請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝尚賢 | zh_TW |
| dc.contributor.advisor | Shang-Hsien Hsieh | en |
| dc.contributor.author | 林沛忻 | zh_TW |
| dc.contributor.author | Pei-Hsin Lin | en |
| dc.date.accessioned | 2024-07-09T16:09:56Z | - |
| dc.date.available | 2024-07-10 | - |
| dc.date.copyright | 2024-07-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-06 | - |
| dc.identifier.citation | [1] Occupational Safety and Health Administration, Ministry of Labor, Taiwan. 2022 annual labor inspection statistical report. Accessed Mar 2024, https://www.osha. gov.tw/48110/48331/48333/48339/150732/post.
[2] Tomi Zlatar, Eliane Lago, Willames Soares, João Baptista, and Béda Junior. Falls from height: Analysis of 114 cases. Produção, 29, 05 2019. [3] Laws Regulations Database of The Republic of China (Taiwan). Occupational safety and health facilities rules. Accessed Aug 2022, https://law.moj.gov.tw/ LawClass/LawSingle.aspx?pcode=N0060009&flno=281. [4] Occupational Safety and Health Administration, Ministry of Labor, Taiwan. Safety inspection of scaffolding operations. Accessed Dec 2018, https://laws.mol. gov.tw/FLAW/FLAWDAT0202.aspx?id=FL083843. [5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, nov 1997. [6] Hongling Guo, Zhitian Zhang, Run Yu, Yakang Sun, and Heng Li. Action recog- nition based on 3d skeleton and lstm for the monitoring of construction work- ers'safety harness usage. Journal of Construction Engineering and Management, 149(4):04023015, 2023. [7] Muhammad Khan, Rabia Khalid, Sharjeel Anjum, Si Van-Tien Tran, and Chansik Park. Fall prevention from scaffolding using computer vision and iot-based mon- itoring. Journal of Construction Engineering and Management, 148(7):04022051, 2022. [8] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep learning: A survey. Computing Research Repository, abs/2001.05566, 2020. [9] ZhouqianJiangandJohnI.Messner.Computervision-basedmethodsappliedtocon- struction processes: A literature review. In Construction Research Congress 2020, pages 1233–1241. [10] Evan A. Nadhim, Carol Hon, Bo Xia, Ian Stewart, and Dongping Fang. Falls from height in the construction industry: A critical review of the scientific literature. International Journal of Environmental Research and Public Health, 13:638, 06 2016. [11] Yanmei Piao, Wenpei Xu, Ting-Kwei Wang, and Jieh-Haur Chen. Dynamic fall risk assessment framework for construction workers based on dynamic bayesian net- work and computer vision. Journal of Construction Engineering and Management, 147(12):04021171, 2021. [12] Fang Weili, Lieyun Ding, and Hanbin Luo. Falls from heights: A computer vision- based approach for safety harness detection. Automation in Construction, 91:53–61, 02 2018. [13] Jie Li, Yewei Ouyang, and Xiaowei Luo. Towards an EEG-Based Approach for Detecting Falls from Height Hazards Using Construction Workers'Physiological Signals, pages 647–656. [14] Wenpei Xu and Ting-Kwei Wang. Construction worker safety prediction and active warning based on computer vision and the gray absolute decision analysis method. Journal of Construction Engineering and Management, 149(4):04023014, 2023. [15] Yi-Han Lai. BIM and reality model-driven fall hazard recognition using semantic segmentation. Master’s thesis, National Taiwan University, Jan 2022. [16] Qian Wang. Automatic checks from 3d point cloud data for safety regulation com- pliance for scaffold work platforms. Automation in Construction, 104:38–51, 08 2019. [17] Sayan Sakhakarmi, JeeWoong Park, and Chunhee Cho. Enhanced machine learning classification accuracy for scaffolding safety using increased features. Journal of Construction Engineering and Management, 145(2):04018133, 2019. [18] Laws Regulations Database of The Republic of China (Taiwan). Occupational safety and health facilities rules. Accessed Jan 2021, https://law.moj.gov.tw/ LawClass/LawAll.aspx?pcode=N0060014. [19] Lun-Wang