Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱zh_TW
dc.contributor.advisorJungkai Alfred Chenen
dc.contributor.author蘇品丞zh_TW
dc.contributor.authorPhin-Sing Sooen
dc.date.accessioned2024-07-17T16:31:38Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citation[BHPV04] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact Complex Surfaces, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004.
[BT82] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982.
[CCJ20] Jungkai A. Chen, Meng Chen, and Chen Jiang, The Noether inequality for algebraic 3-folds, Duke Math. J. 169 (2020), no. 9, 1603–1645, With an appendix by János Kollár.
[CH17] Yifan Chen and Yong Hu, On canonically polarized Gorenstein 3-folds satisfying the Noether equality, Math. Res. Lett. 24 (2017), no. 2, 271–297.
[Che07] Meng Chen, A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann. 337 (2007), no. 4, 887–908.
[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
[CP23] Stephen Coughlan and Roberto Pignatelli, Simple fibrations in (1, 2)-surfaces, Forum Math. Sigma 11 (2023), Paper No. e43, 29.
[Har77] Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. No. 52, Springer-Verlag, New York-Heidelberg, 1977.
[Hor75] Eiji Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), no. 1, 43–85.
[Hor76] Eiji Horikawa, Algebraic surfaces of general type with small c_2^1. I, Ann. of Math. (2) 104 (1976), no. 2, 357–387.
[Kem93] G. R. Kempf, Algebraic Varieties, London Mathematical Society Lecture Note Series, vol. 172, Cambridge University Press, Cambridge, 1993.
[KM98] János Kollár and Shigefumi Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[KO75] Shoshichi Kobayashi and Takushiro Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), no. 1, 7–16.
[Kob92] Masanori Kobayashi, On Noether’s inequality for threefolds, J. Math. Soc. Japan 44 (1992), no. 1, 145–156.
[Laz04] Robert Lazarsfeld, Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004, Classical Setting: Line Bundles and Linear Series.
[Mor82] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176.
[Noe75] M. Noether, Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde, Mathematische Annalen 8 (1875), no. 4, 495–533.
[Ser06] Edoardo Sernesi, Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006.
[Vak24] R. Vakil, The Rising Sea: Foundations of Algebraic Geometry, https://math.stanford.edu/~vakil/216blog/FOAGfeb2124public.pdf, 2024, Draft as of February 21, 2024.
[Wav68] John J. Wavrik, Deformations of branched coverings of complex manifolds, Amer. J. Math. 90 (1968), 926–960.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93121-
dc.description.abstract本文具體地構造出數個 (2, 4)-型的三維代數多樣體的例子,並描述它們的極小模型 (minimal model) 與正則模型 (canonical model);這些代數多樣體落在諾特線 (Noether line) 上。對於每個例子 X,我們也計算了上同調空間 H^1(X, T_X) 的維度;該空間描述了 X 的一階形變。這推廣了堀川穎二 (E. Horikawa) 在曲面 (即二維情形) 上的一部份工作。zh_TW
dc.description.abstractWe construct explicit examples of algebraic threefolds of general type with invariants (vol(X), p_g(X)) = (2, 4) and describe their minimal and canonical model(s); in particular, such threefolds lie on the Noether line. For each of the examples X, we compute the dimension of H^1(X, T_X), the space of first-order infinitesimal deformations of X; this partially generalizes E. Horikawa’s work on surfaces.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:31:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:31:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 iii
摘要 v
Abstract vii
Contents ix
Introduction 1
Chapter 1 Preliminaries 5
Chapter 2 Examples of Threefolds of Type-(2, 4) 11
2.1 The Constructions 11
2.2 Minimal and Canonical Models 19
2.3 Canonical Images 33
2.4 Summary 37
Chapter 3 Moduli Aspects of Threefolds of Type-(2, 4) 39
3.1 Sizes of Space of Deformations 39
3.2 Euler Characteristics 54
Chapter 4 Discussion and Future Work 61
Appendix A C++ Code for Computing Cohomology on Hirzebruch Surfaces 65
References 69
-
dc.language.isoen-
dc.subject雙有理幾何zh_TW
dc.subject模空間zh_TW
dc.subject一般型代數多樣體zh_TW
dc.subject諾特不等式zh_TW
dc.subject環面多樣體zh_TW
dc.subject歐拉示性數zh_TW
dc.subjectvarieties of general typeen
dc.subjectbirational geometryen
dc.subjectEuler characteristicen
dc.subjecttoric varietiesen
dc.subjectNoether inequalityen
dc.subjectmoduli spaceen
dc.title諾特線上(2,4)-型之三維代數多樣體zh_TW
dc.titleThreefolds on the Noether Line of Type-(2,4)en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴青瑞;陳俊成;林學庸zh_TW
dc.contributor.oralexamcommitteeChing-Jui Lai;Jiun-Cheng Chen;Hsueh-Yung Linen
dc.subject.keyword雙有理幾何,模空間,一般型代數多樣體,諾特不等式,環面多樣體,歐拉示性數,zh_TW
dc.subject.keywordbirational geometry,moduli space,varieties of general type,Noether inequality,toric varieties,Euler characteristic,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202401709-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved