Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖zh_TW
dc.contributor.advisorNien-Tsu Huangen
dc.contributor.author林明儁zh_TW
dc.contributor.authorMing-Chun Linen
dc.date.accessioned2024-07-17T16:20:43Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-03-
dc.identifier.citation[1] D. Voytas, "Agarose Gel Electrophoresis," Current Protocols in Molecular Biology, vol. 51, no. 1, pp. 2.5A.1-2.5A.9, 2000, doi: https://doi.org/10.1002/0471142727.mb0205as51.
[2] P. Nanthasurasak, J. M. Cabot, H. H. See, R. M. Guijt, and M. C. Breadmore, "Electrophoretic separations on paper: Past, present, and future-A review," Analytica Chimica Acta, vol. 985, pp. 7-23, 2017/09/08/ 2017, doi: https://doi.org/10.1016/j.aca.2017.06.015.
[3] B. Sanchez-Vega, "Capillary Electrophoresis of DNA," in Molecular Biomethods Handbook, J. M. Walker and R. Rapley Eds. Totowa, NJ: Humana Press, 2008, pp. 65-87.
[4] R. T. Turgeon and M. T. Bowser, "Micro free-flow electrophoresis: theory and applications," Analytical and Bioanalytical Chemistry, vol. 394, no. 1, pp. 187-198, 2009/05/01 2009, doi: 10.1007/s00216-009-2656-5.
[5] P. Y. Lee, N. Saraygord-Afshari, and T. Y. Low, "The evolution of two-dimensional gel electrophoresis - from proteomics to emerging alternative applications," Journal of Chromatography A, vol. 1615, p. 460763, 2020/03/29/ 2020, doi: https://doi.org/10.1016/j.chroma.2019.460763.
[6] D. Rouquié, A. Capt, W. H. Eby, V. Sekar, and C. Hérouet-Guicheney, "Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach," Regulatory Toxicology and Pharmacology, vol. 58, no. 3, Supplement, pp. S47-S53, 2010/12/01/ 2010, doi: https://doi.org/10.1016/j.yrtph.2010.09.013.
[7] C. L. S. Chagas et al., "A fully disposable paper-based electrophoresis microchip with integrated pencil-drawn electrodes for contactless conductivity detection," Analytical Methods, 10.1039/C6AY01963C vol. 8, no. 37, pp. 6682-6686, 2016, doi: 10.1039/C6AY01963C.
[8] K. Zamuruyev, M. S. Ferreira Santos, M. F. Mora, E. A. Kurfman, A. C. Noell, and P. A. Willis, "Automated Capillary Electrophoresis System Compatible with Multiple Detectors for Potential In Situ Spaceflight Missions," Analytical Chemistry, vol. 93, no. 27, pp. 9647-9655, 2021/07/13 2021, doi: 10.1021/acs.analchem.1c02119.
[9] M. Wang et al., "A platform method for plasmid isoforms analysis by capillary gel electrophoresis," ELECTROPHORESIS, vol. 43, no. 11, pp. 1174-1182, 2022, doi: https://doi.org/10.1002/elps.202100343.
[10] W. S. Ramsey, E. D. Nowlan, and L. B. Simpson, "Resolution of microbial mixtures by free flow electrophoresis," European journal of applied microbiology and biotechnology, vol. 9, no. 3, pp. 217-226, 1980/09/01 1980, doi: 10.1007/BF00504488.
[11] R. Kuhn and H. Wagner, "Free flow electrophoresis as a method for the purification of enzymes from E. coli cell extract," ELECTROPHORESIS, vol. 10, no. 3, pp. 165-172, 1989, doi: https://doi.org/10.1002/elps.1150100302.
[12] S. Staubach et al., "Free flow electrophoresis allows quick and reproducible preparation of extracellular vesicles from conditioned cell culture media," Extracellular Vesicles and Circulating Nucleic Acids, vol. 3, no. 1, pp. 31-48, 2022.
[13] A. C. Johnson and M. T. Bowser, "Micro free flow electrophoresis," (in eng), Lab Chip, vol. 18, no. 1, pp. 27-40, Dec 19 2017, doi: 10.1039/c7lc01105a.
[14] D. E. Raymond, A. Manz, and H. M. Widmer, "Continuous Sample Pretreatment Using a Free-Flow Electrophoresis Device Integrated onto a Silicon Chip," Analytical Chemistry, vol. 66, no. 18, pp. 2858-2865, 1994/09/15 1994, doi: 10.1021/ac00090a011.
[15] F. J. Agostino and S. N. Krylov, "Advances in steady-state continuous-flow purification by small-scale free-flow electrophoresis," TrAC Trends in Analytical Chemistry, vol. 72, pp. 68-79, 2015.
[16] D. Kohlheyer, J. C. Eijkel, A. van den Berg, and R. B. Schasfoort, "Miniaturizing free-flow electrophoresis - a critical review," (in eng), Electrophoresis, vol. 29, no. 5, pp. 977-93, Mar 2008, doi: 10.1002/elps.200700725.
[17] Y. Lee and J.-S. Kwon, "Microfluidic free-flow electrophoresis: A promising tool for protein purification and analysis in proteomics," Journal of Industrial and Engineering Chemistry, vol. 109, pp. 79-99, 2022/05/25/ 2022, doi: https://doi.org/10.1016/j.jiec.2022.02.028.
[18] P. Novo and D. Janasek, "Current advances and challenges in microfluidic free-flow electrophoresis—A critical review," Analytica Chimica Acta, vol. 991, pp. 9-29, 2017/10/23/ 2017, doi: https://doi.org/10.1016/j.aca.2017.08.017.
[19] K. L. Saar, T. Müller, J. r. m. Charmet, P. K. Challa, and T. P. Knowles, "Enhancing the resolution of micro free flow electrophoresis through spatially controlled sample injection," Analytical chemistry, vol. 90, no. 15, pp. 8998-9005, 2018. [Online]. Available: https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b01205.
[20] X. Fu, N. Mavrogiannis, M. Ibo, F. Crivellari, and Z. R. Gagnon, "Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes," ELECTROPHORESIS, vol. 38, no. 2, pp. 327-334, 2017, doi: https://doi.org/10.1002/elps.201600104.
[21] S. Köhler, C. Benz, H. Becker, E. Beckert, V. Beushausen, and D. Belder, "Micro free-flow electrophoresis with injection molded chips," Rsc Advances, vol. 2, no. 2, pp. 520-525, 2012.
[22] T. Akagi, R. Kubota, M. Kobayashi, and T. Ichiki, "Development of a polymer-based easy-to-fabricate micro-free-flow electrophoresis device," Japanese Journal of Applied Physics, vol. 54, no. 6S1, p. 06FN05, 2015.
[23] J. Wen, J. W. Albrecht, and K. F. Jensen, "Microfluidic preparative free-flow isoelectric focusing in a triangular channel: System development and characterization," ELECTROPHORESIS, https://doi.org/10.1002/elps.200900577 vol. 31, no. 10, pp. 1606-1614, 2010/05/01 2010, doi: https://doi.org/10.1002/elps.200900577.
[24] J. Wen, E. W. Wilker, M. B. Yaffe, and K. F. Jensen, "Microfluidic Preparative Free-Flow Isoelectric Focusing: System Optimization for Protein Complex Separation," Analytical Chemistry, vol. 82, no. 4, pp. 1253-1260, 2010/02/15 2010, doi: 10.1021/ac902157e.
[25] F. J. Agostino, L. T. Cherney, V. Galievsky, and S. N. Krylov, "Steady-state continuous-flow purification by electrophoresis," Angewandte Chemie International Edition, vol. 52, no. 28, pp. 7256-7260, 2013. [Online]. Available: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.201300104?download=true.
[26] T. Herling, T. Müller, L. Rajah, J. Skepper, M. Vendruscolo, and T. Knowles, "Integration and characterization of solid wall electrodes in microfluidic devices fabricated in a single photolithography step," Applied physics letters, vol. 102, no. 18, p. 184102, 2013.
[27] J. A. Preuss, G. N. Nguyen, V. Berk, and J. Bahnemann, "Miniaturized free‐flow electrophoresis: production, optimization, and application using 3D printing technology," Electrophoresis, vol. 42, no. 3, pp. 305-314, 2021. [Online]. Available: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/elps.202000149?download=true.
[28] S. Köhler, C. Weilbeer, S. Howitz, H. Becker, V. Beushausen, and D. Belder, "PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation," Lab on a Chip, vol. 11, no. 2, pp. 309-314, 2011. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2011/lc/c0lc00347f.
[29] P. Novo, M. Dell'Aica, M. Jender, S. Höving, R. P. Zahedi, and D. Janasek, "Integration of polycarbonate membranes in microfluidic free-flow electrophoresis," Analyst, vol. 142, no. 22, pp. 4228-4239, 2017. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2017/an/c7an01514c.
[30] P. Novo, M. Jender, M. Dell’Aica, R. P. Zahedi, and D. Janasek, "Free flow electrophoresis separation of proteins and DNA using microfluidics and polycarbonate membranes," Procedia Engineering, vol. 168, pp. 1382-1385, 2016.
[31] E. Poehler et al., "Label-free microfluidic free-flow isoelectric focusing, pH gradient sensing and near real-time isoelectric point determination of biomolecules and blood plasma fractions," Analyst, 10.1039/C5AN01345C vol. 140, no. 22, pp. 7496-7502, 2015, doi: 10.1039/C5AN01345C.
[32] H. Ding et al., "Fabrication of micro free-flow electrophoresis chip by photocurable monomer binding microfabrication technique for continuous separation of proteins and their numerical simulation," Analyst, vol. 137, no. 19, pp. 4482-4489, 2012. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2012/an/c2an35535c.
[33] G. Krainer et al., "Direct digital sensing of protein biomarkers in solution," Nature Communications, vol. 14, no. 1, p. 653, 2023/02/06 2023, doi: 10.1038/s41467-023-35792-x.
[34] M. Becker, C. Budich, V. Deckert, and D. Janasek, "Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device," Analyst, 10.1039/B816717F vol. 134, no. 1, pp. 38-40, 2009, doi: 10.1039/B816717F.
[35] S. Podszun et al., "Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis," Lab on a Chip, vol. 12, no. 3, pp. 451-457, 2012. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2012/lc/c1lc20575g.
[36] J. E. Prest et al., "Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device," Journal of Chromatography B, vol. 903, pp. 53-59, 2012/08/15/ 2012, doi: https://doi.org/10.1016/j.jchromb.2012.06.040.
[37] F. Barbaresco, M. Cocuzza, C. F. Pirri, and S. L. Marasso, "Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis," (in eng), Nanomaterials (Basel), vol. 10, no. 7, Jun 30 2020, doi: 10.3390/nano10071277.
[38] P. Hoffmann, H. Wagner, G. Weber, M. Lanz, J. Caslavska, and W. Thormann, "Separation and Purification of Methadone Enantiomers by Continuous- and Interval-Flow Electrophoresis," Analytical Chemistry, vol. 71, no. 9, pp. 1840-1850, 1999/05/01 1999, doi: 10.1021/ac981178v.
[39] G. Kaigala, M. Bercovici, M. Behnam, D. Elliott, J. Santiago, and C. Backhouse, "Miniaturized system for isotachophoresis assays," Lab on a Chip, vol. 10, no. 17, pp. 2242-2250, 2010. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2010/lc/c004120c.
[40] T. Haensch et al., "Integration of Impedimetric Sensors for In Situ Electrochemical Impedance Spectroscopy in Free-Flow Electrophoresis Applications in Lab-on-Chip Systems," ACS sensors, 2022.
[41] M. Hügle, O. Behrmann, M. Raum, F. T. Hufert, G. A. Urban, and G. Dame, "A lab-on-a-chip for free-flow electrophoretic preconcentration of viruses and gel electrophoretic DNA extraction," Analyst, vol. 145, no. 7, pp. 2554-2561, 2020.
[42] M. Jender, P. Novo, D. Maehler, U. Münchberg, D. Janasek, and E. Freier, "Multiplexed online monitoring of microfluidic free-flow electrophoresis via mass spectrometry," Analytical chemistry, vol. 92, no. 9, pp. 6764-6769, 2020. [Online]. Available: https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c00996.
[43] R. Panneerselvam, H. Sadat, E. M. Höhn, A. Das, H. Noothalapati, and D. Belder, "Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?," (in eng), Lab Chip, vol. 22, no. 4, pp. 665-682, Feb 15 2022, doi: 10.1039/d1lc01097b.
[44] S. Bai, X. Ren, K. Obata, Y. Ito, and K. Sugioka, "Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip," Opto-Electronic Advances, vol. 5, no. 10, pp. 210121-1-210121-10, 2022/08/20 2022, doi: 10.29026/oea.2022.210121.
[45] H. Pu, W. Xiao, and D.-W. Sun, "SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants," Trends in Food Science & Technology, vol. 70, pp. 114-126, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.tifs.2017.10.001.
[46] J. Guo, F. Zeng, J. Guo, and X. Ma, "Preparation and application of microfluidic SERS substrate: Challenges and future perspectives," Journal of Materials Science & Technology, vol. 37, pp. 96-103, 2020.
[47] H. Lu, L. Zhu, C. Zhang, K. Chen, and Y. Cui, "Mixing Assisted “Hot Spots” Occupying SERS Strategy for Highly Sensitive In Situ Study," Analytical Chemistry, vol. 90, no. 7, pp. 4535-4543, 2018/04/03 2018, doi: 10.1021/acs.analchem.7b04929.
[48] G. Chen et al., "A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays," RSC Advances, 10.1039/C4RA09251A vol. 4, no. 97, pp. 54434-54440, 2014, doi: 10.1039/C4RA09251A.
[49] N. Choi et al., "Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in Yersinia pestis," Analytical chemistry, vol. 89, no. 16, pp. 8413-8420, 2017.
[50] S. Dey et al., "A microfluidic-SERSplatform for isolation and immuno-phenotyping of antigen specific T-cells," Sensors and Actuators B: Chemical, vol. 284, pp. 281-288, 2019.
[51] R. Gao et al., "Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor," Biosensors and Bioelectronics, vol. 72, pp. 230-236, 2015.
[52] R. Gao et al., "SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers," ACS sensors, vol. 4, no. 4, pp. 938-943, 2019.
[53] A. Kamińska, E. Witkowska, K. Winkler, I. Dzięcielewski, J. L. Weyher, and J. Waluk, "Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system," Biosensors and bioelectronics, vol. 66, pp. 461-467, 2015.
[54] M. Lee, K. Lee, K. H. Kim, K. W. Oh, and J. Choo, "SERS-based immunoassay using a gold array-embedded gradient microfluidic chip," Lab on a Chip, vol. 12, no. 19, pp. 3720-3727, 2012.
[55] Z. Zheng, L. Wu, L. Li, S. Zong, Z. Wang, and Y. Cui, "Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip," Talanta, vol. 188, pp. 507-515, 2018.
[56] X. Cao et al., "A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy," Journal of Nanobiotechnology, vol. 20, no. 1, pp. 1-13, 2022.
[57] X. Cao et al., "A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum," Biosensors and Bioelectronics, vol. 205, p. 114110, 2022.
[58] N. Choi et al., "Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip," Lab on a Chip, vol. 12, no. 24, pp. 5160-5167, 2012.
[59] L. Ma, S. Ye, X. Wang, and J. Zhang, "SERS-microfluidic approach for the quantitative detection of miRNA using DNAzyme-mediated reciprocal signal amplification," ACS sensors, vol. 6, no. 3, pp. 1392-1399, 2021.
[60] T. Park et al., "Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study," Lab on a Chip, vol. 5, no. 4, pp. 437-442, 2005.
[61] K. K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, "SERS as tool for the analysis of DNA-chips in a microfluidic platform," Analytical and bioanalytical chemistry, vol. 396, pp. 1381-1384, 2010.
[62] L. Wu et al., "Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity," Nanoscale, vol. 11, no. 16, pp. 7781-7789, 2019.
[63] I. Freitag, C. Beleites, S. Dochow, J. Clement, C. Krafft, and J. Popp, "Recognition of tumor cells by immuno-SERS-markers in a microfluidic chip at continuous flow," Analyst, vol. 141, no. 21, pp. 5986-5989, 2016.
[64] Z. Qian et al., "In situ visualization and SERS monitoring of the interaction between tumor and endothelial cells using 3D microfluidic networks," ACS sensors, vol. 5, no. 1, pp. 208-216, 2019.
[65] Y. Zhang, Z. Wang, L. Wu, S. Zong, B. Yun, and Y. Cui, "Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip," Small, vol. 14, no. 20, p. 1704433, 2018.
[66] Y. Zhang, L. Wu, K. Yang, S. Zong, Z. Wang, and Y. Cui, "2D profiling of tumor chemotactic and molecular phenotype at single cell resolution using a SERS-microfluidic chip," Nano Research, vol. 15, no. 5, pp. 4357-4365, 2022.
[67] H. T. Ngo, H.-N. Wang, A. M. Fales, and T. Vo-Dinh, "Plasmonic SERS biosensing nanochips for DNA detection," Analytical and Bioanalytical Chemistry, vol. 408, no. 7, pp. 1773-1781, 2016/03/01 2016, doi: 10.1007/s00216-015-9121-4.
[68] Z. Wang et al., "Screening and multiple detection of cancer exosomes using an SERS-based method," Nanoscale, 10.1039/C7NR09162A vol. 10, no. 19, pp. 9053-9062, 2018, doi: 10.1039/C7NR09162A.
[69] T. T. Ong, E. W. Blanch, and O. A. Jones, "Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment," Science of The Total Environment, vol. 720, p. 137601, 2020.
[70] S. Bai, D. Serien, A. Hu, and K. Sugioka, "3D microfluidic Surface‐Enhanced Raman Spectroscopy (SERS) chips fabricated by all‐femtosecond‐laser‐processing for real‐time sensing of toxic substances," Advanced Functional Materials, vol. 28, no. 23, p. 1706262, 2018.
[71] W. Cui, Z. Ren, Y. Song, and C. L. Ren, "Development and potential for point-of-care heavy metal sensing using microfluidic systems: A brief review," Sensors and Actuators A: Physical, p. 113733, 2022.
[72] M.-K. Filippidou and S. Chatzandroulis, "Microfluidic Devices for Heavy Metal Ions Detection: A Review," Micromachines, vol. 14, no. 8, p. 1520, 2023.
[73] X. He, X. Zhou, Y. Liu, and X. Wang, "Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering (SERS) biosensor for uranyl ions detection," Sensors and Actuators B: Chemical, vol. 311, p. 127676, 2020.
[74] J. P. Lafleur, S. Senkbeil, T. G. Jensen, and J. P. Kutter, "Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants," Lab on a Chip, vol. 12, no. 22, pp. 4651-4656, 2012.
[75] Y. Lin, D. Gritsenko, S. Feng, Y. C. Teh, X. Lu, and J. Xu, "Detection of heavy metal by paper-based microfluidics," Biosensors and Bioelectronics, vol. 83, pp. 256-266, 2016.
[76] D. Liu, C. Liu, Y. Yuan, X. Zhang, Y. Huang, and S. Yan, "Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection," Analytical Chemistry, vol. 93, no. 30, pp. 10672-10678, 2021.
[77] S. Yan et al., "Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 220, p. 117113, 2019/09/05/ 2019, doi: https://doi.org/10.1016/j.saa.2019.05.018.
[78] H. Zhang, D. Wang, D. Zhang, T. Zhang, L. Yang, and Z. Li, "In Situ Microfluidic SERS Chip for Ultrasensitive Hg2+ Sensing Based on I–-Functionalized Silver Aggregates," ACS Applied Materials & Interfaces, vol. 14, no. 1, pp. 2211-2218, 2021.
[79] M. T. Alula, Z. T. Mengesha, and E. Mwenesongole, "Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review," Vibrational Spectroscopy, vol. 98, pp. 50-63, 2018.
[80] V. Burtsev et al., "Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime," Analyst, vol. 146, no. 11, pp. 3686-3696, 2021.
[81] D. Craig, M. Mazilu, and K. Dholakia, "Quantitative detection of pharmaceuticals using a combination of paper microfluidics and wavelength modulated Raman spectroscopy," PLoS One, vol. 10, no. 5, p. e0123334, 2015.
[82] P. Cui and S. Wang, "Application of microfluidic chip technology in pharmaceutical analysis: A review," Journal of pharmaceutical analysis, vol. 9, no. 4, pp. 238-247, 2019.
[83] Y. Gutiérrez et al., "Paving the Way to Industrially Fabricated Disposable and Customizable Surface‐Enhanced Raman Scattering Microfluidic Chips for Diagnostic Applications," Advanced Engineering Materials, vol. 24, no. 8, p. 2101365, 2022.
