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Abstract

The start-up creeping motion of a porous spherical particle, which models a
permeable polymer coil or floc of nanoparticles, in an incompressible Newtonian fluid
generated by the sudden application of a body force is investigated for the first time. The
transient Stokes and Brinkman equations governing the fluid velocities outside and inside
the porous sphere, respectively, are solved by using the Laplace transform. An analytical
formula for the transient velocity of the particle as a function of relevant parameters is

obtained.

As expected, the particle velocity increases over time, and a particle with greater
mass density lags behind a corresponding less dense particle in the growth of the particle
velocity. In general, the transient velocity is an increasing function of the porosity of the
particle. On the other hand, a porous particle with a higher fluid permeability will have a
greater transient velocity than the same particle with a lower permeability, but may trail
behind the less permeable particle in the percentage growth of the velocity. The
acceleration of the porous particle is a monotonic decreasing function of the elapsed time
and a monotonic increasing function of its fluid permeability. In particular, the transient
behavior of creeping motions of porous particles may be much more important than that

of impermeable particles.
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Chapter 1 Introduction

The motions of small particles in viscous fluids at vanishingly low Reynolds
numbers continue to be of widespread interest to researchers in the areas of chemical,
biomedical, mechanical, civil, and environmental engineering. Most of these motions are
basic in nature, but enable us to develop reasonable understanding of various practical
systems, such as sedimentation, agglomeration, electrophoresis, microfluidics, motion of
cells in blood vessels, rheology of suspensions, spray drying, and aerosol technology.
Analytical examination of this discipline originates from Stokes’ (1851) pioneering work
on the creeping motion of slip-free spherical particles in a viscous fluid at steady state
and extends to the motion of solid spheres with slip surfaces (Basset 1888) and fluid
spheres (Hadamard 1911, Rybczynski 1911).

Being a good model for a polymer coil in a solvent and for a floc of nanoparticles in
a colloidal suspension, the problem of a porous particle translating permeably and slowly
relative to a viscous fluid has been analyzed rigorously. Sutherland and Tan (1970) used
the Stokes equations for the external creeping flow around a settling porous sphere and
Darcy’s law for the internal flow with the same viscosity as well as the continuity in
tangential fluid velocity for the boundary condition at the surface of the particle to obtain
a formula relating the particle velocity to the applied force and concluded that it is

reasonable for a porous sphere on the assumption of immobilized fluid inside the particle.

1
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Their conclusion was proven incorrect by Neale et al (1973), whose analysis uses the

equation of Brinkman (1947) for the creeping flow inside the porous sphere as well as the

continuity in fluid velocity and stress for the boundary conditions at the particle surface.

Experimental investigations on settling porous particles at low Reynolds numbers have

been performed by Matsumoto and Suganuma (1977) and Masliyah and Polikar (1980),

whose results agree well with the analytical prediction from using the Brinkman equation.

Although the basic formulas for creeping motions of solid, fluid, and porous particles
were derived mainly for the steady state, their transient behaviors are also important
(Michaelides 1997, Gomez-Solano and Bechinger 2015, Fakour 2018, Buonocore 2019,
Li and Keh 2020, 2021). The time evolution of particle velocity is pertinent to
applications of various motions in colloidal dynamics with the scale of milliseconds to
seconds (Dill and Balasubramaniam 1992, Yossifon et a/ 2009, Sharanya and Raja Sekhar
2015, Premlata and Wei 2020, Lai and Keh 2020, 2021). Many researchers have
examined the low Reynolds number response of hydrodynamic forces acting on particles
to unsteady translational velocities or unsteady viscous fluid flows (Feng and Joseph 1995,
Prakash and Raja Sekhar 2012, Ashmawy 2012, 2017, Prakash and Satyanarayana 2021).
On the other hand, the transient responses in the particle velocity to the step change in
external force have been analyzed for a no-slip solid sphere (Basset 1888, Keh and Huang
2005), a slip solid sphere (Morrison and Reed 1975), and a fluid sphere (Stewart and

Morrison 1981).
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As yet, the starting transient creeping motion of a porous particle in viscous fluids
has not been studied. In this thesis, the start-up migration of a porous spherical particle
with arbitrary mass density, porosity, and fluid permeability produced by a suddenly
applied body force is analyzed. An explicit formula for the transient velocity of the

particle is obtained in Laplace transform in equation (24).
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Chapter 2 Analysis

We consider the transient migration of a porous spherical particle of radius in an
incompressible Newtonian fluid caused by a suddenly applied body force, as illustrated
in figure 1. At the initial time, a constant force (such as the gravitational force minus the
buoyant force, where is the unit vector in the direction) is exerted on the initially
stationary particle and continues. The spherical coordinate system takes the center of the
particle as the origin and is the axis in the direction. The fluid flow about the spherical

particle undergoing rectilinear motion is axially symmetric with trivial dependency.

Figure 1. Geometric sketch for the transient motion of a porous sphere under an applied

force.
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2.1 Fluid Velocity Field

When the Reynolds number is much less than unity, the velocity distribution Vv and

hydrodynamic pressure profile p of the fluid are governed by the transient

Stokes/Brinkman equations in a fixed reference frame:
N o
[1—h(r)(1—g)]p5—77v v+h(r)f(v-Ue,)+Vp=0, (1)

V-v=0, (2)
where U is the transient migration velocity of the porous sphere (equal to zeroat t=0)

to be determined, p and 77 are the mass density and viscosity, respectively, of the fluid,
¢ and f are the porosity and hydrodynamic friction coefficient per unit volume,
respectively, of the particle,and h(r) equalslandOas r<a and r>a,respectively.

In the Brinkman equation [viz., equation (1) for r<a], Vv is the superficial velocity
over a volume that is large relative to the pore size but small relative to the particle radius,

and the viscosity 77 is assumed to be the bulk phase value (Neale ef a/ 1973). Note that

the superficial velocity is an idealized flow velocity calculated as if only the fluid phase
present in the porous particle, and thus the fluid density in the Brinkman equation should
be modified with the porosity of the particle. The transient Darcy equation, which is the
Brinkman equation without the second-order viscous force term, may be applicable for
porous particle of low porosity. The transient Darcy equation, which is the Brinkman
equation without the second-order viscous force term, may be applicable for porous

particle of low porosity.
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We employ the stream function ¥ which satisfies equation (2) immediately and

relates to the nonvanishing components of the fluid velocity as

1 o¥

V. =— -_—, 3a
r’sing o6 (32)
1 oY
V, = _—, 3b
° rsing or (30)
Taking the curl of equation (1) and applying equation (3), we obtain
22 2 10
E{E“-h(r)A —[1—h(l’)(1—8)]—§}¥/=0, 4
1%
where the axisymmetric Stokes operator E’ is given by
2 -
in 1
) )

o’ r? 90 sind o0

v=nlp is the kinematic viscosity of the fluid, and A = (f /7)"* whose reciprocal is

the flow penetration length or square root of the fluid permeability in the porous particle.
According to the Blake-Kozeny equation, 1/1 is proportional to £¥?/(1—¢)
and the pore size (Bird ef al 2007). For some model porous media made of steel wool
and plastic foam slab in organic solutions, experimental values of 1/1 were found to
be about 0.4 mm, while in the surface porous layers of human erythrocytes and grafted

polymer microcapsules in salt solutions, values of 1/4 can be as low as 3 nm (Liu and

Keh 1998).
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The initial and boundary conditions for the fluid velocity are

t=0: v=0, (6)
r=0: V is finite, (7
r=a: V and t-pl are continuous, (8)
r—oo: v=0, )

where T is the viscous stress dyadic of the fluid and | is the unit dyadic. The steady-

state particle velocity is given by (Neale et al 1973)

Fa [ Aa N 3
6nna Aa—tanh(la) 2(1a)?
This terminal velocity, which does not directly depend on the density and porosity of the

Utt—ow)=U_= 1, (10)

particle, decreases monotonically with an increase in the shielding parameter Aa (ratio

of the radius to flow penetration length of the porous particle) from U_ —oo for the

limiting case Aa =0 (fully permeable in the porous particle) to U, =F,/6nra (the

Stokes law) as Aa — oo (the particle becomes impermeable). The first term in the
brackets of equation (10) becomes unity if Darcy’s equation is used to replace Brinkman’s
equation.

Equations (3)-(9) suggest that the stream function has the form

¥ =g(r,t)sin’ 4, (11)
Substituting equation (11) into equation (4) and applying the Laplace transform (with a

bar over the variable), we obtain

(W_%){W_r%_ h(r)A% —[1- h(r)(l—g)]é}g(r, 5)=0, (12)

where S is the transform parameter.
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The general solution for the stream function satisfying equations (6), (11), and (12)
is

3

7 :[q%mz +C3a(Br)+C4ﬂ(Br)]§sin2 0 ifr<a, (13a)

7 =[C, ;—z+c6 +C (AN +Cyp(— Ar)]%sinz 0 ifr>a, (13b)
where

a(x) = xcosh(x) —sinh(x) (14a)

B(X) = xsinh(x) —cosh(x) , (14b)

y(X) = (1-x)e”, (14c)

A=+slv and B=+A*+s&s/v.

The coefficients C,, C,, ..., and Cg in equation (13) result from the boundary

conditions in equations (7)-(9) as

C, =—a’UWH, (15a)
C, =3a’UW(l+Aa), (15b)
C, = AU (2B*a’WH — 1%a%), (15¢)
C, =3A°UWe™B’a’a(Ba), (15d)
C,=C,=C,=C, =0, (15¢)
where
W = A%a’[3(1+ Aa)(B® - A*)a’a(Ba) + (2B + A*)a*H] ™, (16)
H = B*a’[Bacosh(Ba) + Aasinh(Ba)], (17)
8
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Substituting equations (13a) and (15¢) into equations (3) and (1), we obtain the

Laplace transforms of the internal fluid velocity components and pressure (for < a) as

Ve =V (r)cosé, (18a)
- 1 0 ]

Vo = ——[rV (r)]sin @ 18b
0=2r ar[ (Nl , (18b)
EzZ—!(ZBZCﬁﬂ.zazU)cosH, (18¢)

where
2 a
V(r) =¥[01+C305(BV)F], (19)
9

doi:10.6342/NTU202401702



2.2 Transient Migration Velocity

The drag force acting on the porous sphere by the fluid in the Z direction is

negative and given by

F = ZnJ'OnJ':eZ - f(v—Ue,) r’singdrdé , (20)

whose magnitude increases monotonically with the elapsed time from naughtat t=0 to
F, as t—oo. By using equation (1) and the Gauss divergence theorem, equation (20)

can also be expressed as
F —Znazr[(r —p)cosé—7.,sind] _, sin@dO —2ng Injae ‘@rzsinedrde
h — 0 I p ro r=a P 0Jo 2 ot ’

€2y
where 7,, and 7,, are the normal and shear components, respectively, of the viscous
stress T . Substituting equation (18) into the Laplace transform of equation (20) or (21),

we obtain

F, =5 mtalV @)+ U], 22)
The sum of the applied force and hydrodynamic drag on the particle is equal to the

product of its mass and acceleration:

au
dt
where p, is the mass density of the solid part of the porous particle. The substitution of

4

F.+F = §7ta3 A-¢)p, (23)

equation (22) into the Laplace transform of equation (23) results in an explicit formula
for the particle migration response to the suddenly applied force,

u 9

bnna—=

F, 2a’

{221+ 6W (L+ Aa)ar(Ba) - 2WH] + A (1— ) 223 (24)
P

The transient particle velocity U can be calculated via an inverse Laplace transform of
the previous formula numerically (Stehfest 1970, Abate and Valko 2004).

10
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Note that, if the applied force F, is suddenly removed from a translating porous
sphere already in steady state with the velocity U_, the transient velocity of the particle
for the stopping translation will decay from U_ to zero following the decrease of

U_-U with increasing time given by the inverse transform of equation (24).

In the limit Aa — oo (the particle is an impermeable sphere with & =0),

equation (24) reduces to

eamyag =1[1+ Aa+1(1+ zﬁ)AZaz]-l, (25)
F, s 9 P
and the inverse transform of this formula can be performed analytically (Morrison and
Reed 1975, Keh and Huang 2005).

In our linear problem, the transient rotation of the porous sphere caused by an applied

torque can be considered separately (see Appendix A).

11
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Chapter 3 Results and Discussion

3.1 Scaled Particle Mobility

In the previous chapter, the starting migration of a porous spherical particle of radius

a in an unbounded fluid of viscosity 7 due to the sudden application of a body force
F, is analyzed. The transient velocity U of the particle calculated from the numerical

inverse Laplace transform of equation (24) and scaled by the corresponding steady-state

Stokes-law value F,/6zxna is plotted for various values of the scaled elapsed time
1 /a’, relative density Po | p, shielding parameter Aa, and porosity & ofthe particle

in figures 2-4. Similar to the relevant results of an impermeable solid sphere (Morrison

and Reed 1975) and fluid sphere (Stewart and Morrison 1981), the scaled migration

velocity 6mnaU /F, of the permeable porous sphere grows continuously with 14/a’
from zero at t=0 to the terminal value 6zxnpaU_/F, given by equation (10) (which
does notdependon p,/p or g£)as t —oo forfixed valuesof p,/p, la,and &.
In the limits of minimum density p, / p=0 and maximum porosity & —>1 of the
particle, the initial value of 6xnal /F, can be obtained by substituting equation (24)

into the initial value theorem with the result

6rnna 9
U) = W D (26)

lim(s- 20 = lim(
5w FA t—0 FA

revealing the singular circumstances at t =0, as shown in figures 2a and 2c.

12
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Figure 2a. The scaled particle mobility 6xraU /F, versus the dimensionless elapsed

time vt/a? with la=1 and £=0.5.

13
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Figure 2b. The scaled particle mobility 6rxnaU / F, versus the dimensionless elapsed

time vt/a’ with p /p=1 and £=0.5.

14
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Figure 2c¢. The scaled particle mobility 6xnaU /F, versus the dimensionless elapsed

time vt/a’ with da=1 and p,/p=1.
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Figure 3a. The scaled particle mobility 6xnaU/F, at vt/ a’ =1 versus the density

ratio o,/ p with £=0.5.
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Figure 3b. The scaled particle mobility 6rxnaU /F, at vt/ a’ =1 versus the density

ratio o,/ p with da=1.
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10 B S A

107 10” 10° 10° 10°
Aa
Figure 4a. The scaled particle mobility 6zxnaU /F, at vt/a® =1 versus the shielding

parameter Aa with £=0.5.
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10 B S A

107 10” 10° 10° 10°
Aa
Figure 4b. The scaled particle mobility 6znaU /F, at vt/a® =1 versus the shielding

parameter Aa with p /p=1.
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For specified values of wt/a®, Aa, and &, as illustrated in figures 2a, 3, and 4a,

the scaled velocity 6rraU / F, of the porous spherical particle decreases monotonically
with an increase in the density ratio p, / p from a finite value (as Aa > 0) or infinity

(for the fully permeable case Aa=0) at p, / p=0, indicating that a particle with

greater mass density lags behind a particle with smaller density in the growth of the

particle mobility. For the limiting case of p, / p—> 00, the particle velocity disappears

except for the singular (steady) state vt/a® —oco. In the limit of maximum porosity

& — 1, the particle velocity is independent of p, / p.

For given values of 1t/a?, Py | p,and &, as illustrated in figures 2b, 3a, and 4,
the scaled mobility 6rnpaU/F, of the porous spherical particle decreases

monotonically with an increase in the shielding parameter Aa from infinity (as

vt/a®> > o0, or p,/ p=0,0r &—1)orafinite valueat 2a=0 to asmaller value for

the impermeable case Aa — . When the value of A& is small, interestingly, a porous
sphere with a higher fluid permeability (less Aa ) may develop its velocity in percentage
slower relative to the reference particle toward the respective terminal values (in spite of

the greater value of its velocity at any elapsed time). In the limit Aa =0, the value of

6nnal /F, equals 9(vt/a’)p/2(1-¢)p, , as resulting from the analytical inverse

Laplace transform of equation (24) and demonstrated in figures 2b and 3a.

For fixed values of 1t/a?, p, ! p,and Za,asillustrated in figures 2c, 3b, and 4b,
the scaled velocity 6zxnaU / F, of the porous spherical particle in general increases with

an increase in the porosity & from a finite value as & — O (the particle is almost
impermeable) to a larger value as & — 1, indicating that a particle with smaller porosity

lags behind a particle with greater porosity in the growth of the particle mobility. When

20
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the value of p, | p is relatively small, however, 6xnaU /F, may slightly decrease

with an increase in & .
As indicated in figure 2b, the transient migration velocity of a typical porous

spherical particle (say, with 1a=0.1, p /p=1, and &=0.5) reaches 63% of its

terminal value at the scaled elapsed time 1t/a® equal to around 50, which corresponds
to a relaxation time scale of one second for a particle with a=0.14 mm in water and is
about 25 times of that for an impermeable solid sphere (with Aa —o and & =0).
Therefore, the transient behavior of creeping motions of permeable porous particles can
be much more important than that of impermeable particles. For explicit examples, the
transient migration velocities of porous particles of aluminum oxide or titanium dioxide

(p,/ p=4) and silicon dioxide (p,/ p=2.5) with a=1/2=03mm and £=0.5

reach 99% of their individual terminal values at the scaled elapsed time 1t/a’® equal to

103 and 101, respectively, which correspond to slightly more than 9 seconds.

21
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3.2 Dimensionless Particle Acceleration

Results for the dimensionless acceleration (6mpa’/F,)dU/dt of a porous

spherical particle undergoing starting migration are plotted versus the scaled time 14 /a’

in figure 5 for various values of the density ratio p, / p, shielding parameter Aa, and

porosity &.

This acceleration is a monotonic decreasing function of vt/a® from a maximum
at vt/a’=0 to zero as vt/a® —oo. Substituting equation (24) into the initial value

theorem of the Laplace transform velocity derivative (6nna/F,)sU :

_ 3
O 5y = lim[ 22 2 1 _9p /201~ ), 27)

lim(s- —
s> F, ~00 F, dt

where the initial acceleration is independent of finite values of Aa . However,

substituting equation (24) with the limit A& — o into the initial value theorem:

_ 3
6nna SU)zItirg[6npa du

lim(s- —
s> F, S00 F, dt

1=90[2(L-¢)p, +(1+2¢)p] (28)

where the initial acceleration reveals a singular circumstance, as shown in figures 5b.

22
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6npa’ dU
F, dt?

Figure 5a. The dimensionless particle acceleration (6mpa’/F,)dU /dt versus the

dimensionless elapsed time vt/a* with la=1 and £=0.5.
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Figure 5b. The dimensionless particle acceleration (6mpa’/F,)dU /dt versus the

dimensionless elapsed time vt/a® with p,/p=1 and £=05.
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Figure Sc. The dimensionless particle acceleration (6mpa’/F,)dU /dt versus the

dimensionless elapsed time vt/a®> with Aa=1 and p,p=1.
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For specified values of Aa and &, as illustrated in figure 5a, the quantity
(6mpa’/ F,)dU /dt decreases with an increase in p, 1 p at the early stage (reflecting
the fact that a particle with greater p,/p develops its mobility slower), is not a
monotonic function of p,/p at the medium stage, and then increases with an increase
in p, |/ p at the late stage (since the particle with a small Py /| p has already developed
most of its velocity to approach the steady state), but always vanishes in the limit
p, 1 p—> (where 6nnal/F, =0). In the limit of minimum density p,/p=0, as
also shown in figure 2a, the initial values of 6xnaU/F, and (6mpa’/F,)dU/dt may
be 9/24%a’ and infinity, respectively, as singular circumstances at t=0.

For any given values of wt/a’, Py /| p,and &, as shown in figure 5b, the
acceleration (6mpa’/F,)dU /dt decreases (like the scaled velocity 6mnaU /F, does)
as Aa increases from 9p/2(1-¢)p, at Ada=0 [where the acceleration of the
porous particle is independent of t/a* and 6mnaU/F, :9(vt/a2)p/2(1—5)pp] to a

smaller value as Aa — o . This outcome reflects again the behavior that a porous particle
with higher fluid permeability (smaller value of Aa) develops its velocity in percentage

slower towards the terminal value.

For fixed values of p,/p and Aa, as illustrated in figure 5c, (6mpa’ / F,)dU / dt

increases with an increase in & at the early stage (reflecting the fact that a particle with
greater porosity develops faster), is not a monotonic function of & at the medium stage,
and then decreases with an increase in & at the late stage (since the particle with greater
porosity has already developed most of its terminal velocity). In the limit of maximum

porosity & —1, as also shown in figure 2c, the initial values of 6xnpaU/F, and
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(6npa’/ F,)dU/dt may be 9/24°a® and infinity, respectively, as singular

circumstances at t=0.
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Chapter 4 Conclusions

In this thesis, the start-up creeping motion of a porous spherical particle in a viscous
fluid produced by the sudden application of a body force is analyzed. The unsteady Stokes
and Brinkman equations governing the external and internal fluid velocity distributions,
respectively, about the particle are solved. A closed-form formula for the time-evolving
particle velocity is obtained in Laplace transform and results of the scaled particle velocity
and acceleration for various values of the scaled elapsed time 1t/a?, shielding parameter
Aa, relative mass density p, / o, and porosity & of the particle are presented. These
results demonstrate that the scaled particle velocity is a monotonic increasing function of
1t /a?, amonotonic decreasing function of Pp [ p and Aa,andin general an increasing
function of &. Namely, a particle with greater density or smaller porosity lags behind a
corresponding particle with smaller density or greater porosity in the growth of the
particle mobility. On the other hand, a porous particle with a higher fluid permeability
(smaller Aa) may trail behind an identical particle with a lower permeability in the
relative growth of the scaled mobility, although this transient mobility decreases with an
increase in Aa for fixed values of p,/p and &. The scaled acceleration of the
particle decreases monotonically with increases in wt/a® and Aa . The transient
behavior of creeping motions of permeable porous particles can be much more important

(with much longer relaxation time) than that of impermeable particles.
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List of Symbols

the radius of the spherical particle, m

the unit vector in the Z direction, -

the axisymmetric Stokes operator, m

the hydrodynamic friction coefficient per unit volume of
the particle, kg-m=-s™

the applied constant force, Kg-m .57

the hydrodynamic drag on the particle, Kg-m .57

the unit step function, -

the unit dyadic, -

the hydrodynamic pressure profile of the fluid, Kg- mt.s?
the radial spherical coordinate, m

the Laplace transform parameter, S

the elapsed time, S

the transient migration velocity of the particle, m-s™
the terminal velocity of the particle, m-s™

the velocity distribution of the fluid, m-s™

r component of Vv, m-s*

6 component of Vv, m-s™
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Greek letters

0, ¢

Y2

the porosity of the particle, -
the viscosity of the fluid, kg-m™-s™
the angular spherical coordinates, -

the flow penetration length or

the square root of the fluid permeability in the porous particle, m

the kinematic viscosity of the fluid, m?-s™

the mass density of the fluid, kg-m™

the mass density of the solid part of the porous particle, Kg- m

the viscous stress dyadic of the fluid, Kg- m*.s?

the normal components of the viscous stress T, KQ- mt.s

the shear components of the viscous stress T, Kg- m™t.s

the stream function, m*-s™*
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Appendix A

Start-up Rotation of a Porous Sphere in a Cavity

A.1 Introduction

The translation and rotation of solid particles in viscous fluids at low Reynolds
numbers play important roles in a variety of technological and industrial processes such
as sedimentation, centrifugation, agglomeration, microfluidics, suspension rheology,
aerosol technology, and motion of blood cells in arteries and veins. The analytical study
of this topic grew out of the classic work of Stokes [1,2] on the steady motion of an
isolated hard sphere in an incompressible Newtonian fluid.

Some small particles are porous, viz. permeable to fluids, such as macromolecules
and flocs of fine particles. The translational and rotational motions of porous particles
have been extensively studied for decades. An approach which comprises a second-order
viscous term to Darcy’s equation for fluid flow through porous media was established by
Brinkman [3]. Neale et al. [4] analyzed the translation of a porous sphere by using the
Brinkman equation for the internal flow and the Stokes equation for the external flow
with appropriate boundary conditions on the particle surface and the assumption that the
effective viscosity inside the porous sphere equals the bulk fluid viscosity. Matsumoto
and Suganuma [5] and Masliyah and Polikar [6] experimentally investigated the
sedimentation of porous particles, the results of which agree well with the analytical

formula obtained by Neale et al. [4].
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The angular velocity of a porous sphere of radius a rotating under an applied
torque T, about its diameter in an unbounded fluid of viscosity 7 at the steady state

of low Reynolds numbers has been obtained by solving the Brinkman and Stokes

equations, with the result [7]

Q-=—'a_ (A1)
8nna‘w
=1+ W - % coth(1a), (A2)

where 47! is the flow penetration length of the porous particle. In the limits Aa=0
(fully permeable in the porous particle) and Aa — oo (impermeable), Eq. (Al) results in
Q —>wo (0=0)and Q =T,/8tpa’> (w=1, Stokes’ result for a hard sphere),
respectively.

Particles move in bounded fluids in real situations, so it is important to know
whether the proximity of a boundary affects the rotation of particles significantly [8-13].
In the operation of rotational viscometers and stirred vessels for high-viscosity liquids,
it is necessary to determine the relationship between angular velocity and torque as the
confining boundary is approached. The steady low-Reynolds-number rotation of a
porous sphere about its diameter at the center of a spherical cavity was analytically
studied, with the particle’s angular velocity given by [7,14]

T, a’

Q = 1-— o), A3
” 871:77&360( b* @) (A3)

where b isthe radius of the cavity. When a/b =0, the previous equation becomes Eq.

(Al). Recently, the rotational motions of a porous sphere about its diameter at low
Reynolds numbers within an approximate or eccentric spherical cavity [15-18] and near

other boundaries [19,20] were also analyzed.
35
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Although the basic formulation of slow particle rotation is mainly constructed in

steady state, its transient behavior is also important for evaluating the validity of steady

supposition [21,22]. The temporal evolution of particle’s angular velocity is pertinent to

particle dynamics in the sub-millisecond range [23,24]. The low-Reynolds-number

response of the torques exerted by the fluid on isolated hard and soft particles to

unsteady rotation has been studied to some extent [25-27]. Recently, the transient

rotation of a hard particle caused by a suddenly applied torque in a confining cavity was

also investigated [28]. However, the starting rotation of isolated or confined porous

particles has not been examined. Knowledge of the start-up rotation in the proximity of

confining boundaries may be important, for example, in the rotational viscometers and

agitated vessels for highly viscous liquids. In this appendix, the initial rotation of a

porous sphere because of the sudden application of a continuous torque about its

diameter at the center of a spherical cavity is analyzed. An explicit expression is

obtained for the temporal Laplace transform of the transient angular velocity of the

porous sphere.
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A.2 Analysis
As shown in Fig. A1, we consider the start-up rotation of a porous sphere of radius

a about its diameter in a viscous fluid within a concentric spherical cavity of radius b
in the spherical coordinate system (r, 8, ¢). Attime t=0, the constant torque T, inthe

Z direction (about the axis € =0) is suddenly applied to the originally motionless

porous sphere and continues thereafter. The transient angular velocity Q(t) (also in the
Z direction) of the particle, which is zero at t=0 and equals the steady value Q_
given by Eq. (A3) as t— oo, needs to be determined. The angular Reynolds number

Re=Q a*/v is vanishingly small, where v is the kinematic viscosity of the fluid.

