Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92966
標題: 基於圖神經網路之鷹架結構完整性檢測
ScaffoldGraph: Graph Neural Networks for Scaffolding Integrity and Completeness Detection
作者: 林沛忻
Pei-Hsin Lin
指導教授: 謝尚賢
Shang-Hsien Hsieh
共同指導教授: 林之謙
Je-Chian Lin
關鍵字: 電腦視覺,圖神經網路,關鍵點偵測,鷹架,
Computer Vision,Graph Neural Network,Keypoint Detection,Scaffolding,
出版年 : 2024
學位: 碩士
摘要: 鷹架為工地最常採用之一種施工設備,提供作業人員通行或在其上從事高處作業。每單元鷹架由立架、踏板和交叉拉桿所組成,且在搭建過程中需採取扶手先行工法以保證作業人員安全。在檢查鷹架完整性的過程中,需要確保元件被安裝在正確的位置上。然而,作業人員時常會拆除元件以方便作業,此行為有可能會造成鷹架結構不穩定或者產生容易墜落的空隙。在搭建鷹架的過程中,作業人員也會為了作業方便而忽略安裝扶手。目前工地的安全檢查多倚賴人工巡檢,耗時、費力之外,也難以即時檢查到鷹架單元元件細節或完整的安裝過程。本研究提出一種結合圖神經網路(Graph Neural Network)、關鍵點偵測(Keypoint Detection)和電腦視覺(Computer Vision)的集合方法,以檢查鷹架的完整性以及搭建順序,協助巡檢過程更自動化。具體來說,本研究首先利用圖像分割(Image Segmentation)來確認施工架立架、踏板和扶手之位置,接著建立一個多模態模型(Multimodal),此模型結合深度學習的關鍵點偵測、傳統電腦視覺和深度預測的特徵來訓練,用於確認交叉拉桿之完整性。再來,利用圖神經網路分析圖像中元件的空間關係,確認鷹架搭建結構是否符合規範。最後,設計一個符合台灣鷹架搭建法規的邏輯判斷,以確認扶手先行之搭建過程和搭建結果是否有墜落的可能性。本研究經工地實際案例測試後,驗證提出之方法可成功辨識不完整的施工架單元,也能夠分析搭建鷹架過程是否符合規範。實驗結果顯示,二維的圖像分割精度在踏板、立架、扶手中,分別達到96.2%、90.6%、86.7%,且在交叉拉桿偵測模型中關鍵點精度達到97.8%。在圖神經網路之驗證達到85.2%。這些成果能夠證實所提出之方法可有效辨識鷹架之完整性以及搭建過程的安全性。
Scaffolding is a common construction equipment, which provides workers with access and a platform for high-altitude tasks. Each unit comprises uprights, footboards, and cross braces, with a handrail-first approach necessitating the installation of handrails during scaffolding erection process. During the process of inspecting the scaffolding's integrity, it is necessary to ensure that the components are installed in the correct positions. However, workers often remove components to facilitate their tasks, which can potentially cause the scaffolding structure to become unstable or create gaps that are prone to falling. Additionally, during the scaffolding construction process, workers may neglect to install handrails for the sake of convenience. Currently, safety inspections on construction sites rely heavily on manual checks, which are time-consuming and labor-intensive and fail to instantly capture the details of scaffold unit components or the completeness of the installation process. This study proposes an integrated approach combining Graph Neural Network (GNN), keypoint detection, and computer vision to inspect the integrity and assembly order of scaffolding, aiding in the automation of inspection processes. Initially, Image Segmentation identifies upright, handrail and footboard positions. A multimodal model then combines deep learning keypoint detection, computer vision and depth estimation features to verify cross brace integrity. GNN analyze component spatial relationships to ensure standard compliance. Finally, a logic assessment that aligns with scaffolding construction regulations in Taiwan is designed to confirm whether the handrails-first assembly process and results present any fall hazards. Tested on real sites, the method successfully identified incomplete units and checked assembly compliance. Image segmentation for footboards, uprights and handrails showed accuracies of 96.2%, 90.6% and 86.7%, respectively. Keypoint accuracy for cross brace detection reached 97.8%. GNN validation was 85.2%, proving the method's effectiveness in identifying scaffolding integrity and erection safety.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92966
DOI: 10.6342/NTU202401161
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-07-01
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
45.22 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved