Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰zh_TW
dc.contributor.advisorHuan-Jang Kehen
dc.contributor.author余展維zh_TW
dc.contributor.authorChan-Wei Yuen
dc.date.accessioned2024-07-17T16:21:58Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citationAbate J and Valkó P P 2004 Multi-precision Laplace transform inversion Int. J. Numer. Meth. Eng. 60 979–993
Ashmawy E A 2012 A general formula for the drag on a sphere placed in a creeping unsteady micropolar fluid flow Meccanica 47 1903-1912
Ashmawy E A 2017 Unsteady translational motion of a slip sphere in a viscous fluid using the fractional Navier-Stokes equation Eur. Phys. J. Plus 132 142
Basset A B 1888 A Treatise on Hydrodynamics vol 2 (Cambridge: Deighton, Bell and Co.)
Bird R B, Stewart W E and Lightfoot E N 2007 Transport phenomena revised 2nd ed. (New York: Wiley)
Brinkman H C 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles Appl. Sci. Res. A1 27-34
Buonocore S, Sen M and Semperlotti F 2019 A fractional-order approach for transient creeping flow of spheres AIP Advances 9 085323
Dill L H and Balasubramaniam R 1992 Unsteady thermocapillary migration of isolated drops in creeping flow Int. J. Heat Fluid Flow 13 78-85
Fakour M, Rahbari A, Moghadasi H, Rahimipetroudi I, Domairry Ganji D and Varmazyar M 2018 Analytical study of unsteady sedimentation analysis of spherical particle in Newtonian fluid media Thermal Sci. 22 847-855
Feng J and Joseph D D 1995 The unsteady motion of solid bodies in creeping flows J. Fluid Mech. 303 83-102
Gomez-Solano J R and Bechinger C 2015 Transient dynamics of a colloidal particle driven through a viscoelastic fluid New J. Phys. 17 103032
Hadamard J S 1911 Mouvement permanent lent d’une sphere liquid et visqueuse dans un liquide visqueux Compt. Rend. Acad. Sci. (Paris) 152 1735-1738
Keh H J and Huang Y C 2005 Transient electrophoresis of dielectric spheres J. Colloid Interface Sci. 291 282-291
Lai Y C and Keh H J 2020 Transient electrophoresis of a charged porous particle Electrophoresis 41 259-265
Lai Y C and Keh H J 2021 Transient electrophoresis in a suspension of charged particles with arbitrary electric double layers Electrophoresis 42 2126-2133
Li M X and Keh H J 2020 Start-up electrophoresis of a cylindrical particle with arbitrary double layer thickness J. Phys. Chem. B 124 9967-9973.
Li M X and Keh H J 2021 Transient rotation of a spherical particle in a concentric cavity with slip surfaces Fluid Dyn. Res. 53 045509
Liu Y C and Keh H J 1998 Sedimentation velocity and potential in a dilute suspension of charged porous spheres Colloids Surfaces A 140 245-259
Masliyah J H and Polikar M 1980 Terminal velocity of porous spheres Can. J. Chem. Eng. 58 299-302
Matsumoto K and Suganuma A 1977 Settling velocity of a permeable model floc Chem. Eng. Sci. 32 445-447
Michaelides E E 1997 Review-The transient equation of motion for particles, bubbles, and droplets J. Fluids Eng. 119 233-247
Morrison F A and Reed L D 1975 Unsteady creeping motion of a sphere at small values of Knudsen number J. Aerosol Sci. 6 9-18
Neale G, Epstein N and Nader W 1973 Creeping flow relative to permeable spheres Chem. Eng. Sci. 28 1865-1874
Prakash J and Raja Sekhar G P 2012 Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model Meccanica 47 1079–1095
Prakash J and Satyanarayana C 2021 Axisymmetric slow motion of a porous spherical particle in a viscous fluid using time fractional Navier–Stokes equation. Colloids Interfaces 5 24
Premlata A R and Wei H-H 2020 Re-entrant history force transition for stick-slip Janus swimmers: mixed Basset and slip-induced memory effects J. Fluid Mech. 882 A7
Rybczynski W 1911 Uber die fortschreitende bewegung einer flussigen kugel in einem zahenmedium Bull. Acad. Sci., Cracovie, Ser. A 1 40-46
Sharanya V and Raja Sekhar G P 2015 Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow Phys. Fluids 27 063104
Stehfest H 1970 Algorithm 368 Numerical inversion of Laplace transforms Comm. ACM 13 47-49
Stewart M B and Morrison F A 1981 Droplet dynamics in creeping flows J. Appl. Mech. 48 224-228
Stokes G G 1851 On the effect of the internal friction of fluid on pendulums Trans. Cambridge Philos. Soc. 9 8-106
Sutherland D N and Tan C T 1970 Sedimentation of a porous sphere Chem. Eng. Sci. 25 1948-1950
Yossifon G, Frankel I and Miloh T 2009 Macro-scale description of transient electro-kinetic phenomena over polarizable dielectric solids J. Fluid Mech. 620 241-262
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93090-
dc.description.abstract本論文以多孔球形粒子模型模擬可滲透聚合物鏈團或絮聚體等微奈米粒子於不可壓縮牛頓流體中受一恆定力作用所造成之起始緩慢移動。由修正的暫態Stokes及Brinkman方程式描述多孔球形粒子內外流體之運動狀態並以拉普拉斯轉換分別求解多孔粒子內外的流速分佈,再分析粒子所受拖曳力即可求得轉換 (s) 域中相關變數及粒子暫態速度解析解函數,最後以拉普拉斯逆轉換數值解比較時間 (t) 域中多孔粒子暫態速度和加速度與粒子孔隙度、粒子內流體滲透參數、粒子與流體相對密度和無因次時間等參數間的關係及變化趨勢。
結果顯示,粒子速度如同預期會隨外加力作用時間逐漸增加,並且質量密度較大粒子的速度增長會落後於密度較低的粒子。於大部分條件下,粒子暫態速度會隨粒子孔隙度增加遞增,而高流體滲透性的多孔粒子相較於低滲透性的相同粒子會具有更大的暫態速度,但相對終端速度之速度百分比增長則可能落後於滲透性較小的粒子。多孔粒子的加速度為時間的單調遞減函數及流體滲透性的單調遞增函數。實際應用上,多孔粒子的暫態蠕動行為可能比不可滲透粒子更加重要。
zh_TW
dc.description.abstractThe start-up creeping motion of a porous spherical particle, which models a permeable polymer coil or floc of nanoparticles, in an incompressible Newtonian fluid generated by the sudden application of a body force is investigated for the first time. The transient Stokes and Brinkman equations governing the fluid velocities outside and inside the porous sphere, respectively, are solved by using the Laplace transform. An analytical formula for the transient velocity of the particle as a function of relevant parameters is obtained.
As expected, the particle velocity increases over time, and a particle with greater mass density lags behind a corresponding less dense particle in the growth of the particle velocity. In general, the transient velocity is an increasing function of the porosity of the particle. On the other hand, a porous particle with a higher fluid permeability will have a greater transient velocity than the same particle with a lower permeability, but may trail behind the less permeable particle in the percentage growth of the velocity. The acceleration of the porous particle is a monotonic decreasing function of the elapsed time and a monotonic increasing function of its fluid permeability. In particular, the transient behavior of creeping motions of porous particles may be much more important than that of impermeable particles.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:21:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:21:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
Chapter 1 Introduction 1
Chapter 2 Analysis 4
2.1 Fluid Velocity Field 5
2.2 Transient Migration Velocity 10
Chapter 3 Results and Discussion 12
3.1 Scaled Particle Mobility 12
3.2 Dimensionless Particle Acceleration 22
Chapter 4 Conclusions 28
List of Symbols 29
References 31
Appendix A Start-up Rotation of a Porous Sphere in a Cavity 34
A.1 Introduction 34
A.2 Analysis 37
A.3 Results and Discussion 43
A.4 Conclusions 62
A.5 References 64
-
dc.language.isoen-
dc.subject多孔粒子zh_TW
dc.subject拖曳力zh_TW
dc.subject起始移動zh_TW
dc.subject暫態速度zh_TW
dc.subject粒子蠕動zh_TW
dc.subjectcreeping motionen
dc.subjecttransient velocityen
dc.subjectporous particleen
dc.subjectstart-up migrationen
dc.subjecthydrodynamic drag forceen
dc.title多孔球形粒子之暫態緩慢移動zh_TW
dc.titleTransient slow motion of a porous sphereen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝子賢;詹正雄zh_TW
dc.contributor.oralexamcommitteeTzu-Hsien Hsieh;Jeng-Shiung Janen
dc.subject.keyword起始移動,多孔粒子,暫態速度,粒子蠕動,拖曳力,zh_TW
dc.subject.keywordstart-up migration,porous particle,transient velocity,creeping motion,hydrodynamic drag force,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202401702-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved