請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁(Jui-Jen Chou) | |
| dc.contributor.author | Ming-Jung Shih | en |
| dc.contributor.author | 施銘榮 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:14:53Z | - |
| dc.date.available | 2016-09-21 | |
| dc.date.available | 2021-05-20T20:14:53Z | - |
| dc.date.copyright | 2011-09-21 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-12 | |
| dc.identifier.citation | 1. ABS. 2006. Careers in animal behavior. Available at: www.animalbehavior.org/ABS/Guides/Careers.pdf. Accessed 28 April 2011.
2. Analog Devices. 2006. ADXL330 datasheet. Available at: www.analog.com/static/imported-files/data_sheets/ADXL330.pdf. Accessed 28 April 2011. 3. Baesens, B., G. Verstraeten, D. Van den Poel, M. Egmont-Petersen, P. Van Kenhove, and J. Vanthienen. 2004. Bayesian network classifiers for identifying the slope of the customer-lifecycle of long-life customers. European Journal of Operational Research 156(2): 508-523. 4. Bao, L., and S. S. Intille. 2004. Activity recognition from user-annotated acceleration data. In 'Proc. 2nd International Conference on Pervasive Computing', 1–17. F. Alois and M. Friedemann, eds. Berlin/Heidelberg: Ger. Springer. 5. Bressers, H. P. M. 1993. Monitoring individual sows in group housing: possibilities for automation. Wageningen, The Netherlands: Landbouwuniversiteit, Wageningen. 6. Chen, R. J. 2006. Effects of light-dark durations on the circadian rhythmicity and gene expression in rats. Master Thesis. Hualien: Tzu Chi University, Graduate Institute of Neuroscience. (In Chinese) 7. Cobb. 2008. Avian Broiler Management Guide. Available at: www.cobb-vantress.com. Accessed 24 June 2009. 8. Council of Agriculture, Executive Yuan. 2009. Agricultural statistics yearbook. Available at: http://www.coa.gov.tw/files/web_articles_files/21938/12716.pdf. Accessed 28 April 2011. (In Chinese) 9. Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41(7): 909-996. 10. Droege, S., and J. R. Sauer. 1989. North American breeding bird survey annual summary 1988. Biological Report 89(13): 1-16. 11. Ermes M., J. Pärkkä, J. Mäntyjärvi, and I. Korhonen. 2008. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans Inf Technol Biomed 12(1): 20-26. 12. Friedman, N., M. Linial, I. Nachman, and D. Pe’er. 2000. Using Bayesian networks to analyze expression data. Journal of Computational Biology 7:601-620. 13. Green, J. A., L. G. Halsey, R. P. Wilson, and P. B. Frappell. 2009. Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique. Exp. Biol. 212: 471-482. 14. Hooker, S. K., M. Biuw, B. J. McConnell, P. J. O. Miller, and C. E. Sparling. 2007. Bio-logging science: logging and relaying physical and biological data using animal attached tags. Deep-Sea Res. Part II 54: 177-182. 15. Huynh, T., and B. Schiele. 2005. Analyzing features for activity recognition. In 'Proc. Soc-EUSAI 2005', 159-163. New York. ACM. 16. John, G. H., and P. Langley. 1995. Estimating continuous distributions in Bayesian classifiers. In 'Proc. 11th Conference on Uncertainty in Artificial Intelligence', 338-345. P. Besnard and S. Hanks, eds. San Mateo: Morgan Kaufmann Publishers. 17. Langley, P., W. Iba, and K. Thompson. 1992. An analysis of Bayesian classifiers. In 'Proc. of the 10th National Conference on Artificial Intelligence', 223-228. P. Rosenbloom and P. Szolovits, eds. San Jose, CA: AAAI Press. 18. Lester J., T. Choudhury, and G. Borriello. 2006. A practical approach to recognizing physical activities. In Pervasive Computing 3968: 1-16. 19. Mallat, S. G. 1989. A theory for multiresolution signal decomposition: the wavelet representation. Pattern Analysis and Machine Intelligence 11(7): 674-693. 20. Muramoto, H., M. Ogawa, M. Suzuki, and Y. Naito. 2004. Little Leonardo digital data logger: its past, present and future role in bio-logging science. Mem. Natl. Inst. Polar Res., Spec. Issue 58: 196-202. 21. Myers, J. W., K. B. Laskey, and T. S. Levitt. 1999. Learning Bayesian networks from incomplete data with stochastic search algorithms. In “Proc. 15th Conference on Uncertainty Artificial Intelligence”, 476-485. K. B. Laskey and H. Prade, eds. San Francisco, CA: Morgan Kaufmann. 22. Naito, Y., A. Kato, Y. Ropert-Coudert, T. Akamatsu, P. J. Butler, H. Higuchi, M. Imafuku, B. J. Le Boeuf, W. Sakamoto, K. Sato, D. Welch, and R. P. Wilson. 2004. Bio-logging science: proceedings of the international symposium on biologging science, National Institute of Polar Research, Tokyo, Special Issue 58. National Institute of Polar Research. 23. Ostfeld, R. S. 1986. Territoriality and mating system of California voles. Animal Ecology 55(2): 691-706. 24. Pärkkä, J., M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen. 2006. Activity classification using realistic data from wearable sensors. IEEE Transactions on inf. Tech. in Biomedicine 10(1): 119-128. 25. Pearl, J., and S. Russell. 2002. Bayesian network. In “Handbook of Brain Theory and Neural Networks”, ed. M. A. Arbib, 157-164. Cambridge: MIT Press. 26. Pelletier, D., M. Guillemette, J. M. Grandbois, and P. J. Butler. 2007. It is time to move: linking flight and foraging behavior in a diving bird. Biol. Lett. 3: 357-359. 27. Pernkopf, F. 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 38(1): 1-10. 28. Pirttikangas, P., K. Fujinami, and T. Nakajima. 2006. Feature selection and activity recognition from wearable sensors. Lecture Notes in Computer Science: Ubiquitous Computing Systems 4239: 516-527. Y. Hee, K. Minkoo, and M. Hiroyuki, eds. Berlin: Springer. 29. RealTerm. 2008. Serial terminal:RealTerm. ver. 2.0.0.57. RealTerm Freeware. Available at: realterm.sourceforge.net. Accessed 28 April 2011. 30. Ropert-Coudert, Y., and R. P. Wilson. 2005. Trends and perspectives in animal-attached remote sensing. Front. Ecol. Environ. 3: 437-444. 31. Severinghaus, L. L. 2000. Territoriality and the significance of calling in the Lanyu Scops Owl otus elegans botelensis. Ibis 142(2): 297-304. 32. Silicon Laboratories. 2008. C8051F41x datasheet. Available at: www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/C8051F41x.pdf. Accessed 28 April 2011. 33. Texas Instruments. 2009. TPS731xx datasheet. Available at: focus.ti.com/lit/ds/sbvs034m/sbvs034m.pdf. Accessed 28 April 2011. 34. UBEC. 2005. UZ2400 datasheet. Available at: www.coretk.com/CataLog/cata_img/FILE/183366731/UBEC/168/168_176_1146034480.pdf. Accessed 28 April 2011. 35. Wang, S., J. Yang, N. Chen, X. Chen, and Q. Zhang. 2005. Human activity recognition with user-free accelerometers in the sensor networks. IEEE Int. Conf. Neural Networks and Brain 2: 1212-1217. Beijing, China: IEEE Press. 36. Wang, Y. C., J. J. Chou, C. Y. Chou, C. Y. Chen, and Y. N. Jiang. 2010. Vitality estimation for chicken in henhouse based on webcam images. ISMAB Paper. Fukuoka, JP: ISMAB. 37. Ward, J. A., P. Lukowicz, G. Troster, and T. E. Starner. 2006. Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans. Pattern Anal. Mach. Intell 28(10): 1553-1567. 38. Weka. 2010. Weka manual. ver. 3.6.4. Hamilton, N.Z.:Machine Learning Group at University of Waikato. 39. Wilson, R. P., and C. A. R. Bain. 1984. An inexpensive speed meter for penguins at sea. Wildlife Management 48(4): 1360-1364. 40. WSNC. 2007. SimpleNode. Taipei: Wireless Sensor Network Center, NTU. Available at: www.wsnc.ntu.edu.tw/Files/SimpleNode.pdf. Accessed 28 April 2011. 41. Yang, J. Y., J. S. Wang, and Y. P. Chen. 2008. Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recog. Lett. 29: 2213-2220. 42. Yang, J. 2009. Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In 'Proc. 1st international workshop on Interactive multimedia for consumer electronics', 1-10. Beijing: China. ACM. 43. Yoda, K., K. Sato, Y. Niizuma, M. Kurita, C. Bost, Y. Le Maho, and Y. Naito. 1999. Precise monitoring of porpoising behaviour of Adélie penguins determined using acceleration data loggers. Exp. Biol. 202(22): 3121-3126. 44. Yoda, K., Y. Naito, K. Sato, A. Takahashi, J. Nishikawa, Y. Ropert-Coudert, M. Kurita, and Y. Le Maho. 2001. A new technique for monitoring the behaviour of free-ranging Adélie penguins. Exp. Biol. 204: 685-690. 45. Yoda, K., H. Kohno, and Y. Naito. 2007. Ontogeny of plunge diving behaviour in Brown Boobies: application of a data logging technique to hand-raised seabirds. Deep-Sea Research Part II 54: 321-329. 46. Yu, J., V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. 2004. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18): 3594-3603. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9258 | - |
| dc.description.abstract | 本研究的主要目的為建立一套雞隻動作型態識別與活動力估測之系統。根據裝置在雞隻上的加速度計訊號,來判斷其動作型態,包括走路、啄食、起身與坐下、休息和其他等動作;活動力則以加速度訊號的能量來評估。研究架構分成資料擷取、處理與分析,動作型態識別與活動力估測。資料擷取部分主要整合微機電式三軸加速度計、ZigBee元件與電腦成一無線加速度紀錄器,將此三軸加速度記錄器背負在雞隻的背部,以量測活動的加速度訊號,透過ZigBee將加速度訊號傳回電腦端儲存,同時以DV拍攝活動紀錄;在資料處理與分析方面採用內插法,並將加速度訊號對比相對應的影像資訊,找出不同動作之特徵,本研究採用之特徵,包括三維訊號兩兩間之相關係數、中位數、四分位數間距、峰值數目、頻譜能量、頻譜熵,小波不同頻段之峰值、能量、主頻率等。動作識別部分以動作特徵建立並測試了63種分類模型,以建模資料進行十疊交叉驗證法(10-fold cross-validation),貝式(Bayesian)網路分類器的辨識準確率為86.1%;以測試資料測驗模型,同種(Homogeneous)資料測試結果,貝式網路的辨識準確率為74.42%;異種(Heterogeneous)資料測試結果,貝式網路的辨識準確率為72.10%,顯示貝式網路之辨識結果較為強健,適合應用在雞隻的動作型態識別。活動力估測係從雞隻活動加速度訊號求得活動資訊,使用小波轉換、活動框架偵測與訊號能量等方法,得到活動框架的平均功率,用以評估雞隻的活動情形與健康程度,達到疾病預警的目的。 | zh_TW |
| dc.description.abstract | The purpose of this paper is to design a system to recognize activity pattern and estimate vitality of chicken. The activity to be recognized includes walk, peck, stand-up and sit-down, rest, and other, etc. The vitality is estimated by energy of acceleration signal. The framework of this study consists of data collection, processing and analysis, activity pattern recognition, and vitality estimation. On data collection, a Wireless Acceleration Logger is designed by integrating MEMS 3-axis accelerometer with ZigBee devices. The three-axis acceleration signals is collected by attaching the Acceleration Logger on the back of chicken, and the collected acceleration signals will be sent to computer by ZigBee. At the same time, a digital video camera is used to record the behavior of chickens. For data processing and analysis, interpolation and wavelet method are used for signal processing. By comparing acceleration signals with the corresponding video clips, the features of various activities could be determined and acquired for further analysis. The features used in this study are correlation coefficients between signals in different axes, median, interquartile range, peak, spectrum energy, spectrum entropy, principal frequency of wavelet bands, amplitude of principal frequency of wavelet bands, and energy of wavelet bands. As of activity recognition, 63 models have been constructed and validated. The accuracy of Bayesian network is 86.10% by 10-fold cross-validation. However, at testing stage, the accuracy of Bayesian network on testing homogeneous dataset is up to 74.42%; the accuracy of Bayesian network with heterogeneous dataset is around 72.10%. The result shows that Bayesian network has the best prediction capability for chicken activity recognition than other models and is also more robust. On vitality estimation, vitality index is estimated from acceleration signals of chicken through wavelet transform, activity frame detection, and the average power of activity frames. The health condition of chicken could be evaluated to achieve the purpose of sickness early warning based on the vitality information. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:14:53Z (GMT). No. of bitstreams: 1 ntu-100-R97631034-1.pdf: 1892624 bytes, checksum: 2f1a346339adb00ff47078e95650df66 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents vi Figures viii Tables x Chapter 1 Introduction 1 Chapter 2 Literature Review 3 Chapter 3 Materials and Methods 7 3.1 Approach Overview 7 3.2 Acceleration Signal Acquisition and Pre-processing 8 3.2.1 Acceleration Logger 9 3.2.2 Signal Acquisition 14 3.2.3 Signal Pre-processing 16 3.3 Activity Pattern Recognition 18 3.3.1 Dataset Preparation 19 3.3.1.1 Homogeneous Signals 20 3.3.1.2 Heterogeneous Signals 21 3.3.1.3 Feature Extraction 22 3.3.1.3.1 Wavelet Transform 23 3.3.1.3.2 Feature Selection 25 3.3.1.4 Homogeneous and Heterogeneous Datasets 28 3.3.2 Model Selection 29 3.3.2.1 Candidate Model Selection 29 3.3.2.2 Model Testing 30 3.4 Vitality Estimation 32 3.4.1 Determination of Activity Frame 32 3.4.2 Estimation of Average Power for Activity Frame 37 Chapter 4 Results and Discussion 38 4.1 Activity Recognition 38 4.1.1 Candidate Model Selection via 10-fold Cross-Validation 40 4.1.2 Model Tested with Homogeneous and Heterogeneous Datasets 40 4.1.3 Confusion Matrix of Bayesian Network Classifier 44 4.2 Vitality Estimation 46 Chapter 5 Conclusions 49 References 50 | |
| dc.language.iso | en | |
| dc.title | 基於加速度計之雞隻動作型態識別與活動力估測系統之研究 | zh_TW |
| dc.title | Development of Accelerometer-based System for Activity Pattern Recognition and Vitality Estimation of Chicken | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姜延年(Yan-Nian Jiang),周楚洋(Chu-Yang Chou) | |
| dc.subject.keyword | 活動力估測,動作識別,加速度,貝式網路分類器,小波轉換,平均功率, | zh_TW |
| dc.subject.keyword | Vitality estimation,Activity recognition,Acceleration,Bayesian network classifier,Wavelet transform,Average power, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 1.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
