請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白奇峰 | zh_TW |
| dc.contributor.advisor | Chi-Feng Pai | en |
| dc.contributor.author | 廖唯邦 | zh_TW |
| dc.contributor.author | Wei-Bang Liao | en |
| dc.date.accessioned | 2024-07-22T16:07:39Z | - |
| dc.date.available | 2024-07-23 | - |
| dc.date.copyright | 2024-07-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-04 | - |
| dc.identifier.citation | [1] W. Thomson, On the Electro-Dynamic Qualities of Metals:Effects of Magnetization on the Electric Conductivity of Nickel and of Iron, Proc. R. Soc. London 8, 546 (1856).
[2] T. McGuire and R. Potter, Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys, IEEE Trans. Magn. 11, 1018 (1975). [3] W. Gil, D. Görlitz, M. Horisberger, and J. Kötzler, Magnetoresistance Anisotropy of Polycrystalline Cobalt Films: Geometrical-Size and Domain Effects, Phys. Rev. B 72, 134401 (2005). [4] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange, Phys. Rev. B 39, 4828 (1989). [5] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61, 2472 (1988). [6] B. Dieny, R. B. Goldfarb, and K.-J. Lee, Basic Spintronic Transport Phenomena (John Wiley & Sons), Edited by N. Locatelli, and V. Cros, Introduction to Magnetic Random‐Access Memory, 1-28, (2017) [7] M. Julliere, Tunneling between Ferromagnetic Films, Phys. Lett. A 54, 225 (1975). [8] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett. 74, 3273 (1995). [9] T. Miyazaki and N. Tezuka, Giant Magnetic Tunneling Effect in Fe/Al2O3/Fe Junction, J. Mag. Mag. Mater. 139, L231 (1995). [10] S. Yuasa, Magnetic Properties of Materials for Mram (John Wiley & Sons), Edited by N. Locatelli, and V. Cros, Introduction to Magnetic Random‐Access Memory, 29-54, (2017) [11] J. Mathon and A. Umerski, Theory of Tunneling Magnetoresistance of an Epitaxial Fe/MgO/Fe(001) Junction, Phys. Rev. B 63, 220403 (2001). [12] S. Yuasa and D. D. Djayaprawira, Giant Tunnel Magnetoresistance in Magnetic Tunnel Junctions with a Crystalline MgO(0 0 1) Barrier, J. Phys. D: Appl. Phys 40, R337 (2007). [13] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions, Nat. Mater. 3, 868 (2004). [14] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers, Nat. Mater. 3, 862 (2004). [15] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, Spintronics Based Random Access Memory: A Review, Materials Today 20, 530 (2017). [16] L. Landau and E. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies, Phys. Z. 8, 153 (1935). [17] T. L. Gilbert, A Phenomenological Theory of Damping in Ferromagnetic Materials, IEEE Trans. Magn. 40, 3443 (2004). [18] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers, J. Mag. Mag. Mater. 159, L1 (1996). [19] A. Barman and A. Haldar, Chapter One - Time-Domain Study of Magnetization Dynamics in Magnetic Thin Films and Micro- and Nanostructures (Academic Press), Edited by R. E. Camley, and R. L. Stamps, Vol. 65, Solid State Phys., 1-108, (2014) [20] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, Spin-Transfer Torque RAM Technology: Review and Prospect, Microelectron. Reliab. 52, 613 (2012). [21] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, A Perpendicular-Anisotropy CoFeB–MgO Magnetic Tunnel Junction, Nat. Mater. 9, 721 (2010). [22] W. G. Wang, M. Li, S. Hageman, and C. L. Chien, Electric-Field-Assisted Switching in Magnetic Tunnel Junctions, Nat. Mater. 11, 64 (2011). [23] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum, Science 336, 555 (2012). [24] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin Transfer Torque Devices Utilizing the Giant Spin Hall Effect of Tungsten, Appl. Phys. Lett. 101 (2012). [25] M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. Onur Avci, I. Mihai Miron, J. Langer, B. Ocker, P. Gambardella, and G. Gaudin, Spin-Orbit Torque Magnetization Switching of a Three-Terminal Perpendicular Magnetic Tunnel Junction, Appl. Phys. Lett. 104, 042406 (2014). [26] R. Karplus and J. M. Luttinger, Hall Effect in Ferromagnetics, Phys. Rev. 95, 1154 (1954). [27] T. Jungwirth, Q. Niu, and A. H. MacDonald, Anomalous Hall Effect in Ferromagnetic Semiconductors, Phys. Rev. Lett. 88, 207208 (2002). [28] H. Weng, X. Dai, and Z. Fang, From Anomalous Hall Effect to the Quantum Anomalous Hall Effect, arXiv:1509.05507 (2015). [29] L. Berger, Side-Jump Mechanism for the Hall Effect of Ferromagnets, Phys. Rev. B 2, 4559 (1970). [30] J. Smit, The Spontaneous Hall Effect in Ferromagnetics I, Physica 21, 877 (1955). [31] J. Smit, The Spontaneous Hall Effect in Ferromagnetics II, Physica 24, 39 (1958). [32] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall Effect, Rev. Mod. Phys. 82, 1539 (2010). [33] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors, Science 306, 1910 (2004). [34] Z. Wang, H. Cheng, K. Shi, Y. Liu, J. Qiao, D. Zhu, W. Cai, X. Zhang, S. Eimer, D. Zhu, J. Zhang, A. Fert, and W. Zhao, Modulation of Field-Like Spin Orbit Torque in Heavy Metal/Ferromagnet Heterostructures, Nanoscale 12, 15246 (2020). [35] Y. Yao and Z. Fang, Sign Changes of Intrinsic Spin Hall Effect in Semiconductors and Simple Metals: First-Principles Calculations, Phys. Rev. Lett. 95, 156601 (2005). [36] G. Y. Guo, S. Murakami, T. W. Chen, and N. Nagaosa, Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations, Phys. Rev. Lett. 100, 096401 (2008). [37] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Intrinsic Spin Hall Effect and Orbital Hall Effect in 4d and 5d Transition Metals, Phys. Rev. B 77, 165117 (2008). [38] L. Thomas, G. Jan, S. Le, and P.-K. Wang, Quantifying Data Retention of Perpendicular Spin-Transfer-Torque Magnetic Random Access Memory Chips Using an Effective Thermal Stability Factor Method, Appl. Phys. Lett. 106 (2015). [39] D. Bedau, H. Liu, J. Z. Sun, J. A. Katine, E. E. Fullerton, S. Mangin, and A. D. Kent, Spin-Transfer Pulse Switching: From the Dynamic to the Thermally Activated Regime, Appl. Phys. Lett. 97, 262502 (2010). [40] J. Z. Sun, Spin-Current Interaction with a Monodomain Magnetic Body: A Model Study, Phys. Rev. B 62, 570 (2000). [41] D. Bedau, H. Liu, J. J. Bouzaglou, A. D. Kent, J. Z. Sun, J. A. Katine, E. E. Fullerton, and S. Mangin, Ultrafast Spin-Transfer Switching in Spin Valve Nanopillars with Perpendicular Anisotropy, Appl. Phys. Lett. 96 (2010). [42] R. H. Koch, J. A. Katine, and J. Z. Sun, Time-Resolved Reversal of Spin-Transfer Switching in a Nanomagnet, Phys. Rev. Lett. 92, 088302 (2004). [43] T.-Y. Chen, H.-I. Chan, W.-B. Liao, and C.-F. Pai, Current-Induced Spin-Orbit Torque and Field-Free Switching in Mo-Based Magnetic Heterostructures, Phys. Rev. Appl. 10, 044038 (2018). [44] Z. Li and S. Zhang, Thermally Assisted Magnetization Reversal in the Presence of a Spin-Transfer Torque, Phys. Rev. B 69, 134416 (2004). [45] S. Z. Rahaman, I. Wang, T. Chen, C. Pai, D. Wang, J. Wei, H. Lee, Y. Hsin, Y. Chang, S. Yang, Y. Kuo, Y. Su, Y. Chen, K. Huang, C. Wu, and D. Deng, Pulse-Width and Temperature Effect on the Switching Behavior of an Etch-Stop-on-MgO-Barrier Spin-Orbit Torque Mram Cell, IEEE Electron Device Lett. 39, 1306 (2018). [46] G. J. Lim, W. L. Gan, W. C. Law, C. Murapaka, and W. S. Lew, Spin-Orbit Torque Induced Multi-State Magnetization Switching in Co/Pt Hall Cross Structures at Elevated Temperatures, J. Mag. Mag. Mater. 514, 167201 (2020). [47] E. C. Stoner and E. P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, IEEE Trans. Magn. 27, 3475 (1991). [48] O. J. Lee, L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, P. G. Gowtham, J. P. Park, D. C. Ralph, and R. A. Buhrman, Central Role of Domain Wall Depinning for Perpendicular Magnetization Switching Driven by Spin Torque from the Spin Hall Effect, Phys. Rev. B 89, 024418 (2014). [49] F. Schumacher, On the Modification of the Kondorsky Function, J. Appl. Phys. 70, 3184 (1991). [50] R. Dittrich, G. Hu, T. Schrefl, T. Thomson, D. Suess, B. D. Terris, and J. Fidler, Angular Dependence of the Switching Field in Patterned Magnetic Elements, J. Appl. Phys. 97, 10J705 (2005). [51] S. Kim, S. Lee, J. Ko, J. Son, M. Kim, S. Kang, and J. Hong, Nanoscale Patterning of Complex Magnetic Nanostructures by Reduction with Low-Energy Protons, Nat. Nanotechnol. 7, 567 (2012). [52] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, Threshold Current for Switching of a Perpendicular Magnetic Layer Induced by Spin Hall Effect, Appl. Phys. Lett. 102, 112410 (2013). [53] C. Zhang, S. Fukami, H. Sato, F. Matsukura, and H. Ohno, Spin-Orbit Torque Induced Magnetization Switching in Nano-Scale Ta/CoFeB/MgO, Appl. Phys. Lett. 107, 012401 (2015). [54] C. Zhang, S. Fukami, K. Watanabe, A. Ohkawara, S. DuttaGupta, H. Sato, F. Matsukura, and H. Ohno, Critical Role of W Deposition Condition on Spin-Orbit Torque Induced Magnetization Switching in Nanoscale W/CoFeB/MgO, Appl. Phys. Lett. 109 (2016). [55] T.-Y. Chen, C.-T. Wu, H.-W. Yen, and C.-F. Pai, Tunable Spin-Orbit Torque in Cu-Ta Binary Alloy Heterostructures, Phys. Rev. B 96, 104434 (2017). [56] L. Zhu, D. C. Ralph, and R. A. Buhrman, Lack of Simple Correlation between Switching Current Density and Spin-Orbit-Torque Efficiency of Perpendicularly Magnetized Spin-Current-Generator--Ferromagnet Heterostructures, Phys. Rev. Appl. 15, 024059 (2021). [57] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect, Phys. Rev. Lett. 106, 036601 (2011). [58] C.-W. Peng, W.-B. Liao, T.-Y. Chen, and C.-F. Pai, Efficient Spin-Orbit Torque Generation in Semiconducting WTe2 with Hopping Transport, ACS Appl. Mater. Interfaces 13, 15950 (2021). [59] C.-F. Pai, Y. Ou, L. H. Vilela-Leão, D. C. Ralph, and R. A. Buhrman, Dependence of the Efficiency of Spin Hall Torque on the Transparency of Pt/Ferromagnetic Layer Interfaces, Phys. Rev. B 92, 064426 (2015). [60] C. Kim, D. Kim, B. S. Chun, K.-W. Moon, and C. Hwang, Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field, Phys. Rev. Appl. 9, 054035 (2018). [61] J. Wei, C. He, X. Wang, H. Xu, Y. Liu, Y. Guang, C. Wan, J. Feng, G. Yu, and X. Han, Characterization of Spin-Orbit Torque Efficiency in Magnetic Heterostructures with Perpendicular Magnetic Anisotropy Via Spin-Torque Ferromagnetic Resonance, Phys. Rev. Appl. 13, 034041 (2020). [62] C. He, G. Yu, C. Grezes, J. Feng, Z. Zhao, S. A. Razavi, Q. Shao, A. Navabi, X. Li, Q. L. He, M. Li, J. Zhang, K. L. Wong, D. Wei, G. Zhang, X. Han, P. K. Amiri, and K. L. Wang, Spin-Torque Ferromagnetic Resonance in W/Co−Fe−B/W/Co−Fe−B/MgO Stacks, Phys. Rev. Appl. 10, 034067 (2018). [63] H. Nakayama, M. Althammer, Y. T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprags, M. Opel, S. Takahashi, R. Gross, G. E. Bauer, S. T. Goennenwein, and E. Saitoh, Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect, Phys. Rev. Lett. 110, 206601 (2013). [64] S. Cho, S.-h. C. Baek, K.-D. Lee, Y. Jo, and B.-G. Park, Large Spin Hall Magnetoresistance and Its Correlation to the Spin-Orbit Torque in W/CoFeB/MgO Structures, Sci. Rep. 5, 14668 (2015). [65] J.-G. Choi, J. W. Lee, and B.-G. Park, Spin Hall Magnetoresistance in Heavy-Metal/Metallic-Ferromagnet Multilayer Structures, Phys. Rev. B 96, 174412 (2017). [66] J. Kim, P. Sheng, S. Takahashi, S. Mitani, and M. Hayashi, Spin Hall Magnetoresistance in Metallic Bilayers, Phys. Rev. Lett. 116, 097201 (2016). [67] C. O. Avci, K. Garello, M. Gabureac, A. Ghosh, A. Fuhrer, S. F. Alvarado, and P. Gambardella, Interplay of Spin-Orbit Torque and Thermoelectric Effects in Ferromagnet/Normal-Metal Bilayers, Phys. Rev. B 90, 224427 (2014). [68] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Symmetry and Magnitude of Spin-Orbit Torques in Ferromagnetic Heterostructures, Nat. Nanotechnol. 8, 587 (2013). [69] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Layer Thickness Dependence of the Current-Induced Effective Field Vector in Ta|CoFeB|MgO, Nat. Mater. 12, 240 (2013). [70] M. Hayashi, J. Kim, M. Yamanouchi, and H. Ohno, Quantitative Characterization of the Spin-Orbit Torque Using Harmonic Hall Voltage Measurements, Phys. Rev. B 89, 144425 (2014). [71] T. Schulz, K. Lee, B. Krüger, R. Lo Conte, G. V. Karnad, K. Garcia, L. Vila, B. Ocker, D. Ravelosona, and M. Kläui, Effective Field Analysis Using the Full Angular Spin-Orbit Torque Magnetometry Dependence, Phys. Rev. B 95, 224409 (2017). [72] L. Zhu, K. Sobotkiewich, X. Ma, X. Li, D. C. Ralph, and R. A. Buhrman, Strong Damping-Like Spin-Orbit Torque and Tunable Dzyaloshinskii–Moriya Interaction Generated by Low-Resistivity Pd1−xPtx Alloys, Advanced Functional Materials 29, 1805822 (2019). [73] S. Karimeddiny, T. M. J. Cham, O. Smedley, D. C. Ralph, and Y. K. Luo, Sagnac Interferometry for High-Sensitivity Optical Measurements of Spin-Orbit Torque, Sci. Adv. 9, eadi9039 (2023). [74] N. Roschewsky, E. S. Walker, P. Gowtham, S. Muschinske, F. Hellman, S. R. Bank, and S. Salahuddin, Spin-Orbit Torque and Nernst Effect in Bi-Sb/Co Heterostructures, Phys. Rev. B 99, 195103 (2019). [75] Y.-T. Liu, T.-Y. Chen, T.-H. Lo, T.-Y. Tsai, S.-Y. Yang, Y.-J. Chang, J.-H. Wei, and C.-F. Pai, Determination of Spin-Orbit-Torque Efficiencies in Heterostructures with In-Plane Magnetic Anisotropy, Phys. Rev. Appl. 13, 044032 (2020). [76] C.-F. Pai, M. Mann, A. J. Tan, and G. S. D. Beach, Determination of Spin Torque Efficiencies in Heterostructures with Perpendicular Magnetic Anisotropy, Phys. Rev. B 93, 144409 (2016). [77] J. H. Franken, M. Herps, H. J. Swagten, and B. Koopmans, Tunable Chiral Spin Texture in Magnetic Domain-Walls, Sci. Rep. 4, 5248 (2014). [78] S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-M. Ahn, P. Agrawal, D. C. Bono, and G. S. D. Beach, Spin Hall Torque Magnetometry of Dzyaloshinskii Domain Walls, Phys. Rev. B 90, 184427 (2014). [79] K. S. Ryu, L. Thomas, S. H. Yang, and S. Parkin, Chiral Spin Torque at Magnetic Domain Walls, Nat. Nanotechnol. 8, 527 (2013). [80] S. Emori, U. Bauer, S. M. Ahn, E. Martinez, and G. S. Beach, Current-Driven Dynamics of Chiral Ferromagnetic Domain Walls, Nat. Mater. 12, 611 (2013). [81] J. Liu, T. Ohkubo, S. Mitani, K. Hono, and M. Hayashi, Correlation between the Spin Hall Angle and the Structural Phases of Early 5d Transition Metals, Appl. Phys. Lett. 107 (2015). [82] Q. Hao, W. Chen, and G. Xiao, Beta (β) Tungsten Thin Films: Structure, Electron Transport, and Giant Spin Hall Effect, Appl. Phys. Lett. 106 (2015). [83] T.-Y. Tsai, T.-Y. Chen, C.-T. Wu, H.-I. Chan, and C.-F. Pai, Spin-Orbit Torque Magnetometry by Wide-Field Magneto-Optical Kerr Effect, Sci. Rep. 8, 5613 (2018). [84] T.-Y. Chen, C.-W. Peng, T.-Y. Tsai, W.-B. Liao, C.-T. Wu, H.-W. Yen, and C.-F. Pai, Efficient Spin–Orbit Torque Switching with Nonepitaxial Chalcogenide Heterostructures, ACS Appl. Mater. Interfaces 12, 7788 (2020). [85] K. Fritz, S. Wimmer, H. Ebert, and M. Meinert, Large Spin Hall Effect in an Amorphous Binary Alloy, Phys. Rev. B 98 (2018). [86] E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L. E. Hueso, Y. Niimi, Y. Otani, and F. Casanova, Tuning the Spin Hall Effect of Pt from the Moderately Dirty to the Superclean Regime, Phys. Rev. B 94, 060412 (2016). [87] K. U. Demasius, T. Phung, W. Zhang, B. P. Hughes, S. H. Yang, A. Kellock, W. Han, A. Pushp, and S. S. P. Parkin, Enhanced Spin-Orbit Torques by Oxygen Incorporation in Tungsten Films, Nat. Commun. 7, 10644 (2016). [88] J. W. Lee, Y.-W. Oh, S.-Y. Park, A. I. Figueroa, G. van der Laan, G. Go, K.-J. Lee, and B.-G. Park, Enhanced Spin-Orbit Torque by Engineering Pt Resistivity in Pt/Co/Alox Structures, Phys. Rev. B 96, 064405 (2017). [89] H. An, Y. Kanno, A. Asami, and K. Ando, Giant Spin-Torque Generation by Heavily Oxidized Pt, Phys. Rev. B 98 (2018). [90] X. Sui, C. Wang, J. Kim, J. Wang, S. H. Rhim, W. Duan, and N. Kioussis, Giant Enhancement of the Intrinsic Spin Hall Conductivity in β-Tungsten Via Substitutional Doping, Phys. Rev. B 96, 241105 (2017). [91] O. L. W. McHugh, W. F. Goh, M. Gradhand, and D. A. Stewart, Impact of Impurities on the Spin Hall Conductivity in β-W, Phys. Rev. Mater. 4, 094404 (2020). [92] T. Ishikawa, R. Akashi, K. Kubo, Y. Toga, K. Inukai, I. Rittaporn, M. Hayashi, and S. Tsuneyuki, Large Intrinsic Spin Hall Conductivity in Orthorhombic Tungsten, Phys. Rev. Mater. 7, 026202 (2023). [93] I. M. Miron, K. Garello, G. Gaudin, P. J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular Switching of a Single Ferromagnetic Layer Induced by in-Plane Current Injection, Nature 476, 189 (2011). [94] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin Transfer Torque Devices Utilizing the Giant Spin Hall Effect of Tungsten, Appl. Phys. Lett. 101, 122404 (2012). [95] C.-F. Pai, M.-H. Nguyen, C. Belvin, L. H. Vilela-Leão, D. C. Ralph, and R. A. Buhrman, Enhancement of Perpendicular Magnetic Anisotropy and Transmission of Spin-Hall-Effect-Induced Spin Currents by a Hf Spacer Layer in W/Hf/CoFeB/MgO Layer Structures, Appl. Phys. Lett. 104, 082407 (2014). [96] K. K. Vudya Sethu, S. Ghosh, S. Couet, J. Swerts, B. Sorée, J. De Boeck, G. S. Kar, and K. Garello, Optimization of Tungsten β-Phase Window for Spin-Orbit-Torque Magnetic Random-Access Memory, Phys. Rev. Appl. 16, 064009 (2021). [97] S. C. Baek, V. P. Amin, Y. W. Oh, G. Go, S. J. Lee, G. H. Lee, K. J. Kim, M. D. Stiles, B. G. Park, and K. J. Lee, Spin Currents and Spin-Orbit Torques in Ferromagnetic Trilayers, Nat. Mater. 17, 509 (2018). [98] N. Murray, W.-B. Liao, T.-C. Wang, L.-J. Chang, L.-Z. Tsai, T.-Y. Tsai, S.-F. Lee, and C.-F. Pai, Field-Free Spin-Orbit Torque Switching through Domain Wall Motion, Phys. Rev. B 100, 104441 (2019). [99] G. Yu, P. Upadhyaya, Y. Fan, J. G. Alzate, W. Jiang, K. L. Wong, S. Takei, S. A. Bender, L. T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Switching of Perpendicular Magnetization by Spin-Orbit Torques in the Absence of External Magnetic Fields, Nat. Nanotechnol. 9, 548 (2014). [100] L. You, O. Lee, D. Bhowmik, D. Labanowski, J. Hong, J. Bokor, and S. Salahuddin, Switching of Perpendicularly Polarized Nanomagnets with Spin Orbit Torque without an External Magnetic Field by Engineering a Tilted Anisotropy, Proc. Natl. Acad. Sci. U.S.A. 112, 10310 (2015). [101] S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Magnetization Switching by Spin-Orbit Torque in an Antiferromagnet-Ferromagnet Bilayer System, Nat. Mater. 15, 535 (2016). [102] Y. C. Lau, D. Betto, K. Rode, J. M. Coey, and P. Stamenov, Spin-Orbit Torque Switching without an External Field Using Interlayer Exchange Coupling, Nat. Nanotechnol. 11, 758 (2016). [103] W. J. Kong, C. H. Wan, X. Wang, B. S. Tao, L. Huang, C. Fang, C. Y. Guo, Y. Guang, M. Irfan, and X. F. Han, Spin-Orbit Torque Switching in a T-Type Magnetic Configuration with Current Orthogonal to Easy Axes, Nat. Commun. 10, 233 (2019). [104] L. Liu, C. Zhou, X. Shu, C. Li, T. Zhao, W. Lin, J. Deng, Q. Xie, S. Chen, J. Zhou, R. Guo, H. Wang, J. Yu, S. Shi, P. Yang, S. Pennycook, A. Manchon, and J. Chen, Symmetry-Dependent Field-Free Switching of Perpendicular Magnetization, Nat. Nanotechnol. 16, 277 (2021). [105] Y.-H. Huang, C.-C. Huang, W.-B. Liao, T.-Y. Chen, and C.-F. Pai, Growth-Dependent Interlayer Chiral Exchange and Field-Free Switching, Phys. Rev. Appl. 18, 034046 (2022). [106] W. Chen, L. Qian, and G. Xiao, Deterministic Current Induced Magnetic Switching without External Field Using Giant Spin Hall Effect of β-W, Sci. Rep. 8, 8144 (2018). [107] S.-C. Kao, C.-Y. Lin, W.-B. Liao, P.-C. Wang, C.-Y. Hu, Y.-H. Huang, Y.-T. Liu, and C.-F. Pai, Field-Free Magnetization Switching through Modulation of Zero-Field Spin–Orbit Torque Efficacy, APL Materials 11 (2023). [108] N. S. E. Osman and T. Moyo, Temperature Dependence of Coercivity and Magnetization of Sr1/3mn1/3co1/3fe2o4 Ferrite Nanoparticles, Journal of Superconductivity and Novel Magnetism 29, 361 (2016). [109] C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, and I. Obaidat, in Magnetochemistry2017). [110] J. Kim, J. Sinha, S. Mitani, M. Hayashi, S. Takahashi, S. Maekawa, M. Yamanouchi, and H. Ohno, Anomalous Temperature Dependence of Current-Induced Torques in CoFeB/MgO Heterostructures with Ta-Based Underlayers, Phys. Rev. B 89, 174424 (2014). [111] P. Phu, K. Yamanoi, K. Ohnishi, J. Hyodo, K. Rogdakis, Y. Yamazaki, T. Kimura, and H. Kurebayashi, Bolometric Ferromagnetic Resonance Techniques for Characterising Spin-Hall Effect at High Temperatures, J. Mag. Mag. Mater. 485, 304 (2019). [112] Y. Wang, P. Deorani, X. Qiu, J. H. Kwon, and H. Yang, Determination of Intrinsic Spin Hall Angle in Pt, Appl. Phys. Lett. 105, 152412 (2014). [113] K. Nakagawara, S. Kasai, J. Ryu, S. Mitani, L. Liu, M. Kohda, and J. Nitta, Temperature-Dependent Spin Hall Effect Tunneling Spectroscopy in Platinum, Appl. Phys. Lett. 115, 162403 (2019). [114] J. Z. Sun, S. L. Brown, W. Chen, E. A. Delenia, M. C. Gaidis, J. Harms, G. Hu, X. Jiang, R. Kilaru, W. Kula, G. Lauer, L. Q. Liu, S. Murthy, J. Nowak, E. J. O’Sullivan, S. S. P. Parkin, R. P. Robertazzi, P. M. Rice, G. Sandhu, T. Topuria, and D. C. Worledge, Spin-Torque Switching Efficiency in CoFeB-MgO Based Tunnel Junctions, Phys. Rev. B 88, 104426 (2013). [115] D. Bhowmik, M. E. Nowakowski, L. You, O. Lee, D. Keating, M. Wong, J. Bokor, and S. Salahuddin, Deterministic Domain Wall Motion Orthogonal to Current Flow Due to Spin Orbit Torque, Sci. Rep. 5, 11823 (2015). [116] S. Zhang, S. Luo, N. Xu, Q. Zou, M. Song, J. Yun, Q. Luo, Z. Guo, R. Li, W. Tian, X. Li, H. Zhou, H. Chen, Y. Zhang, X. Yang, W. Jiang, K. Shen, J. Hong, Z. Yuan, L. Xi, K. Xia, S. Salahuddin, B. Dieny, and L. You, A Spin–Orbit-Torque Memristive Device, Adv. Electron. Mater. 5, 1800782 (2019). [117] D. Kumar, H. J. Chung, J. Chan, T. Jin, S. T. Lim, S. S. P. Parkin, R. Sbiaa, and S. N. Piramanayagam, Ultralow Energy Domain Wall Device for Spin-Based Neuromorphic Computing, ACS Nano 17, 6261 (2023). [118] J. Zhou, T. Zhao, X. Shu, L. Liu, W. Lin, S. Chen, S. Shi, X. Yan, X. Liu, and J. Chen, Spin–Orbit Torque-Induced Domain Nucleation for Neuromorphic Computing, Adv. Mater. 33, 2103672 (2021). [119] T.-Y. Chen, Y.-C. Hsiao, W.-B. Liao, and C.-F. Pai, Tailoring Neuromorphic Switching by CuNx-Mediated Orbital Currents, Phys. Rev. Appl. 17, 064005 (2022). [120] A. Kurenkov, C. Zhang, S. DuttaGupta, S. Fukami, and H. Ohno, Device-Size Dependence of Field-Free Spin-Orbit Torque Induced Magnetization Switching in Antiferromagnet/Ferromagnet Structures, Appl. Phys. Lett. 110, 092410 (2017). [121] T. Jin, C. Ang, X. Wang, W. Siang Lew, and S. N. Piramanayagam, Efficient Spin–Orbit Torque Magnetization Switching by Reducing Domain Nucleation Energy, J. Mag. Mag. Mater. 562, 169759 (2022). [122] C. H. Wan, M. E. Stebliy, X. Wang, G. Q. Yu, X. F. Han, A. G. Kolesnikov, M. A. Bazrov, M. E. Letushev, A. V. Ognev, and A. S. Samardak, Gradual Magnetization Switching Via Domain Nucleation Driven by Spin–Orbit Torque, Appl. Phys. Lett. 118, 032407 (2021). [123] A. Kurenkov, S. DuttaGupta, C. Zhang, S. Fukami, Y. Horio, and H. Ohno, Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin-Orbit Torque Switching, Adv Mater 31, e1900636 (2019). [124] Y. Tao, C. Sun, W. Li, C. Wang, F. Jin, Y. Zhang, Z. Guo, Y. Zheng, X. Wang, and K. Dong, Spin–Orbit Torque-Driven Memristor in L10 FePt Systems with Nanoscale-Thick Layers for Neuromorphic Computing, ACS Applied Nano Materials 6, 875 (2023). [125] W. A. Applied Physics ExpressBorders, H. Akima, S. Fukami, S. Moriya, S. Kurihara, Y. Horio, S. Sato, and H. Ohno, Analogue Spin–Orbit Torque Device for Artificial-Neural-Network-Based Associative Memory Operation, Appl. Phys. Express 10, 013007 (2017). [126] X. Sun and S. Yu, Impact of Non-Ideal Characteristics of Resistive Synaptic Devices on Implementing Convolutional Neural Networks, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 570 (2019). [127] J. W. Chenchen, M. A. K. B. Akhtar, R. Sbiaa, M. Hao, L. Y. H. Sunny, W. S. Kai, L. Ping, P. Carlberg, and A. K. S. Arthur, Size Dependence Effect in MgO-Based CoFeB Tunnel Junctions with Perpendicular Magnetic Anisotropy, Jpn. J. Appl. Phys. 51 (2012). [128] W. Stefanowicz, L. E. Nistor, S. Pizzini, W. Kuch, L. D. Buda-Prejbeanu, G. Gaudin, S. Auffret, B. Rodmacq, and J. Vogel, Size Dependence of Magnetic Switching in Perpendicularly Magnetized MgO/Co/Pt Pillars Close to the Spin Reorientation Transition, Appl. Phys. Lett. 104, 012404 (2014). [129] D. Li, S. Chen, Y. Zuo, J. Yun, B. Cui, K. Wu, X. Guo, D. Yang, J. Wang, and L. Xi, Roles of Joule Heating and Spin-Orbit Torques in the Direct Current Induced Magnetization Reversal, Sci. Rep. 8, 12959 (2018). [130] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, Thermally Activated Switching of Perpendicular Magnet by Spin-Orbit Spin Torque, Appl. Phys. Lett. 104, 072413 (2014). [131] K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Ultrafast Magnetization Switching by Spin-Orbit Torques, Appl. Phys. Lett. 105, 212402 (2014). [132] B. Jinnai, H. Sato, S. Fukami, and H. Ohno, Scalability and Wide Temperature Range Operation of Spin-Orbit Torque Switching Devices Using Co/Pt Multilayer Nanowires, Appl. Phys. Lett. 113, 212403 (2018). [133] C. Zhang, S. Fukami, S. DuttaGupta, H. Sato, and H. Ohno, Time and Spatial Evolution of Spin–Orbit Torque-Induced Magnetization Switching in W/CoFeB/MgO Structures with Various Sizes, Jpn. J. Appl. Phys. 57, 04FN02 (2018). [134] S. Kanai, Y. Nakatani, M. Yamanouchi, S. Ikeda, F. Matsukura, and H. Ohno, In-Plane Magnetic Field Dependence of Electric Field-Induced Magnetization Switching, Appl. Phys. Lett. 103, 072408 (2013). [135] C. Grezes, A. Rojas Rozas, F. Ebrahimi, J. G. Alzate, X. Cai, J. A. Katine, J. Langer, B. Ocker, P. Khalili Amiri, and K. L. Wang, In-Plane Magnetic Field Effect on Switching Voltage and Thermal Stability in Electric-Field-Controlled Perpendicular Magnetic Tunnel Junctions, AIP Adv. 6, 075014 (2016). [136] S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, A Spin-Orbit Torque Switching Scheme with Collinear Magnetic Easy Axis and Current Configuration, Nat. Nanotechnol. 11, 621 (2016). [137] K. J. Lee, Y. Liu, A. Deac, M. Li, J. W. Chang, S. Liao, K. Ju, O. Redon, J. P. Nozières, and B. Dieny, Spin Transfer Effect in Spin-Valve Pillars for Current-Perpendicular-to-Plane Magnetoresistive Heads (Invited), J. Appl. Phys. 95, 7423 (2004). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93158 | - |
| dc.description.abstract | 自旋矩的磁阻式隨存取記憶體正快速發展於嵌入式應用,並由於具備非揮發性質、快速運作速度、和低功耗的優點,磁阻式隨存取記憶體具備作為末級快取的潛力。在能夠從電荷電流中生成自旋電流的材料中,5d過渡金屬如鉭 (Ta)、鉑 (Pt)和 鎢 (W)由於其中強大的自旋軌道耦合,經常被選用,可透過自旋霍爾效應產生自旋電流,進而產生自旋軌道轉矩翻轉鐵磁層之磁化方向。在 5d過渡金屬元素中,鉭和鎢成為當代具有高穿隧磁阻比的鈷鐵硼/氧化鎂(CoFeB/MgO)磁穿隧結構中自旋電流的來源。此篇論文主要聚焦於鎢的異質結構。首先,透過檢驗其晶體結構、磁性、電性、以及自旋軌道矩相關等基本性質,建立基礎的瞭解。研究顯示,阿法相的鎢 (α-W) 因其在所有過渡金屬中最高的自旋霍爾電導率,和可實現的電流誘發自旋軌道矩翻轉而成為潛在的高效自旋電流材料。在對基本性質有瞭解後,對標準和零場翻轉的鎢異質結構的自旋軌道矩效率和熱穩定性 進行了在不同溫度和脈衝寬度下的檢驗。值得注意的是,自旋軌道矩效率在攝氏70度下仍保持恆定,而熱穩定性隨著溫度上升而下降。此外,展示了基於磁壁運動的磁記憶性翻轉行為,在不同脈衝寬度下,磁記憶性翻轉的區間大小保持不變,但在較高溫度下減小。最後,研究深入探討了元件的尺寸和幾何形狀對性質的影響。磁壁去釘扎模型被驗證可正確的估算自旋軌道矩效率和臨界翻轉電流密度。此外,由於在霍爾條 (Hall bar)元件與磁穿隧結構中相似的結果,其被驗證為對自旋軌道矩效率和臨界翻轉電流密度進行評估的可靠測試元件。本論文全面深入地探討了以鎢為自旋軌道矩來源的自旋軌道矩元件,為未來記憶體應用提供了全面性的理解。 | zh_TW |
| dc.description.abstract | Spin torque-based magnetic random access memory (MRAM) is rapidly advancing for embedded applications and holds the potential to serve as a last-level cache owing to its nonvolatile nature, fast operation speed, and low power consumption. Among materials proficient in generating spin current from charge current, 5d transition metals like Ta, Pt, and W are frequently selected due to the strong spin-orbit coupling (SOC) therein, which can induce spin currents and spin-orbit torque (SOT) through the spin Hall effect (SHE). In the realm of 5d transition metal, Ta and W emerge as prevalent sources of spin currents for contemporary CoFeB/MgO-based magnetic tunnel junction (MTJ) with high tunneling magnetoresistance ratio (TMR). This thesis primarily focuses on W-based magnetic heterostructures. First, the foundational comprehension is built through examining the basic properties including structural, magnetic, electrical, and SOT-related properties. The investigation reveals that α-W stands out as a potential candidate for efficient generating SOT due to the highest spin Hall conductivity = 3.71x10^5 Ω^-1^m-1 among all transition metal and the achievable current-induced SOT switching. Following the fundamental examinations, SOT efficiency and thermal stability factors in standard and field-free W-based magnetic heterostructures are characterized across various temperatures and pulse-widths. Notably, SOT efficiency remains constant up to 70 °C (343 K), while the thermal stability factor monotonically decreases with rising temperature. Besides, the memrisitive switching behaviors based on domain wall motion are demonstrated, presenting the size of the memristive window remains invariant under different pulse-widths but reduced at elevated temperature. Last, the study delves into the dimensions (ranging from 5-µm Hall bar, micrometer-sized pillar device, and submicrometer-sized pillar device) and geometry (Hall bar, pillar, and three-terminal MTJ) of the devices. The domain depinning model is verified to securitize the SOT efficiency or critical switching current density accurately. Moreover, the Hall bar device, yielding the consistent results with three-terminal device, is identified as a reliable test vehicle for characterizing SOT efficiency and critical switching current density before committing substantial resources to three-terminal SOT device fabrication. In conclusion, this thesis offers comprehensive insights into W-based SOT devices, providing fundamental understanding for leveraging W in future memory applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-22T16:07:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-22T16:07:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv ABSTRACT v LIST OF FIGURES xi LIST OF TABLES xxiv Chapter 1 Introduction 1 1.1 Magnetoresistance 1 1.1.1 Anisotropic magnetoresistance 1 1.1.2 Giant magnetoresistance 2 1.1.3 Tunneling magnetoresistance 5 1.2 Spin torque 10 1.2.1 Spin transfer torque 10 1.2.2 Spin-orbit torque 12 1.2.3 Spin transfer torque and spin-orbit torque MRAM 14 1.3 Hall effect 16 1.3.1 Anomalous Hall effect 16 1.3.2 Spin Hall effect 18 1.4 Transition metal 21 1.5 Thermal stability and thermal effects 24 1.5.1 Thermal stability 24 1.5.2 Thermal effects 26 1.6 Device size scale 27 1.7 Motivation 29 Chapter 2 Characterization method 31 2.1 Introduction 31 2.2 Quantification methods: no magnetization reversal 31 2.2.1 Spin torque ferromagnetic resonance 31 2.2.2 Spin Hall magnetoresistance 32 2.2.3 Harmonic Hall voltage measurement 33 2.3 Quantification methods: involving magnetization reversal 34 2.3.1 Unidirectional magnetoresistance 34 2.3.2 Hysteresis loop shift measurement 35 2.3.3 Current-induced SOT switching measurement 38 Chapter 3 Basic properties of W-based magnetic heterostructures 39 3.1 Introduction 39 3.2 Structural and magnetic properties 39 3.3 Electrical properties 43 3.4 SOT characterization 45 3.5 Spin Hall conductivity 48 3.6 Current-induced magnetization switching 50 3.7 MOKE image 53 3.8 Short summary 54 Chapter 4 Temperature and pulse-width effects 56 4.1 Introduction 56 4.2 High temperature deposition 56 4.3 Temperature dependence of SOT efficiency 59 4.4 Thermal stability factor 63 4.5 Memristive switching in standard sample 68 4.6 Thermal stability and memristive switching in field-free sample 72 4.7 Neuromorphic computing 75 4.8 Short summary 77 Chapter 5 Device size effect on SOT and analysis method 79 5.1 Introduction 79 5.2 Pillar fabrication and process effect 79 5.3 Size dependence of SOT efficiency DL 87 5.4 Size dependence of SOT switching current density Jc 90 5.5 Discussion of macrospin behavior 94 5.6 Hall bar vs. three-terminal device 97 5.7 Short summary 102 Chapter 6 Summary 104 Chapter 7 Appendix 107 7.1 SMR measurement 107 7.2 Wide-field MOKE on in-plane magnetized sample 109 7.3 Current switching using arbitrary waveform generator 113 7.4 Thin film deposition of MTJ structure 114 7.5 Self-aligned magnetic tunnel junction 118 Bibliography 121 | - |
| dc.language.iso | en | - |
| dc.subject | 自旋霍爾效應 | zh_TW |
| dc.subject | 磁穿隧異質結構 | zh_TW |
| dc.subject | 過渡金屬元素 | zh_TW |
| dc.subject | 自旋軌道矩 | zh_TW |
| dc.subject | 垂直異向性 | zh_TW |
| dc.subject | spin Hall effect | en |
| dc.subject | magnetic tunnel junction | en |
| dc.subject | perpendicular magnetic anisotropy | en |
| dc.subject | spin-orbit torque | en |
| dc.subject | transition metal | en |
| dc.title | 研究多種鎢基自旋電子元件之自旋軌道矩 | zh_TW |
| dc.title | Investigation of spin-orbit torque in diverse types of tungsten-based spintronic devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃彥霖;楊朝堯;魏拯華;宋明遠 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Lin Huang;Chao-Yao Yang;Jeng-Hua Wei;Ming-Yuan Song | en |
| dc.subject.keyword | 自旋霍爾效應,自旋軌道矩,垂直異向性,磁穿隧異質結構,過渡金屬元素, | zh_TW |
| dc.subject.keyword | spin Hall effect,spin-orbit torque,perpendicular magnetic anisotropy,magnetic tunnel junction,transition metal, | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202401508 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