Figure A1. Geometric sketch for a porous sphere of radius a rotating under the applied

torque T, inthe z direction within a concentric cavity of radius b in the

spherical coordinate system (r, 6, ¢).
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The velocity v and hydrodynamic pressure p of the fluid are governed by the

transient Stokes and Brinkman equations,

[1- h(r)(l—g)]p% = —Vp+VAV —h(r)pi2(v-Qxre,), (A4)

where Q=0Q(t)e, isthe angular velocity of the porous sphere (equal to zeroat t=0)to

be determined, e, and e, are unit vectors in the r and z directions, respectively,

p and 77 arethe mass density and viscosity, respectively, of the fluid, & and A are

the porosity and flow penetration length or square root of the fluid permeability,

respectively, of the particle, h(r) is a step function equal to unity if r<a and zero

otherwise. A7 is proportional to &**/(1-¢) and the pore size according to the Blake-

Kozeny equation [29]. In the Brinkman equation [i.e., Eq. (A4) for r<al], v is the
superficial velocity averaged over a region of space of the solid plus fluid, large with
respect to the pore size, but small with respect to the particle radius a, the last term
relates to the friction force between internal sphere flow and rigid sphere backbone, and

the viscosity 7 isassumed to be the bulk phase value [4].

For the transient rotation of a porous sphere about its diameter in a viscous fluid

within a concentric spherical cavity, Eg. (A4) can be written as

2 0V ov
L

1 0
or or i

S0 20 (v,sin@)]-h(r)A°r*(v, — Qrsin6),

0
)+%[
(AS)
where v (r,0,t) is the azimuthal (only nonzero) component of the fluid velocity

satisfying the continuity equation and the hydrodynamic pressure is a constant throughout

the space in the limit of low Reynolds number.
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The initial and boundary conditions are

t=0: v, = 0, (A6)
r=0: v, is finite, (A7)
r=a: v, and 7, 4 are continuous, (AR)

where 7, is the only nonzero shear stress of the fluid at the particle surface. Equations

(AT7)-(A9) express the absence of any velocity field singularity, the continuity of velocity
and hydrodynamic stress fields at the prticle surface, and stick (zero-slip) condition at the

stationary inner container surface, respectively.

Equations (A5)-(A9) suggest the form of the fluid velocity to be

v, =g(r,t)sing, (A10)
The Laplace transform, which is defined by an over-bar for a function of time f (t) as
f(s)=] : f (t) exp(=st)dt, (A11)
F(t) = —— [ T (s)exp(styds, (A12)
2mi e
will be used to solve for the flow field and particle” angular velocity. Then, the transform

of Egs. (A5) and (A10) can be expressed as

d—22+Zi —%— h(r)A> —[1— h(r)(l—g)]i}g(r, S) = —h(r)ﬂfr?)(s) ,  (A13)
dr rdr r v

where S is the transform variable.

39
doi:10.6342/NTU202401702



The general solution of Eq. (A13) that satisfies the initial condition (A6) is

Vs = Qa[C\ly, (Ar) +C, 1 5, (AN](Ar) “*sin 6

(A14)

\_/¢=!_2r{(g)2+[(C3+CABr)cosh(Br)—(CsBr+C4)sinh(Br)](%)3}sin0 if r<a,

(A15)

where A=+/s/v, B=yA*+e&s/v, and |, are the modified Bessel functions of the

first kind. The unknown constants (functions of s actually) C,, C,, C,, and C,

are determined from the boundary conditions (A7)-(A9) as

T, A
C1=\/;(E) LLG,

T, A
C, =.[=(3)’L,LG,
2 \,2(8) oL
C.=0

3 5

A
C4 = (E)2 L4G ’

where
G =L sinh(Ba) — L cosh(Ba)] ™,
L, = A’a’[Absinh(Ab) —cosh(Ab)].,
L, = A%a’[sinh(Ab) — Abcosh(Ab)],

L, = (3+B?a*)sinh(Ba) —3Bacosh(Ba),

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

L, =cosh(Aa)[N, cosh(Ab) + N, sinh(Ab)] —sinh(Aa)[N, cosh(Ab) + N, sinh(Ab)],

(A24)

L, = cosh(Aa)[N, cosh(Ab) + N, sinh(Ab)]—-sinh(Aa)[N, cosh(Ab) + N, sinh(Ab)],

40
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L = Ba[L, sinh(Aa) + L, cosh( Aa)], (A26)

N, = Aa(3— A’ab)—3Ab, (A27)
N, =3-A%a(3b-a), (A28)
N, = AB%a’(b—a) - A’a’b, (A29)
N, = A’a*(1+ B*ab) — B’a?, (A30)

The torque exerted by the fluid on the particle (in the z direction) is negative and

its Laplace transform is given by

T = 27:77/12[: J'Oa (v, - Qrsind)r’sin*odrd g, (A31)

whose magnitude increases monotonically with the elapsed time from naughtat t=0 to

T, as t —oo.Byusing Eqg. (A5) and the Gauss divergence theorem, Eq. (A31) can also

be expressed as

T = 2na3j0 z,,(r= a)sinzé?dél—an,osI0 jo v,risin*drdg, (A32)
The substitution of Egs. (A14)-(A19) into Eq. (A31) or (A32) leads to
T _E 30f7242 i 2 i 2
n = mnaQ{ATa’[(%)" -1]+5(5)" L LG}, (A33)
15 B B
where 7 is the viscosity of the fluid. Note that v, and T, vanish in the limiting

case of 1a=0.

The sum of the applied and hydrodynamic torques on the particle equals the angular

acceleration multiplied by the moment of inertia,

8 4o
Ty +Ta =E7t615(1—«9)pp o (A34)

where o, is the mass density of the solid part of the porous sphere.
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Substitution of Eq. (A33) into Eq. (A34) results in a formula for the transient

angular velocity of the porous sphere in transform,

Dl ntaz@-e) 2 -5y LLG + %71 () Ty, (A35)
Yo, B B

where p =7 /v is the density of the fluid. This angular velocity can be obtained
numerically using the inverse Laplace transform [30,31]. In the limiting case of

Aa— o (the porous sphere becomes impermeable with & = 0), Eq. (A35) is identical
to the corresponding formula obtained for the transient rotation of a hard sphere inside a

spherical cavity taking the surfaces to be nonslip [28].

If the applied torque T, is suddenly taken away from a rotating porous sphere that
is already at a steady state with angular velocity € _, the transient angular velocity of the

porous sphere that stops rotating will decay from Q_ tozeroas Q_ - decreases with
time calculated using the inverse transform of Eq. (A35).
In the limit a/b=0, L,G in Eqg. (A35) reduces to that for the porous sphere

rotating in an unbounded fluid:

B 3+3Aa+ A%a’
A’Ba’ cosh(Ba) + (AB*a— A* + B?)a’sinh(Ba)

LG = (A36)
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A.3 Results and Discussion
The nondimensionalized starting angular velocity 8rna®Q/T, of a porous sphere
applied by constant torque T, about a diameter in a boundless fluid (a/b=0)

calculated from Eqgs. (A35) and (A36) by means of numerical inverse transform is

plotted versus the dimensionless passed time 1t/a?, relative density p, | p, shielding

parameter Aa, and porosity & of the particle in Figs. A2-A4. For fixed values of Aa,

p, !/ p,and &, as expected, the particle’s angular velocity grows continuously with

w/a* fromzeroat vt/a>=0 to the final rate given by Eq. (A1) (which does not
dependon p /p or g)as vt/a®—oo. In the limits of minimum density p /p=0
and maximum porosity & —1 of the particle, as shown in Figs. A2a and AZ2c, the

initial value of 8rna®@/T, may also be 15/4%a’ as singular situations at t=0.

43
doi:10.6342/NTU202401702



20 [ e e e e ey

15 - -
8nna’
n Ol
TA
10 -
54 d
0 o0

Figure A2a. Dimensionless angular velocity 8rna®Q/T, of aspherical porous particle

in a boundless fluid versus the dimensionless elapsed time t/a® with

Aa=1 and £¢=0.5.
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Figure A2b. Dimensionless angular velocity 8rra®@/T, of aspherical porous particle

in a boundless fluid versus the dimensionless elapsed time t/a® with

p,/p=1and £=05.
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Figure A2c. Dimensionless angular velocity 8rxna®/T, of aspherical porous particle

in a boundless fluid versus the dimensionless elapsed time t/a® with

da=1 and p,/p=1.
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Figure A3a. Dimensionless angular velocity 8rna®Q/T, of aspherical porous particle

in a boundless fluid at vt/a® =1 versus the shielding parameter Aa with

=0.5,
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Figure A3b. Dimensionless angular velocity 8rna®@/T, of aspherical porous particle

in a boundless fluid at vt/a® =1 versus the shielding parameter Aa with

p,lp=1.

48
doi:10.6342/NTU202401702



3
&nna @

P, p

Figure A4a. Dimensionless angular velocity 8rna®Q/T, of aspherical porous particle

in a boundless fluid at vt/a’=1 versus the density ratio p, ! p with

=0.5,
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Figure A4b. Dimensionless angular velocity 8rna®@/T, of aspherical porous particle

in a boundless fluid at vt/a’=1 versus the density ratio p, ! p with

Aa=1.
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For specified values of wt/a®, p /p,and &,asshowninFigs. A2b, A3, and Ada,
the dimensionless angular velocity 8rna®Q/T, of the porous sphere is a monotonic
decreasing function of Aa (relative resistance to fluid flow inside the porous particle)
from infinity (as vt/a®* >, or p,/p=0,0r &£—1) ora finite value at 1a=0
(fully permeable particle) to a smaller value as 1a—« (impermeable particle),
illustrating the reduction in the transient angular velocity of the porous particle with an
increase in its internal resistance to fluid flow at any elapsed time. When the value of Aa
is small, interestingly, a porous particle with higher fluid permeability (smaller value of
Aa) develops its angular velocity in percentage slower relative to the reference particle
towards the respective terminal values (despite the greater value of its angular velocity at
any elapsed time). In the limit Aa=0 , the value of 8xna’Q/T, equals
15(vt/a*)pl(l-¢) P, as resulting from equation (A35).

For fixed values of t/a®, Aa, and &, as illustrated in Figs. A2a, A3a, and A4,
the angular velocity 8r7a®@/T, isamonotonic decreasing function of the density ratio
p, 1 p from a finite value (as Aa>0) or infinity (for the completely permeable case
Aa=0)at p /p=0,indicating the diminution in the transient angular velocity of the
particle with an increase in its relative density. In the limit p /p—oo, the angular
velocity vanishes except for the steady state vt/a*> —oo. For the limiting case of
maximum porosity & — 1, the angular velocity does not depend on p, / p.
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For given values of wt/a®, p /p,and Aa,asshown in Figs. A2c, A3b, and Adb,
the angular velocity 8rna®@/T, of the porous sphere in general is an increasing
function of the porosity & from a finite value as & — 0 to a larger one as ¢ —1,
illustrating that a particle with smaller porosity lags behind that with greater porosity in
the development of the angular velocity. However, 8rna’Q/T, may slightly decrease
with an increase in & when the value of o /o is relatively small.

The dimensionless angular acceleration (8mpa®/T,)d/dt of a porous sphere
starting to rotate under the application of a constant torque in a boundless fluid as a
function of the dimensionless time 1t/a® is presented in Fig. A5 for various values of

the shielding parameter Aa, density ratio o /p, and porosity & . This angular

acceleration decreases monotonically with an increase in 1t/a* from a maximum equal

to 15p/(@1—¢)p, (independent of finite values of 1a)or 15p/[(1-¢)p, +¢p] (for the
singular limit la—>o)at vt/a®=0 and disappearsas vt/a* — oo . For given values of
Aa and &, the angular acceleration (8rmpa®/T,)d@2/dt decreasesas p /p increases
at the early stage, is not a monotonic function of p, /o at the medium stage, and then
increases with an increase in o /p at the late stage, but always vanishes in the limit
p, ! p—>o (where 8rna’Q/T,=0). This consequence reproduces the fact that a
particle of higher relative density grows its angular velocity slower but has the terminal
value independent of the relative density. In the limiting case of o/ p — o, the angular
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acceleration of the particle vanishes (so does its angular velocity) regardless of the elapsed
time. For any fixed values of t/a®, p,/p,and g, the quantity (8mpa®/T,)dQ/dt
decreases as Aa increases from 15p/(1-¢)p, at Aa=0 [where the angular
acceleration of the porous sphere does not depend on the elapsed time and
8nna’Q /T, =15(t/a*)p/ (1-&)p,] to a smaller constant as 2a—oo. This outcome
reflects again the behavior that a porous sphere with higher fluid permeability develops
its angular velocity in percentage slower toward the terminal value. For specified values
of p,/p and Aa, (8mpa®/T,)dQ/dt increases with an increase in & at the early
stage (reflecting that a particle with greater porosity develops its angular velocity faster),
is not a monotonic function of & at the medium stage, and then decreases with an
increase in & at the late stage (since the particle with greater porosity has already

developed most of its terminal angular velocity).
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Figure ASa. Dimensionless angular acceleration (8rpa®/T,)dQ2/dt of a spherical

porous particle in a boundless fluid versus the dimensionless elapsed time

m/a’> with la=1 and £=0.5.
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Figure ASb. Dimensionless angular acceleration (8rpa®/T,)d22/dt of a spherical

porous particle in a boundless fluid versus the dimensionless elapsed time

2 -
w/a? with p,/p=1 and £=0.5.
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Figure ASc. Dimensionless angular acceleration (8rpa®/T,)d@/dt of a spherical

porous particle in a boundless fluid versus the dimensionless elapsed time

w/a? with da=1 and p,/p=1.
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The dimensionless starting angular velocity 8rna®@/T, of a porous sphere
applied by a constant torque T, about a diameter at the center of a spherical cavity
calculated from Eq. (A35) by means of numerical inverse transform is plotted versus the
dimensionless passed time t/a®, ratio of the particle radius to the permeation length
Aa, particle-to-fluid density ratio o /p, and particle porosity & in Figs. A6-A9,
respectively, for several values of the particle-to-cavity radius ratio a/b . Again,
8nna’Q/T, grows continuously from zero at vt/a*=0 to the final value (which does
notdependon o /p)givenby Eq. (A3)as vt/ a® — oo, diminishes monotonically with
increasing Aa from a constant at Aa=0 to a smaller one as Aa— oo, is a monotonic
decreasing function of p /p from a constantat p /p=0 to zeroas p /p—oo,
and in general is an increasing function of &, keeping the other parameters unchanged.
For fixed values of w/a*, Aa, p /p,and &, the angular velocity 8nna’Q/T,
decreases monotonically with an increase in a/b (the wall retardation effect on the
particle rotation is an increasing function of the relative particle radius) but in general is

not a sensitive function of a/b when t/a® is small (say, less than 1), Aa is small

(say, lessthan 1), p /p is large (say, greater than 1), or a/b issmall (say, less than
0.5). For nonzero value of 1t/a® and finite value of p. /p, the quantity 8rna’Q/T,
remains finite in the limit a/b =1 (the cavity is filled up by the particle), except for the

case of la—> .
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Figure A6. Dimensionless angular velocity 8rna®Q/T, of aspherical porous particle

in a cavity versus the dimensionless elapsed time t/a” with p, 1 p=1,

Aa=1 ande=0.5.
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Figure A7. Dimensionless angular velocity 8rz;a®@/T, of a spherical porous particle
in a cavity versus the shielding parameter Aa with vt/a? =1, p, 1 p=1,

and ¢=0.5.
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Figure A8. Dimensionless angular velocity 8rz;a®@/T, of a spherical porous particle
in a cavity versus the density ratio p,/p with vt/a®=1, Aa=1, and

¢=05.
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Figure A9. Dimensionless angular velocity 8rz;a®@/T, of a spherical porous particle

in a cavity versus the porosity & with vt/a’=1, la=1,and p,/p=1.
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A.4 Conclusions

This appendix analyzes the start-up rotation of a porous sphere caused by a suddenly

applied torque about its diameter in a concentric spherical cavity filled with a viscous

fluid at low Reynolds numbers. The transient Stokes and Brinkman equations governing

the fluid velocities outside and inside the porous particle, respectively, are solved by using

Laplace transformation, and an explicit formula of its dynamic angular velocity as a

function of the related parameters is obtained in Eq. (A35). The behavior of the starting

rotation of an isolated porous particle and the effect of the confining cavity wall on the

particle rotation are interesting. The angular velocity continuously increases over time

from an initial zero to a terminal value and the angular acceleration continuously decays

over time. A porous sphere with higher fluid permeability rotates at higher angular

velocity and acceleration relative to the reference particle at any elapsed time, but lags

behind it in the percentage increase in angular velocity towards the respective final values.

A particle with a higher relative density or smaller porosity rotates at a lower angular

velocity in any elapsed time, and the angular velocity grows slower towards the terminal

value. The transient angular velocity decreases with the increase of the particle-to-cavity

radius ratio, but is not a sensitive function of the radius ratio when the fluid flow resistance

inside the porous particle is small, the particle-to-fluid density ratio is large, or the radius

ratio itself is small. The insights gained from this theoretical research on the transient

62
doi:10.6342/NTU202401702



rotational motion of a porous particle at low Reynolds Numbers may hold significance in

the design of micro/nanorobots [32,33].
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