者心理,藉此幫助企業優化未來的決策和優先次序。
本研究有三個主要發現。首先,社會影響、專家建議、績效期望、感知價值和便利條件都是影響冠心病AI健康監測產品使用意向的關鍵因素。其次,信任在社會影響和專家建議對使用意向的影響中起到了部分中介作用。然而,採納AI傾向和健康識能不應視為年齡和使用意向中的中介變數,而應直接作為影響使用意向的自變數。最後,一個包含信任、績效期望、感知價值、採納AI傾向、便利條件和社會影響的綜合模型,被證實是解釋冠心病AI健康監測產品使用意向的最佳模型。 | zh_TW |
| dc.description.abstract | As time progresses, AI and IoT products have gradually become mainstream in the market, enjoying widespread consumer popularity. However, even though the biotechnology industry has also actively adopted AI technology to develop a variety of end products, these innovations have not been as easily promoted as in other fields. This study aims to explore the factors that influence consumers' intentions to use AIoT products related to life diseases within the biotechnology industry, as well as possible mediating variables. Through a questionnaire survey to deeply understand consumer psychology, this research aims to help companies optimize future decisions and priorities.
There are three main findings in this study. First, social influence, expert recommendations, performance expectations, perceived value, and facility conditions are key factors affecting the behavioral intentions of AI health monitoring products for coronary heart disease. Second, trust plays a partial mediating role in the impact of social influence and expert recommendations on behavioral intentions. However, the AI tech acceptance and health literacy should not be seen as mediating variables between age and behavioral intentions but should be directly considered as independent variables affecting behavioral intentions. Finally, a comprehensive model that includes trust, performance expectations, perceived value, the inclination to adopt AI, convenience conditions, and social influence has been proven to be the best model for explaining the intention to use AI health monitoring products for coronary heart disease. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:18:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:18:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 ii 目次 iii 圖次 iv 表次 v 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究問題 2 1.4 研究流程 2 第二章 文獻探討 4 2.1 冠心病與AIoT 4 2.2 目前市場上的相關產品 6 2.3 UTAUT與UTAUT2 8 2.4 UTAUT變數修訂 10 第三章 研究方法 13 3.1 研究架構與假說 13 3.2 問卷設計、資料蒐集與研究工具 15 3.3 資料處理及分析流程 17 第四章 研究結果 19 4.1 原始資料敘述統計 19 4.2 信度分析 21 4.3 線性回歸 24 4.4 逐步迴歸分析 26 4.5 結構方程式模型 28 4.6 中介變數分析 33 4.7 年齡 vs. 採納AI傾向與年齡 vs. 健康識能的調節變數分析 37 第五章 研究討論 39 5.1 假說驗證整理 39 5.2 研究貢獻與實務意涵 40 5.3 研究限制 41 5.4 未來研究方向 41 參考文獻 42 附錄-問卷 46 封底 52 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 互聯網 | zh_TW |
| dc.subject | 中介變數 | zh_TW |
| dc.subject | 線性回歸 | zh_TW |
| dc.subject | Linear regression | en |
| dc.subject | AI | en |
| dc.subject | IoT | en |
| dc.subject | Mediators | en |
| dc.title | 人工智慧驅動早期即時檢測冠心病的診斷工具產品接受度 | zh_TW |
| dc.title | Product Acceptance of an AI-Driven Point-of-Care Diagnostic Tool for Early Detection of Coronary Heart Diseases | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭中強;林嘉薇 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Chiang Hsiao;Chia-Wei Lin | en |
| dc.subject.keyword | 人工智慧,互聯網,中介變數,線性回歸, | zh_TW |
| dc.subject.keyword | AI,IoT,Mediators,Linear regression, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202401716 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-19 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 商學研究所 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