[84] Y. H. Kim, D. J. Kim, S. Lee, D. H. Kim, S. G. Park, and S. H. Kim, "Microfluidic designing microgels containing highly concentrated gold nanoparticles for SERS analysis of complex fluids," Small, vol. 15, no. 52, p. 1905076, 2019.
[85] N. D. Kline et al., "Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection," Analytical chemistry, vol. 88, no. 21, pp. 10513-10522, 2016.
[86] S. Li et al., "Dynamic SPME–SERS induced by electric field: toward in situ monitoring of pharmaceuticals and personal care products," Analytical Chemistry, vol. 94, no. 26, pp. 9270-9277, 2022.
[87] A. März et al., "The multifunctional application of microfluidic lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS) within the field of bioanalytics," in European Conference on Biomedical Optics, 2011: Optica Publishing Group, p. 808707.
[88] S. Patze, U. Huebner, F. Liebold, K. Weber, D. Cialla-May, and J. Popp, "SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup," Analytica chimica acta, vol. 949, pp. 1-7, 2017.
[89] Z. Jiang, Y. Zhuang, S. Guo, A. M. F. Sohan, and B. Yin, "Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food," Foods, vol. 12, no. 15, p. 2868, 2023.
[90] Y. Li, S. Yang, C. Qu, Z. Ding, and H. Liu, "Hydrogel‐based surface‐enhanced Raman spectroscopy for food contaminant detection: A review on classification, strategies, and applications," Food Safety and Health, 2023.
[91] P. Murugesan, G. Raj, and J. Moses, "Microfluidic devices for the detection of pesticide residues," Reviews in Environmental Science and Bio/Technology, vol. 22, no. 3, pp. 625-652, 2023.
[92] R. Ray et al., "based microfluidic devices for food adulterants: Cost-effective technological monitoring systems," Food Chemistry, vol. 390, p. 133173, 2022.
[93] A. Tsagkaris, J. Pulkrabova, and J. Hajslova, "Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021, 10, 88," Novel Analytical Methods in Food Analysis, p. 125, 2021.
[94] Y. Wang et al., "A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram," Microchimica Acta, vol. 186, pp. 1-9, 2019.
[95] J. Xie, H. Pang, R. Sun, T. Wang, X. Meng, and Z. Zhou, "Development of rapid and high-precision colorimetric device for organophosphorus pesticide detection based on microfluidic mixer chip," Micromachines, vol. 12, no. 3, p. 290, 2021.
[96] G. Emonds-Alt et al., "Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water," Talanta, vol. 249, p. 123640, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.talanta.2022.123640.
[97] D. Zhang, H. Pu, L. Huang, and D.-W. Sun, "Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications," Trends in Food Science & Technology, vol. 109, pp. 690-701, 2021/03/01/ 2021, doi: https://doi.org/10.1016/j.tifs.2021.01.058.
[98] O.-M. Buja, O. D. Gordan, N. Leopold, A. Morschhauser, J. Nestler, and D. R. Zahn, "Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate," Beilstein Journal of Nanotechnology, vol. 8, no. 1, pp. 237-243, 2017.
[99] S. Lee et al., "Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor," Analytica chimica acta, vol. 590, no. 2, pp. 139-144, 2007.
[100] B. Liu et al., "A Surface Enhanced Raman Scattering (SERS) microdroplet detector for trace levels of crystal violet," Microchimica Acta, vol. 180, pp. 997-1004, 2013.
[101] B. Liu, T. Wu, X. Yang, Z. Wang, and Y. Du, "Portable microfluidic chip based surface-enhanced raman spectroscopy sensor for crystal violet," Analytical Letters, vol. 47, no. 16, pp. 2682-2690, 2014.
[102] J. Parisi, Q. Dong, and Y. Lei, "In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing," RSC advances, vol. 5, no. 19, pp. 14081-14089, 2015.
[103] R. Wang et al., "A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine," Microchimica Acta, vol. 184, no. 1, pp. 279-287, 2017/01/01 2017, doi: 10.1007/s00604-016-1990-5.
[104] S. H. Yazdi and I. M. White, "Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem," Analyst, 10.1039/C2AN36232E vol. 138, no. 1, pp. 100-103, 2013, doi: 10.1039/C2AN36232E.
[105] H. Alawadhi et al., "Trace-level sensing of food toxins by flexible and cost-effective SERS sensors fabricated by pulsed-laser-deposition of gold nanoparticles on polycarbonate matrix," Surfaces and Interfaces, p. 103016, 2023.
[106] S. Bai, D. Serien, Y. Ma, K. Obata, and K. Sugioka, "Attomolar sensing based on liquid interface-assisted surface-enhanced Raman scattering in microfluidic chip by femtosecond laser processing," ACS Applied Materials & Interfaces, vol. 12, no. 37, pp. 42328-42338, 2020.
[107] A. Bernat, M. Samiwala, J. Albo, X. Jiang, and Q. Rao, "Challenges in SERS-based pesticide detection and plausible solutions," Journal of agricultural and food chemistry, vol. 67, no. 45, pp. 12341-12347, 2019.
[108] Y. Deng, Q. Li, Y. Zhou, and J. Qian, "Fully inkjet printing preparation of a carbon dots multichannel microfluidic paper-based sensor and its application in food additive detection," ACS Applied Materials & Interfaces, vol. 13, no. 48, pp. 57084-57091, 2021.
[109] H. Dies, M. Siampani, C. Escobedo, and A. Docoslis, "Direct detection of toxic contaminants in minimally processed food products using dendritic surface-enhanced Raman scattering substrates," Sensors, vol. 18, no. 8, p. 2726, 2018.
[110] X. Kong, K. Squire, X. Chong, and A. X. Wang, "Ultra-sensitive lab-on-a-chip detection of Sudan I in food using plasmonics-enhanced diatomaceous thin film," Food control, vol. 79, pp. 258-265, 2017.
[111] S. Kumar, A. Deep, N. Wangoo, and N. Bhardwaj, "Recent advancements in nanomaterials based optical detection of food additives: A review," Analyst, 2023.
[112] Ü. Dogan et al., "Escherichia coli enumeration in a capillary-driven microfluidic chip with SERS," Biosensors, vol. 12, no. 9, p. 765, 2022.
[113] B. Krafft, A. Tycova, R. D. Urban, C. Dusny, and D. Belder, "Microfluidic device for concentration and SERS‐based detection of bacteria in drinking water," Electrophoresis, vol. 42, no. 1-2, pp. 86-94, 2021.
[114] X. Lu et al., "Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor," Analytical chemistry, vol. 85, no. 4, pp. 2320-2327, 2013.
[115] N. A. Mungroo, G. Oliveira, and S. Neethirajan, "SERS based point-of-care detection of food-borne pathogens," Microchimica acta, vol. 183, pp. 697-707, 2016.
[116] B. Nasseri, N. Soleimani, N. Rabiee, A. Kalbasi, M. Karimi, and M. R. Hamblin, "Point-of-care microfluidic devices for pathogen detection," Biosensors and Bioelectronics, vol. 117, pp. 112-128, 2018.
[117] L. Rodríguez-Lorenzo et al., "Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics," ACS Applied Nano Materials, vol. 2, no. 10, pp. 6081-6086, 2019.
[118] C. Wang, F. Madiyar, C. Yu, and J. Li, "Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor," Journal of Biological Engineering, vol. 11, no. 1, pp. 1-11, 2017.
[119] Y. Wang et al., "Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments," Analytical chemistry, vol. 86, no. 19, pp. 9930-9938, 2014.
[120] M. Viehrig et al., "Quantitative SERS Assay on a Single Chip Enabled by Electrochemically Assisted Regeneration: A Method for Detection of Melamine in Milk," Analytical Chemistry, vol. 92, no. 6, pp. 4317-4325, 2020/03/17 2020, doi: 10.1021/acs.analchem.9b05060.
[121] Y. Zhang, S. Zhao, J. Zheng, and L. He, "Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization," TrAC Trends in Analytical Chemistry, vol. 90, pp. 1-13, 2017/05/01/ 2017, doi: https://doi.org/10.1016/j.trac.2017.02.006.
[122] M. Xie et al., "Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis," Talanta, vol. 268, p. 125281, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.talanta.2023.125281.
[123] P. Reokrungruang, I. Chatnuntawech, T. Dharakul, and S. Bamrungsap, "A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening," Sensors and Actuators B: Chemical, vol. 285, pp. 462-469, 2019/04/15/ 2019, doi: https://doi.org/10.1016/j.snb.2019.01.090.
[124] Y. Wang, S. Ravindranath, and J. Irudayaraj, "Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes," Analytical and Bioanalytical Chemistry, vol. 399, no. 3, pp. 1271-1278, 2011/01/01 2011, doi: 10.1007/s00216-010-4453-6.
[125] K. Rule Wigginton and P. J. Vikesland, "Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection," Analyst, 10.1039/B919270K vol. 135, no. 6, pp. 1320-1326, 2010, doi: 10.1039/B919270K.
[126] I.-H. Cho, P. Bhandari, P. Patel, and J. Irudayaraj, "Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef," Biosensors and Bioelectronics, vol. 64, pp. 171-176, 2015/02/15/ 2015, doi: https://doi.org/10.1016/j.bios.2014.08.063.
[127] O. Coskun, "Separation techniques: chromatography," Northern clinics of Istanbul, vol. 3, no. 2, p. 156, 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206469/pdf/NCI-3-156.pdf.
[128] W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, "Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy," RSC Advances, 10.1039/C5RA05562H vol. 5, no. 59, pp. 47640-47646, 2015, doi: 10.1039/C5RA05562H.
[129] Y.-Y. Wang et al., "A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis," Microfluidics and Nanofluidics, vol. 23, no. 4, p. 48, 2019/03/04 2019, doi: 10.1007/s10404-019-2216-z.
[130] A. Tycova, R. F. Gerhardt, and D. Belder, "Surface enhanced Raman spectroscopy in microchip electrophoresis," Journal of Chromatography A, vol. 1541, pp. 39-46, 2018/03/16/ 2018, doi: https://doi.org/10.1016/j.chroma.2018.02.014.
[131] R. Panneerselvam, H. Sadat, E.-M. Höhn, A. Das, H. Noothalapati, and D. Belder, "Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?," Lab on a Chip, vol. 22, no. 4, pp. 665-682, 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlepdf/2022/lc/d1lc01097b.
[132] D. Cialla‐May, M. Schmitt, and J. Popp, "Theoretical principles of Raman spectroscopy," Physical Sciences Reviews, vol. 4, 2019.
[133] P. G. Etchegoin and E. C. Le Ru, "Quantifying SERS enhancements," MRS Bulletin, vol. 38, no. 8, pp. 631-640, 2013, doi: 10.1557/mrs.2013.158.
[134] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chemical Society Reviews, 10.1039/A827241Z vol. 27, no. 4, pp. 241-250, 1998, doi: 10.1039/A827241Z.
[135] H. Wang et al., "Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices," Analyst, 10.1039/D1AN00624J vol. 146, no. 16, pp. 5008-5032, 2021, doi: 10.1039/D1AN00624J.
[136] M. Ringnér, "What is principal component analysis?," Nature Biotechnology, vol. 26, no. 3, pp. 303-304, 2008/03/01 2008, doi: 10.1038/nbt0308-303.
[137] [Online]. Available: Victor Lavrenko and Charles Sutton, 2011.
[138] R. Bro and A. K. Smilde, "Principal component analysis," Analytical methods, vol. 6, no. 9, pp. 2812-2831, 2014.
[139] H.-Y. Wang et al., "Spindle-shaped microfluidic chamber with uniform perfusion flows," Microfluidics and Nanofluidics, vol. 15, no. 6, pp. 839-845, 2013/12/01 2013, doi: 10.1007/s10404-013-1195-8.
[140] M. G. Lee, S. Choi, and J.-K. Park, "Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device," Lab on a Chip, vol. 9, no. 21, pp. 3155-3160, 2009.
[141] H.-H. Wang et al., "Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps," Advanced Materials, vol. 18, no. 4, pp. 491-495, 2006, doi: https://doi.org/10.1002/adma.200501875.
[142] C. M. Ferreira, I. S. Pinto, E. V. Soares, and H. M. Soares, "(Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions–a review," Rsc Advances, vol. 5, no. 39, pp. 30989-31003, 2015.
[143] M. Morháč and V. Matoušek, "Peak Clipping Algorithms for Background Estimation in Spectroscopic Data," Applied Spectroscopy, vol. 62, no. 1, pp. 91-106, 2008/01/01 2008, doi: 10.1366/000370208783412762.
[144] D. Milanova, R. D. Chambers, S. S. Bahga, and J. G. Santiago, "Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis," ELECTROPHORESIS, https://doi.org/10.1002/elps.201100210 vol. 32, no. 22, pp. 3286-3294, 2011/11/01 2011, doi: https://doi.org/10.1002/elps.201100210.
[145] P. O. Gendron, F. Avaltroni, and K. J. Wilkinson, "Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy," Journal of Fluorescence, vol. 18, no. 6, pp. 1093-1101, 2008/11/01 2008, doi: 10.1007/s10895-008-0357-7.
[146] P. Galambos and F. K. Forster, "Micro-Fluidic Diffusion Coefficient Measurement," in Micro Total Analysis Systems ’98, Dordrecht, D. J. Harrison and A. van den Berg, Eds., 1998// 1998: Springer Netherlands, pp. 189-192.
[147] K. L. Geremia and P. G. Seybold, "Computational estimation of the acidities of purines and indoles," Journal of Molecular Modeling, vol. 25, no. 1, p. 12, 2019/01/03 2019, doi: 10.1007/s00894-018-3892-4.
[148] S. Ganguly and K. K. Kundu, "Protonation/deprotonation energetics of uracil, thymine, and cytosine in water from e.m.f./spectrophotometric measurements," Canadian Journal of Chemistry, vol. 72, no. 4, pp. 1120-1126, 1994, doi: 10.1139/v94-143.
[149] C. L. Benn et al., "Physiology of Hyperuricemia and Urate-Lowering Treatments," (in eng), Front Med (Lausanne), vol. 5, p. 160, 2018, doi: 10.3389/fmed.2018.00160.
[150] Y. Nishikawa, T. Nagasawa, K. Fujiwara, and M. Osawa, "Silver island films for surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement," Vibrational Spectroscopy, vol. 6, no. 1, pp. 43-53, 1993/10/01/ 1993, doi: https://doi.org/10.1016/0924-2031(93)87021-K.
[151] H. Nam, J. E. Park, W. Waheed, A. Alazzam, H. J. Sung, and J. S. Jeon, "Acoustofluidic lysis of cancer cells and Raman spectrum profiling," (in eng), Lab Chip, vol. 23, no. 18, pp. 4117-4125, Sep 13 2023, doi: 10.1039/d3lc00550j.
[152] W. Liu et al., "Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress," Analytical Chemistry, vol. 94, no. 18, pp. 6791-6798, 2022/05/10 2022, doi: 10.1021/acs.analchem.2c00502.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93086-
dc.description.abstract電泳是一種在各個領域被廣泛應用的樣品前處理技術。自由流電泳(FFE)是其中一種常見的電泳模式,因能連續且快速的進行分離,被用於細菌、蛋白質或DNA的樣品純化和濃縮。近年來,由於降低人為錯誤和提高檢測準確性的潛力,自由流電泳與不同的偵測技術如電化學或是質譜儀的整合變得愈發受歡迎。然而,現有的整合方法面臨諸多限制,包括數據提供資訊不足、檢測時間較長和高成本等。為了應對這些挑戰,表面增強拉曼散射(SERS)因其高靈敏度和高特異性而備受矚目。在本篇論文中,我們開發了一個無縫整合FFE和SERS的多重分子檢測平台,可以在二十分鐘內完成樣本前處理與訊號檢測。我們首先通過使用不同電特性的三種螢光分子來評估平台的性能,驗證了此平台能夠成功分離並同時偵測與SERS擁有不同親和力的分子。同時我們也透過模擬與實驗的交互驗證,建立了最佳的操作參數來進行分離。並且依據這樣的模擬公式,也能分析樣本的電特性,藉此獲得更多資訊。最後我們通過分離與檢測嘌呤的混合樣本證明了此平台能用於細菌分析,同時還能透過調整環境pH值來進行更廣泛的應用。FFE與SERS的整合為同時檢測多種分子提供了一個具備了高靈敏度以及更快的處理速度的方法,有潛力應用於臨床診斷、環境監測和食品安全。zh_TW
dc.description.abstractElectrophoresis is a widely used sample pre-processing technique in various fields. Free Flow Electrophoresis (FFE) is a common electrophoresis mode known for its continuous and rapid separation capabilities. It is applied in the purification and concentration of samples such as bacteria, proteins, or DNA. In recent years, integrating FFE with different detection techniques, such as electrochemistry or mass spectrometry, has gained popularity due to its potential to reduce human errors and enhance detection accuracy. However, existing integration methods face various limitations, including insufficient data information, prolonged detection times, and high costs. To address these challenges, Surface-Enhanced Raman Scattering (SERS) has garnered attention for its high sensitivity and specificity. In this thesis, we developed a seamlessly integrated platform that combines FFE and SERS for the detection of multiple molecules. This platform allows for sample pre-processing and signal detection to be completed within twenty minutes. We first evaluated the performance of the platform by using three fluorescent molecules with different electrical properties, confirming its ability to successfully separate and simultaneously detect molecules with varying affinities for SERS. Additionally, through the validation of simulations and experiments, we established optimal operational parameters for the separation process. By utilizing simulation formulas, we could analyze the electrical characteristics of the samples, providing more comprehensive information. Finally, we demonstrated the versatility of the platform by separating and detecting a mixed sample of purine derivatives, showcasing its potential for bacterial analysis. The platform's adaptability for broader applications was further highlighted by adjusting the pH value.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:20:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:20:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1Electrophoresis for biomolecular separation 1
1.1.1 Electrophoresis type 1
1.1.2 µFFE for biomolecular separation 4
1.1.3 µFFE combined with detection method 9
1.2 SERS for biomolecular detection 11
1.2.1 SERS detection in microfluidics 11
1.2.2 Microfluidic SERS combined with separation method 14
1.3 Research Motivation 16
Chapter 2 Theory 18
2.1 Free flow electrophoresis theory 18
2.2 SERS theory 22
2.2.1 Principle of Raman scattering 22
2.2.2 Surface Enhancement Principle of SERS 23
2.3 Principal Component Analysis theory 25
Chapter 3 Materials and methods 28
3.1 System setup 28
3.1.1 System overview 28
3.1.2 System design 29
3.2 Fabrication protocols 30
3.2.1 Microfluidic chip fabrication 30
3.2.2 SERS substrate fabrication 32
3.3 µFFE setup and process 34
3.4 Optical setup 35
3.5 Sample preparation 36
3.6 Data analysis 37
3.7 Revised experimental protocol 38
3.7.1 Revised microfluidic chip fabrication 40
3.7.2 Revised µFFE setup 42
Chapter 4 Results and discussion 43
4.1 Simulation results 43
4.1.1 Sheath flow ratio verification 43
4.1.2 Flow rate optimization 45
4.2 Sample characterization and optimization 46
4.2.1 Single sample FFE result 46
4.2.2 SERS calibration curves 47
4.3 Preliminary results 49
4.4 Biomolecule FFE-SERS demonstration 50
4.4.1 Mixing purine derivative quantification 50
4.5 Results of the revised experimental protocol 53
Chapter 5 Conclusions 58
Chapter 6 Future works 59
6.1 Integration of the system on the single chip 59
6.1.1 Integration test results 60
6.2 Cell lysis component analysis 61
6.3 Analysis of bacteria due to external stimulation 62
References 64
-
dc.language.isoen-
dc.subject表面增強拉曼散射zh_TW
dc.subject微流體系統zh_TW
dc.subject細菌檢測zh_TW
dc.subject自由流電泳zh_TW
dc.subjectFree flow electrophoresisen
dc.subjectbacteria detectionen
dc.subjectSERSen
dc.subjectMicrofluidic systemen
dc.title結合自由流電泳與表面增強拉曼光譜來進行多重分子檢測zh_TW
dc.titleIntegration of Free Flow Electrophoresis and Surface-Enhanced Raman Scattering for multiplex biomolecule analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王玉麟;王俊凱;陳奕帆zh_TW
dc.contributor.oralexamcommitteeYuh-Lin Wang;Juen-Kai Wang;Yih-Fan Chenen
dc.subject.keyword微流體系統,表面增強拉曼散射,自由流電泳,細菌檢測,zh_TW
dc.subject.keywordMicrofluidic system,SERS,Free flow electrophoresis,bacteria detection,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202401456-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved