請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93121| 標題: | 諾特線上(2,4)-型之三維代數多樣體 Threefolds on the Noether Line of Type-(2,4) |
| 作者: | 蘇品丞 Phin-Sing Soo |
| 指導教授: | 陳榮凱 Jungkai Alfred Chen |
| 關鍵字: | 雙有理幾何,模空間,一般型代數多樣體,諾特不等式,環面多樣體,歐拉示性數, birational geometry,moduli space,varieties of general type,Noether inequality,toric varieties,Euler characteristic, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 本文具體地構造出數個 (2, 4)-型的三維代數多樣體的例子,並描述它們的極小模型 (minimal model) 與正則模型 (canonical model);這些代數多樣體落在諾特線 (Noether line) 上。對於每個例子 X,我們也計算了上同調空間 H^1(X, T_X) 的維度;該空間描述了 X 的一階形變。這推廣了堀川穎二 (E. Horikawa) 在曲面 (即二維情形) 上的一部份工作。 We construct explicit examples of algebraic threefolds of general type with invariants (vol(X), p_g(X)) = (2, 4) and describe their minimal and canonical model(s); in particular, such threefolds lie on the Noether line. For each of the examples X, we compute the dimension of H^1(X, T_X), the space of first-order infinitesimal deformations of X; this partially generalizes E. Horikawa’s work on surfaces. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93121 |
| DOI: | 10.6342/NTU202401709 |
| 全文授權: | 同意授權(全球公開) |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