Wu. Research on lora wireless monitoring system applied to scaffolding. Master’s thesis, National Taiwan University, Jan 2021. [20] Chunhee Cho, Kyungki Kim, JeeWoong Park, and Yong K. Cho. Data-driven mon- itoring system for preventing the collapse of scaffolding structures. Journal of Construction Engineering and Management, 144(8):04018077, 2018. [21] R. Oliveira, D. Ribeiro, P. Oliveira, and R. Gavina. Laser scanner in construction quality control of steel industrial buildings. Practice Periodical on Structural Design and Construction, 28(4):04023055, 2023. [22] Ren-Jye Dzeng, Chen-Wei Cheng, and Ching-Yu Cheng. A scaffolding assembly deficiency detection system with deep learning and augmented reality. Buildings, 14:385, 02 2024. [23] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, 曾逸夫 (Zeng Yifu), Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation, November 2022. [24] Yunqiang Chen, Qing Wang, Hong Chen, Xiaoyu Song, Hui Tang, and Mengxiao Tian. An overview of augmented reality technology. Journal of Physics: Conference Series, 1237(2):022082, jun 2019. [25] Numan Khan, Syed Farhan Alam Zaidi, Jaehun Yang, Chansik Park, and Doyeop Lee. Construction work-stage-based rule compliance monitoring framework using computer vision (cv) technology. Buildings, 13(8), 2023. [26] Pei-Hsin Lin, Jacob J. Lin, and Shang-Hsien Hsieh. Construction site scaffolding completeness detection based on mask r-cnn and hough transform. In The 30th EG-ICE: International Conference on Intelligent Computing in Engineering, Lon- don, UK, July 2023. [27] RyleeThompson,ElaheGhalebi,TerranceDeVries,andGrahamW.Taylor.Building LEGO using deep generative models of graphs. Computing Research Repository, abs/2012.11543, 2020. [28] Mahnaz Ensafi, Saeid Alimoradi, Xinghua Gao, and Walid Thabet. Machine Learning and Artificial Intelligence Applications in Building Construction: Present Status and Future Trends, pages 116–124. [29] Emil L. Jacobsen and Jochen Teizer. Deep learning in construction: Review of applications and potential avenues. Journal of Computing in Civil Engineering, 36(2):03121001, 2022. [30] Yilong Jia, Jun Wang, Wenchi Shou, M. Reza Hosseini, and Yu Bai. Graph neural networks for construction applications. Automation in Construction, 154:104984, 2023. [31] Dominic Roberts, Wilfredo Torres Calderon, Shuai Tang, and Mani Golparvar- Fard. Vision-based construction worker activity analysis informed by body posture. Journal of Computing in Civil Engineering, 34(4):04020017, 2020. [32] Lei Hou, Chuanxin Zhao, Changzhi Wu, Sungkon Moon, and Xiangyu Wang. Dis- crete firefly algorithm for scaffolding construction scheduling. Journal of Computing in Civil Engineering, 31(3):04016064, 2017. [33] Kyungki Kim, Yong K. Cho, and Kinam Kim. Bim-based decision-making framework for scaffolding planning. Journal of Management in Engineering, 34(6):04018046, 2018. [34] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. Computing Research Repository, abs/1311.2524, 2013. [35] ShaoqingRen,KaimingHe,RossB.Girshick,andJianSun.FasterR-CNN:towards real-time object detection with region proposal networks. Computing Research Repository, abs/1506.01497, 2015. [36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net- works for biomedical image segmentation. Computing Research Repository, abs/ 1505.04597, 2015. [37] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. Computing Research Repository, abs/1703.06870, 2017. [38] Bo Xiao and Shih-Chung Kang. Development of an image data set of construc- tion machines for deep learning object detection. Journal of Computing in Civil Engineering, 35(2):05020005, 2021. [39] Hamed Raoofi and Ali Motamedi. Mask r-cnn deep learning-based approach to detect construction machinery on jobsites. In 37th International Symposium on Automation and Robotics in Construction (ISARC 2020), 10 2020. [40] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81, 2020. [41] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Computing Research Repository, abs/1802.09691, 2018. [42] ZhichunWang,QingsongLv,XiaohanLan,andYuZhang.Cross-lingualknowledge graph alignment via graph convolutional networks. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 349–357, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. [43] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object detection. Computing Research Repository, abs/1711.11575, 2017. [44] ShuaiTangandManiGolparvar-Fard.Machinelearning-basedriskanalysisforcon- struction worker safety from ubiquitous site photos and videos. Journal of Computing in Civil Engineering, 35(6):04021020, 2021. [45] Ying Hong, Vahan Hovhannisyan, Sally Xie, and Ioannis Brilakis. Determining construction method patterns to automate and optimise scheduling –a graph-based approach. In 2021 European Conference on Computing in Construction, pages 59– 66, 07 2021. [46] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Open- pose: Realtime multi-person 2d pose estimation using part affinity fields. Computing Research Repository, abs/1812.08008, 2018. [47] Shenghao Shi. Facial keypoints detection. Computing Research Repository, abs/ 1710.05279, 2017. [48] Duo Lu, Eric Eaton, Matt Weg, Wei Wang, Steven Como, Jeffrey Wishart, Hongbin Yu, and Yezhou Yang. Carom air - vehicle localization and traffic scene reconstruc- tion from aerial videos. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 10666–10673, 2023. [49] Wenzheng Ying, Wenchi Shou, Jun Wang, Weixiang Shi, Yanhui Sun, Dazhi Ji, Haoxuan Gai, Xiangyu Wang, and Mengcheng Chen. Automatic scaffolding work- face assessment for activity analysis through machine learning. Applied Sciences, 11(9), 2021. [50] Han Wu, Yu Han, Meng Zhang, Bihonegn Dianarose Abebe, Molla Betelhem Leg- esse, and Ruoyu Jin. Identifying unsafe behavior of construction workers: A dynamic approach combining skeleton information and spatiotemporal features. Journal of Construction Engineering and Management, 149(11):04023115, 2023. [51] Marius-Constantin Popescu, Valentina Balas, Liliana Perescu-Popescu, and Nikos Mastorakis. Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8, 07 2009. [52] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. Feature pyramid networks for object detection. Computing Research Repository, abs/1612.03144, 2016. [53] Cuiyin Liu, Jishang Xu, and Feng Wang. A review of keypoints'detection and feature description in image registration. Scientific Programming, 2021:1–25, 12 2021. [54] HaniAltwaijry,AndreasVeit,andSergeBelongie.Learningtodetectandmatchkey- points with deep architectures. In British Machine Vision Conference 2016, pages 49.1–49.12, 01 2016. [55] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. Computing Research Repository, abs/1511.08458, 2015. [56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. Computing Research Repository, abs/1512.03385, 2015. [57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. [58] AndrewG.Howard,MenglongZhu,BoChen,DmitryKalenichenko,WeijunWang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con- volutional neural networks for mobile vision applications. Computing Research Repository, abs/1704.04861, 2017. [59] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009. [60] AlejandroNewell,KaiyuYang,andJiaDeng.Stackedhourglassnetworksforhuman pose estimation. Computing Research Repository, abs/1603.06937, 2016. [61] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biol. Cybern., 20(3–4):121–136, sep 1975. [62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan 2014. [63] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. [64] Robert A. Hummel, B. Kimia, and Steven W. Zucker. Deblurring gaussian blur. Computer Vision, Graphics, and Image Processing, 38(1):66–80, 1987. [65] N.Kanopoulos,N.Vasanthavada,andR.L.Baker.Designofanimageedgedetection filter using the sobel operator. IEEE Journal of Solid-State Circuits, 23(2):358–367, 1988. [66] JanHendrikHosang,RodrigoBenenson,andBerntSchiele.Learningnon-maximum suppression. Computing Research Repository, abs/1705.02950, 2017. [67] P V.C. Hough. Method and means for recognizing complex patterns. 12 1962. [68] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1):11–15, jan 1972. [69] Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz, and Alicia Martínez-Rebollar. The k- means algorithm evolution. In Keshav Sud, Pakize Erdogmus, and Seifedine Kadry, editors, Introduction to Data Science and Machine Learning, chapter 5. IntechOpen, Rijeka, 2019. [70] HamidLaga,LaurentValentinJospin,FaridBoussaïd,andMohammedBennamoun. A survey on deep learning techniques for stereo-based depth estimation. Computing Research Repository, abs/2006.02535, 2020. [71] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang, and Feng Qian. Monoc- ular depth estimation based on deep learning: An overview. Computing Research Repository, abs/2003.06620, 2020. [72] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-shot transfer by combining relative and metric depth, 2023. [73] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, 6:60, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92966 | - |
| dc.description.abstract | 鷹架為工地最常採用之一種施工設備,提供作業人員通行或在其上從事高處作業。每單元鷹架由立架、踏板和交叉拉桿所組成,且在搭建過程中需採取扶手先行工法以保證作業人員安全。在檢查鷹架完整性的過程中,需要確保元件被安裝在正確的位置上。然而,作業人員時常會拆除元件以方便作業,此行為有可能會造成鷹架結構不穩定或者產生容易墜落的空隙。在搭建鷹架的過程中,作業人員也會為了作業方便而忽略安裝扶手。目前工地的安全檢查多倚賴人工巡檢,耗時、費力之外,也難以即時檢查到鷹架單元元件細節或完整的安裝過程。本研究提出一種結合圖神經網路(Graph Neural Network)、關鍵點偵測(Keypoint Detection)和電腦視覺(Computer Vision)的集合方法,以檢查鷹架的完整性以及搭建順序,協助巡檢過程更自動化。具體來說,本研究首先利用圖像分割(Image Segmentation)來確認施工架立架、踏板和扶手之位置,接著建立一個多模態模型(Multimodal),此模型結合深度學習的關鍵點偵測、傳統電腦視覺和深度預測的特徵來訓練,用於確認交叉拉桿之完整性。再來,利用圖神經網路分析圖像中元件的空間關係,確認鷹架搭建結構是否符合規範。最後,設計一個符合台灣鷹架搭建法規的邏輯判斷,以確認扶手先行之搭建過程和搭建結果是否有墜落的可能性。本研究經工地實際案例測試後,驗證提出之方法可成功辨識不完整的施工架單元,也能夠分析搭建鷹架過程是否符合規範。實驗結果顯示,二維的圖像分割精度在踏板、立架、扶手中,分別達到96.2%、90.6%、86.7%,且在交叉拉桿偵測模型中關鍵點精度達到97.8%。在圖神經網路之驗證達到85.2%。這些成果能夠證實所提出之方法可有效辨識鷹架之完整性以及搭建過程的安全性。 | zh_TW |
| dc.description.abstract | Scaffolding is a common construction equipment, which provides workers with access and a platform for high-altitude tasks. Each unit comprises uprights, footboards, and cross braces, with a handrail-first approach necessitating the installation of handrails during scaffolding erection process. During the process of inspecting the scaffolding's integrity, it is necessary to ensure that the components are installed in the correct positions. However, workers often remove components to facilitate their tasks, which can potentially cause the scaffolding structure to become unstable or create gaps that are prone to falling. Additionally, during the scaffolding construction process, workers may neglect to install handrails for the sake of convenience. Currently, safety inspections on construction sites rely heavily on manual checks, which are time-consuming and labor-intensive and fail to instantly capture the details of scaffold unit components or the completeness of the installation process. This study proposes an integrated approach combining Graph Neural Network (GNN), keypoint detection, and computer vision to inspect the integrity and assembly order of scaffolding, aiding in the automation of inspection processes. Initially, Image Segmentation identifies upright, handrail and footboard positions. A multimodal model then combines deep learning keypoint detection, computer vision and depth estimation features to verify cross brace integrity. GNN analyze component spatial relationships to ensure standard compliance. Finally, a logic assessment that aligns with scaffolding construction regulations in Taiwan is designed to confirm whether the handrails-first assembly process and results present any fall hazards. Tested on real sites, the method successfully identified incomplete units and checked assembly compliance. Image segmentation for footboards, uprights and handrails showed accuracies of 96.2%, 90.6% and 86.7%, respectively. Keypoint accuracy for cross brace detection reached 97.8%. GNN validation was 85.2%, proving the method's effectiveness in identifying scaffolding integrity and erection safety. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-09T16:09:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-09T16:09:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures x List of Tables xi Chapter 1 Introduction 1 1.1 BackgroundandMotivation ...................... 1 1.2 ResearchObjectives .......................... 4 1.3 OrganizationofThesis ......................... 5 Chatper 2 Literature Review 6 2.1 FallsFromHeight ........................... 6 2.2 ScaffoldingIntegrityandAssembly .................. 8 2.3 Deep Learning based Approaches on Construction Safety . . . . . . . 12 2.3.1 ObjectDetectionandImageSegmentation . . . . . . . . . . . . . . 13 2.3.2 GraphNeuralNetwork ........................ 14 2.3.3 KeypointDetection .......................... 15 2.4 Summary................................ 16 Chapter 3 Methodology 19 3.1 SystemWorkflow............................ 19 3.2 GNNSpatialRelationDetection.................... 22 3.3 AssemblySequenceDetection..................... 25 3.4 ObjectSegmentation.......................... 26 3.5 CrossBraceDetection ......................... 29 3.5.1 KeypointDetection .......................... 29 3.5.2 ComputerVisionBasedApproach .................. 32 3.5.2.1 EdgeDetection ..................... 33 3.5.2.2 HoughTransform .................... 35 3.5.2.3 K-meansClustering ................... 36 3.5.2.4 DepthEstimation .................... 37 Chapter 4 Experiments 39 4.1 ConstructionDataset.......................... 39 4.2 CrossBraceDetection ......................... 40 4.2.1 KeypointDetection .......................... 40 4.2.1.1 ImplementationDetails ................. 40 4.2.1.2 DetectionResults .................... 41 4.2.2 ComputerVisionBasedApproach .................. 46 4.2.2.1 ImplementationDetails ................. 46 4.2.2.2 DetectionResults .................... 48 4.3 ObjectSegmentation.......................... 51 4.3.1 ImplementationDetails........................ 51 4.3.2 SegmentationResults......................... 53 4.4 GNNSpatialRelationDetection.................... 58 4.4.1 ImplementationDetails........................ 58 4.4.2 GraphResults............................. 59 4.5 AssemblySequenceDetection..................... 63 4.5.1 ImplementationDetails........................ 63 4.5.2 SequenceDetectionResults...................... 64 Chapter 5 Conclusion 67 5.1 Conclusion ............................... 67 5.2 FutureWork .............................. 69 References 72 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 關鍵點偵測 | zh_TW |
| dc.subject | 圖神經網路 | zh_TW |
| dc.subject | 鷹架 | zh_TW |
| dc.subject | Computer Vision | en |
| dc.subject | Keypoint Detection | en |
| dc.subject | Scaffolding | en |
| dc.subject | Graph Neural Network | en |
| dc.title | 基於圖神經網路之鷹架結構完整性檢測 | zh_TW |
| dc.title | ScaffoldGraph: Graph Neural Networks for Scaffolding Integrity and Completeness Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林之謙 | zh_TW |
| dc.contributor.coadvisor | Je-Chian Lin | en |
| dc.contributor.oralexamcommittee | 梁期鈞;紀乃文 | zh_TW |
| dc.contributor.oralexamcommittee | Ci-Jyun Liang;Nai-Wen Chi | en |
| dc.subject.keyword | 電腦視覺,圖神經網路,關鍵點偵測,鷹架, | zh_TW |
| dc.subject.keyword | Computer Vision,Graph Neural Network,Keypoint Detection,Scaffolding, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202401161 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-07-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 45.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
