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Abstract

The purpose of this paper is to design a system to recognize activity pattern and
estimate vitality of chicken. The activity to be recognized includes walk, peck, stand-up
and sit-down, rest, and other, etc. The vitality is estimated by energy of acceleration
signal. The framework of this study consists of data collection, processing and analysis,
activity pattern recognition, and vitality estimation. On data collection, a Wireless
Acceleration Logger is designed by integrating MEMS 3-axis accelerometer with
ZigBee devices. The three-axis ‘accelerationsignals is collected by attaching the
Acceleration Logger on the back of chiékm?_énd the collected acceleration signals will
be sent to computer by ZigBee..At the séﬁe time, a digital video camera is used to
record the behavior of chickens. For.data processing and analysis, interpolation and
wavelet method are used for signal processing. By comparing acceleration signals with
the corresponding video clips, the features of various activities could be determined and
acquired for further analysis. The features used in this study are correlation coefficients
between signals in different axes, median, interquartile range, peak, spectrum energy,
spectrum entropy, principal frequency of wavelet bands, amplitude of principal
frequency of wavelet bands, and energy of wavelet bands. As of activity recognition, 63

models have been constructed and validated. The accuracy of Bayesian network is



86.10% by 10-fold cross-validation. However, at testing stage, the accuracy of Bayesian
network on testing homogeneous dataset is up to 74.42%; the accuracy of Bayesian
network with heterogeneous dataset is around 72.10%. The result shows that Bayesian
network has the best prediction capability for chicken activity recognition than other
models and is also more robust. On vitality estimation, vitality index is estimated from
acceleration signals of chicken through wavelet transform, activity frame detection, and
the average power of activity frames. The health condition of chicken could be
evaluated to achieve the purpose of sickness:early warning based on the vitality

information.

Keywords: vitality estimation, activity'recognition, acceleration, Bayesian network

classifier, wavelet transform, average power
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Chapter 1 Introduction

Chicken is one of the most important sources of meat, and it is protein-rich, low fat
and rich in amino acids. The production value of the chicken industry ranks second in
the domestic livestock and poultry in Taiwan, and it is only next to swine industry
(Council of Agriculture, Executive Yuan, 2009). The production value of chicken is
greatly reduced by avian influenza or other diseases, particularly in December 2003.
Therefore, the study aims to develop a system to facilitate the management of chicken
house by early warning on the decay:of chicken health condition.

To avoid disease spreading out in a- c.:lﬁick'.en house, the health of chickens based on
their behavior or vitality should be frequently” monitored. The vitality could be
estimated by their motion in terms of movi.ng distance in 10 minutes (Chen, 2006) or
acceleration (Green et al., 2009). In previous study, some researchers use cameras to
capture the motion and make judgment (Chen, 2006; Wang et al., 2010). Besides,
activity patterns provide useful information to analyze vitality in more details. The
human acceleration data have been widely studied for the activity pattern recognition of
human (Bao and Intille, 2004). To be applied in animals, the methods still have to be

further investigated.



In this study, the activity pattern and vitality of chicken are investigated for

evaluating the health condition of chickens by developing a system with accelerometers,

wireless transceiver devices and analysis algorithm.

The rest of this thesis is organized as follows: Related literature will be discussed

in Chapter 2. Then the acceleration signal acquirement, activity recognition and vitality

estimation method are presented in Chapter 3. In Chapter 4, the result of activity pattern

recognition and vitality estimation will be discussed and illustrated. Finally, the

conclusion is given in Chapter 5.



Chapter 2 Literature Review

The animal science has being developed for more than hundred years. In this field,
research on animal behavior gradually draws attention. According to the definition of
animal behavior by Animal Behavior Society (ABS), “animal behavior is the scientific
study of everything animals do” (ABS, 2006).

In animal behavior study, observing what animals do is the most basic step. The
oldest method is to observe and record information of animals by human. Droege and
Sauer (1989) reported the project of'a survey-on North American breeding bird,
beginning in 1966, and the project wais':ce_t_ﬁ_ied out! mainly human observation. The
method has two defects, first ong 18 the ariimal information will be lost due to human
neglect. Second one is data only recorded while animals appear before observers.

During the last several decades, there has been a rapid growth of mechatronic
technology. Therefore, people have been trying to utilize new technology, like
radio-telemetry and loggers, to obtain information on animal behavior. The advantages
of using such a technology are as follows: (1) It can reduce human error and
interference on animals. (2) The information of animal can be acquired automatically.

Currently, people try to use radio-telemetry technology to study animal behavior.

The radio-telemetry method can acquire information and location of animal within



sensing range. Ostfeld (1986) used radio-telemetry method to investigate territoriality
and mating system of California Voles. Severinghaus (2000) used radio-telemetry to
study territoriality of Lanyu Scops Owl.

Bressers (1993) investigated automatic oestrus detection for group housed sows in
1993. He hung a 3-axis accelerometer neck collar on sows. Two parameters, which are
mean amplitude and the number of signal passing a threshold, are used to differentiate
pre-oestrus and oestrus conditions.

Over the past two decades, the trend of using data-logging devices appended on
animal is more clear (Muramoto et.al., 2004; Ropert-Coudert and Wilson, 2005), and
the logging technology have improved t-h.eid-ieséarch method on animal study. The issues
about Bio-logging were ofﬁcially ! introduced” on' International Symposium on
Bio-logging Science in 2003 (Naito at él., 2004). The definition of Bio-logging is “the
theory and practice of logging and relaying of physical and biological data using
animal-attached tags” (Hooker et al., 2007). Some people studied penguins via loggers
to acquire its activity information including speed (Wilson and Bain, 1984), acceleration,
and diving depth (Yoda et al., 1999; Yoda et al., 2001). Some researchers used logger to
study flight, foraging, and diving behavior of birds (Ropert-Coudert and Wilson, 2005;

Pelletier et al., 2007).



Recently, many advances have been made in the area of automatic recognition.
Among these domains, using acceleration to recognize daily activity of animal has been
rapidly developed. Bao and Intille (2004) studied human activity recognition by using
accelerometers which are worn on thigh, ankle, arm, wrist, and hip. The goal in their
study is aiming to recognize 20 daily activities. Activity features used in the study are
mean, spectrum energy, spectrum entropy, and correlation between signals in different
axes. They tested four models which consist of Decision Table, IBL, C4.5 decision tree,
and Naive Bayesian. The test shows the C4.5 decision tree classifier performed best.
The recognition accuracy achieved:80% on a Vaﬁety of 20 daily activities at model
validation stage.

Bayesian network, developed .based on| &’ rigorous probability approach, is
particularly good at capturing relations.hipé between variables, handling hundreds of
variables with noise data, describing processes composed of locally interacting elements,
providing causal influence. Therefore, the model is a suitable solution for problems
involving reasoning under uncertainty, and it has shown promise in many applications
(Friedman et al., 2000; Myers €t al., 1999; Pearl and Russell, 2002; Yu et al., 2004).

Previous research compared the ability of classification for Bayesian network
classifier with other models, and the results in average end in a draw or are even better

(Langley et al., 1992; John and Langley, 1995; Baesens et al., 2004; Pernkopf, 2005).
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Langley et al. (1992) performed a comparison among Bayesian network, C4, and
frequency-based classifiers on datasets from the databases of 5 domains. The result
shows Bayesian network classifier has best performance in 4 domains.

John and Langley (1995) compared two types of Bayesian network classifier,
which are Naive Bayes and Flex, with C4.5 Decision Tree classifier. They tested those
classifiers on the datasets from databases of 11 domains, and the result with Bayesian
network classifier is the best in 8 domains.

Baesens €t al. (2004) used Bayesian network classifiers for identifying the slope of
the customer-lifecycle of long-life customers. They compared 5 types of Bayesian
network classifier, which are Naive Bayés;-;fi[;’A-I.\I, CL multinet, GBN, and GBN multinet,
with C4.5, C4.5reles, LDA, and QDA classifiers.- In average, Bayesian network
classifiers perform better in predicting ﬁmré customer evolution.

Pernkopf (2005) compared Bayesian network with k-NN classifier on datasets
from the databases of 8 domains. The Bayesian network classifier out-performed in 5
domains, so they prefer to choose Bayesian network classifier.

In this study, a data-logger is developed to be attached on the back of chickens to
acquire acceleration data for the activity pattern recognition and vitality estimation of

chickens. In chapter 3, the development of our system will be described in detail.



Chapter 3 Materials and Methods

This chapter is arranged as follows: In section 3.1, the overview of approach
developed in this study will be illustrated. In section 3.2, the acceleration logger system
is introduced. Then how the acceleration logger system is used to collect and
pre-process acceleration data. Section 3.3 will illustrate the recognition process of

activity patterns. Finally, the vitality estimation method will be presented in section 3.4.

3.1 Approach Overview

The flowchart of approach employé-(:}”in this' study is shown in Fig. 3-1. The
objective of this chapter is to develép a systgm to evaluate the health condition of
chickens by recognizing activity patterns and estimating the vitality of chickens. The
whole processes to achieve our objective are based on the analysis of acceleration
signals. Therefore, an acceleration wireless logger system is necessary to be developed
for acquiring acceleration signals. The detailed descriptions will be given in following

sections.



Acquirement of Chicken
Acceleration and Video

Acceleration Analysis

|

Activity Pattern
Recognition

Vitality Estimation

Fig. 3-1 Approach flowchart

3.2 Acceleration Signal Acd__iiisition and Pre-processing

The acceleration signal acquisition_ of chickens is the first stage in the process of
the activity pattern recognition and vitality estimation. To achieve this goal, a tiny
acceleration logger to record the acceleration signal of chicken is designed and created.
In this section, an acceleration logger device will be introduced first. And then, the
environment of chicken house where to collect acceleration signal will be described.

Next, the acquisition of acceleration signal will be presented. Finally, acceleration

pre-processing and activity labeling will be mentioned.




3.2.1 Acceleration Logger

The acceleration logger is a device to collect acceleration data through wireless
transmission. The structure diagram of acceleration logger is shown in Fig. 3-2. It
contains two parts, an acceleration transmitter and a receiver. The acceleration
transmitter is in charge of acceleration detection, and then transmits wirelessly the
acceleration signal to the receiver connected with a computer. Finally, the received raw
data are recorded in the computer.

The dimensions of the acceleration transmittgr are 47 mm * 23 mm * 13 mm. Its
weight is about 14 g. The max linear se_n_sling'yange 18 £3.6 G, and beyond this range is
nonlinear. And the sampling frequency is 5(5 Hz. The acceleration transmitter is powered
by a 3.7 V Li-ion battery. For prolvidi.ng steady voltage 3 V to SimpleNode and 2.5 V to
ADXL330, two LDO linear voltage regulators are used to achieve this. The ADXL330
senses the acceleration in 3-axis, X, Y, Z and outputs corresponding voltage. The output
pins are connected in parallel with 0.1 pF capacitors to form a low-pass filter with
bandwidth 50 Hz for noise filtering. The microcontroller in SimpleNode receives the
filtered signals through embedded ADC converters, and then transmits the data to the

acceleration receiver via ZigBee IC. Next, the microcontroller in the acceleration

receiver stores the data in the computer through UART interface with baud rate 57,600
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Fig. 3-2 Structure-diagram of acceleration logger
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The main components of the acceleration logger include two LDO linear voltage
regulators, an accelerometer, and two ZigBee devices. The accelerometer ADXL330 is
a tiny, low-power, 3-axis MEMS accelerometer developed by Analog Devices, Inc. The
linear sensing range of the ADXL330 is £3.6 G, and it can sense the static acceleration
of gravity (Analog Devices, 2006). This sensor has been widely used in many
applications. One of the most well known is implemented in Nintendo Wii Remote
controllers. The function block diagram of ADXL330 is shown in Fig. 3-3 where the
operating voltage ranges from 1.8 V. t0'3.6 V.' A capacitor for decoupling needs to be
added in parallel to the power input. The ST pin'is used for self-testing. The output pins
in X, Y, Z are paralleled with the capaci‘-[c;l:fsﬁfo'.r anti-aliasing and noise reduction. In this
study, ADXL330 module is connectgd in_parallel’ with 0.1 pF output filter capacitors
and 0.1 pF decoupling capacitors at power liﬁe.

Two parameters in the ADXL330 need to be measured for the calculation of the
detected acceleration. One is sensitivity, which is used to describe output voltage Va
versus sensed acceleration A. The other is zero G bias Vpias, Which indicates an offset,
typically V2. These two parameters are usually affected by operating voltage Vs The

formula to calculate acceleration is shown in Eq. (3-1).
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SimpleNode is a WSN Device based on ZigBee, developed by Wireless Sensor

Network Center (WSNC, 2007), National Taiwan University. It consists of C8051F411

microcontroller (Silicon Laboratories, 2008), UZ2400 ZeeBee 1C (UBEC, 2005), and

antenna. The microcontroller in SimpleNode contains a 12-bit ADC with four selectable

input pins which are used to read acceleration voltages Va from ADXL330. The

conversion formula of the ADC is shown in Eq. (3-2), where reference voltage Vger is

2.2 V in the study; the converted value D is raw data in this study.

A= (VA'—'V'bi(.ls) (3_1)
__sensitivity

: ’V_ b A% 3.2

- ?A |  REE 4096 ( - )

There are two LDO (low-dropout) .regl.llatc.)rs used in this study, TI TPS73125 2.5
V and TPS73130 3.0 V (Texas Instruments, 2009). The LDO components are widely
used in Li-ion battery based products. The LDO could work under small voltage
difference between input and output. In this study, TPS73125 provides 2.5 V to
ADXL330, and TPS73130 supplies 3.0 V to SimpleNode. The schematic of acceleration

transmitter is shown in Fig. 3-4, and the products are shown in Fig. 3-5.
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Fig. 3-5 Entities of acceleration transmitter
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3.2.2 Signal Acquisition

The experimental chicken house is located in the Department of Animal Science
and Technology at National Taiwan University. The house is divided into three sections
as shown in Fig. 3-6 and is equipped with a cooling pad ventilation system. Each
section has 4 m long and 2 m wide. The one in the middle is used for our experiment,
where a laying nest, a feed trough, and a water trough are placed inside. Two cocks and
thirteen hens are reared, and the corresponding stocking density is 1.875 birds/m”. The
species of reared chicken is Cobb Avian 48 broiler breeder. The chickens are born out of

season. The acceleration signals are coll_eétg_d at the age of 82 weeks of chickens.

-

Chicken House

Laying Nest Trough Trough 7]

= Water Trough Trough Water Trough Trough

Fig. 3-6 Layout of chicken house

Fan

Cooling Pad
]
—]

J I
&
A\

The environment control and feeding simply follow Cobb Avian breeder

management guide published in 2008. The environment control system includes a fan, a

14



pad, and light sources. The fan turns on while temperature is higher than 22°C and the
pad turns on and off at temperature higher than 31°C and lower than 30°C, respectively.
The lighting is on from 5:00 to 22:00, lasting 17 hours.

The feeding plan is that the diary feed for over 80-week chickens is 420 kcal/bird
referred to Cobb Avian breeder management guide. Male and female chickens eat
altogether. The brand of feed is Uni-President Enterprise Corp, and the Metabolizable
Energy (ME) is 2800 Kcal/kg. The feed is measured the day before, and put it in two
troughs once a day. Unlimited water is provided by water trough. Since the chickens eat
altogether, the weight of chicken is difficult to control. Nevertheless, the weight of
chicken is not our major concern in this stu'dy :

The acceleration receiver, compqter, and DV recorder are put in the section next to
the middle section. The acceleration trénsrﬁitter 1s attached on the back of a cock to
collect acceleration signals. In the mean time, the DV records chicken’s activity
simultaneously.

In this study, RealTerm is a software for serial communication used to transmitting
receiving and recording serial data. The recorded data includes recording time,
acceleration logger ID, wireless package sequence, and raw data in X-axis, Y-axis, and

Z-axis. The recorded data format is shown in Fig. 3-7.
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Recorded Logger Package X-axis Y-axis Z-axis
Time ID Sequence | Raw Data_| Raw Data | Raw Data

40428 .5068163 71 124 2280 2078 1828
40428.5068168 1 125 2264 2079 1834
40428 .5068169 1 126 2256 2080 1825
40428.5068172 1 127 2258 2082 1832

Fig. 3-7 Format of recorded data

3.2.3 Signal Pre-processing

A couple of procedures should be done before conducting the activity pattern
recognition and vitality estimation. The first one s to process acceleration raw data. The

second one is to convert raw data into corresponding acceleration signal. The third one
B P __r'. = e

\ |
Y

is to match the acceleration signal with ép&_ﬁii"é a'lctivity shown in the video clip.
11l .!'E 1 | o

L)

|| <3
It is likely to lose packages*-"duriﬂg wireless .dat'a transmission and to cause data

errors due to asynchronous serial communicétion. Tw.o measures are taken to restore the
raw data by removing error data and adding missing data by interpolation based on
smoothing the sequence.

The raw data are transformed into acceleration by using Eq. (3-3) which is
modified from Eq. (3-1) and Eq. (3-2).

D .
A= (VREFm — Vpias)/Sensitivity (3-3)
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After the raw data is converted into acceleration, the acceleration data and content

in the video clips will be compared and matched. Hence, the specific activity will be

labeled on the acceleration signal. The labeling includes the start time, end time, and

pattern of activity. Five activity patterns in this study are covered, i.e., R for Rest or

motionless, W for walking, P for pecking, eating or drinking, U for sit-down and

stand-up, and O for other activities hard to be recognized.
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3.3 Activity Pattern Recognition

In this section, the framework of activity pattern recognition will be first
introduced. Then the construction and validation of the recognition model will be

illustrated.

Dataset for
Validation

Dataset for
Training

Modeling

Model Validation

Validation Result
and Accuracy

Fig. 3-8 Flowchart of pattern recognition

Fig. 3-8 shows the flowchart of the activity pattern recognition algorithm. Datasets

should be prepared and processed before constructing models and performing activity

pattern recognition. They are categorized into training, validation, and testing datasets.

Training and validation datasets are used to construct and validate recognition models,

respectively. And the testing datasets are employed to test models. The model with

highest accuracy is selected to predict the pattern of unknown datasets.
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3.3.1 Dataset Preparation

In this study, four datasets need to be prepared for activity pattern recognition,
which are homogeneous datasets for training, validation, testing, and heterogeneous

dataset for testing. The procedures of dataset preparation are shown in Fig. 3-9.

Accelerometer

Signals Video
Corresponding Signal of Activity Pattern
Acceleration Within a Certain Period
A
( \

Homogeneous
Signals for
Training

Homogeneous
Signals for
Validation

Homogeneous
Signals for
Testing

Heterogeneous
Signals for
Testing

Feature Extraction Feature Extraction Feature Extraction Feature Extraction
50 sampling pts 50 sampling pts 50 sampling pts 50 sampling pts
90% overlap 90% overlap 50% overlap 50% overlap

Homogeneous
Dataset for
Training

Homogeneous
Dataset for
Validation

Homogeneous
Dataset for
Testing

Heterogeneous
Dataset for
Testing

Fig. 3-9 Dataset Preparation for activity recognition
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3.3.1.1 Homogeneous Signals

The collected acceleration signals are aligned and matched with their
corresponding activity patterns shown in video installed in the chicken house. Based on
the each individual activity synchronized with the video, the acceleration signals are
further clipped into homogeneous signals for training, validation and testing.

A sliding window is designed to clip signals with fixed length of samples and
certain percentage overlapping with its neighboring windows. Features are extracted
and calculated from signal in one_sliding window. In the study, the window for the
homogeneous signal of training and ValiQatiOQ is set at size of 50 samples which last
one second, and then shifts 5 samples, i.e., 50% oyverlapping, to the next.

In practical application, feature calculation will be time consuming if sliding
windows with 90% overlapping. Therefore, 50% overlapping, 25 samples shift for the
window size of 50 samples, is applied to the homogeneous signal for testing, and the
heterogeneous signal for testing in consideration of both efficiency and prediction
accuracy.

A specific segment of homogeneous signal is the collection of signals only

corresponding to one single activity pattern as shown in Fig. 3-10.
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Fig. 3-10 Homogeneous signal

3.3.1.2 Heterogeneous Signals

In fact, the activity pattern of acceleration signal is unknown in practical
application. Therefore the signal cannot be-divided according to its activity pattern

beforehand. The clipped signals by sliding window may contain more than one activity

s 5

patterns as shown in Fig. 3-11.-Therefore, test with heterogeneous signals, which may

have lower recognition accuracy, is.proposed to-evaluate the models.

c _— " Frame k Frame K+2' Heterogeneous

] - ) N n v

{ Rt : Signal

e | / / — E—

3 /// |I : /,. | l,u"l |: ./, : -
||I / \/ II‘/!
\1 1
— 1 1 >

t1) Activity | 12| Activity t3| Attivity t4] t )

I Pattern1 ' “Pattern I Paltern 3 | Feature Extraction

Fig. 3-11 Heterogeneous signal
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3.3.1.3 Feature Extraction

The homogeneous or heterogeneous datasets are the feature sets extracted from the
corresponding homogeneous or heterogeneous signal, individually.

The features of various activity patterns may be distinguishable on specific
frequency bands of acceleration signals and on the other bands may not be true.
Therefore, features calculated from various frequency bands might be necessary. For
features extracted from the signal of different frequency bands, the signal needs to be
decomposed into the signals in different frequéncy .bands in advance. Wavelet transform

is one of the best choices to achieve this purpose.
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3.3.1.3.1 Wavelet Transform

Fourier transform is a traditional method to analyze signals in frequency domain,
but it does not contain information of time domain. Short-time Fourier transform uses
short-time window to partially solve this problem. However, the fixed window size is
less flexible in accurately identifying time point or duration. In general, low frequency
signal lasts longer, so a window with larger size may be enough; however, signals with
high frequency changes rapidly, which require short-time window to quantify their
properties.

The wavelet transform could automa?icauy adjust window size according to signal
frequency. A wavelet basis could generate?bases with: different resolution in time and
frequency domain through dilation and translation. There are many different wavelet
bases, e.g., Harr, Coiflet, Mexicana hat, Morlet, Daubechies, etc. The basis of
Daubechies 11 (Daubechies, 1988) which is indicated by db10 in MATLAB as shown in
Fig. 3-12 (a) is applied in the study. Bases with different resolution could form a set of
wavelet package bases shown in Fig. 3-12 (b).

To be done in a computer, wavelet transform needs to be discretized. The discrete

filter bank algorithm is performed with the structure shown in Fig. 3-12 (¢), A signal x[n]

is divided into high frequency component D; and low frequency component A; through
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level 1 wavelet transform, where HP block represents a high-pass filter; LP block means

a low-pass filter; |2 block is a down-sampling process. The algorithm is constructed by

a series of high-pass, low-pass filter and downsampling procedures. A; component can

be further decomposed into high frequency component D, and low frequency

component A, through level 2 wavelet transform. Processes for the analysis of the

following levels are similar. The frequency property for each component is shown in Fig.

3-12 (d), and the f,, is an Nyquist frequency of the input signal x[n].

() ® ,
£,/2
f,/4
£,/8
t
(©)

>
<ln] HP 12 D,
HP Pl |2 D,
LP’iZA HP P |2 }> D,
! LP P |2
Ay
LP P |2 P Ay

(d) Level 3 Level 2 Level 1
%X“X D, X D, \
f/8 f./4 f,/2 f,

Fig. 3-12 Wavelet Transform (a) DB10 basis (b) Time-frequency boxes of wavelet

package basis (c) Discrete filter bank algorithm (d) Filter bank
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In this study, 5-level decomposition is performed to obtain the signals of different
frequency bands which are D;, D,, D3, D4, Ds and As, and then these signals will be

used to calculate features of specific frequency bands.

3.3.1.3.2 Feature Selection

Before feature extraction is performed, what kinds of features are essential for
activity recognition should be evaluated. Careful feature selection for the model may
enhance the power of classification, Hence, a featqre selection process will be executed
first. The features of signals in liferatures con_sist of'mean (Lester et al., 2006; Huynh
and Schiele, 2005; Ermes €t al., 2008; Pirt‘.ti.i;angas et al.; 2006; Wang et al., 2005; Yang,
2009; Yang et al., 2008), Varianc.e (Léster et al,; 2006; Parkkd et al., 2006; Huynh and
Schiele, 2005; Ermes et al., 2008; Yang et al., 2008), standard deviation (Pirttikangas et
al., 2006; Wang et al., 2005; Yang, 2009; Yang et al., 2008), correlation among data in
various axes (Lester et al., 2006; Huynh and Schiele, 2005; Pirttikangas et al., 2006;
Wang et al., 2005; Yang, 2009; Yang et al., 2008), median (Péarkka et al., 2006; Ermes et
al., 2008), 25" percentile (Ermes et al., 2008), 75" percentile (Ermes et al., 2008; Yang,

2009), interquartile range (Yang, 2009; Yang et al., 2008), root mean square (Yang et al.,

2008), peak numbers (Ward et al., 2006), principal frequency (Parkkid et al., 2006),
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power of principal frequency (Parkka et al., 2006; Ermes et al., 2008), spectrum energy
(Wang et al., 2005; Huynh and Schicle, 2005; Yang et al., 2008), spectrum entropy
(Huynh and Schiele, 2005; Ermes €t al., 2008; Wang et al., 2005; Yang, 2009), power of
principal frequency of different frequency bands (Ermes et al., 2008), etc. Besides,
principal frequency of different frequency bands and energy of different frequency
bands are also used in this study. The features in different frequency bands realized by
wavelet transform are also investigated in this study.

Among 96 features for three-axis, 27 features are selected for feature extraction
based on box-and-whisker plots of features, which can distinguish an activity pattern
from others. Two examples are“used to iilﬁéffafe the ideas. The correlation coefficient of
signals in X-axis and Y-axis shown. in Fig. 3113 could tell at least 50% of activity
pattern “W” from other activity pattemé. Aﬁd interquartile range of Y-axis in Fig. 3-14
could also differentiate most of activity pattern “R” and “O” from other activity pattern.
Other undistinguished activity pattern could be distinguished via other useful features as

well. Hopefully, all activity patterns could be all distinguished.
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Fig. 3-13 Box-and-whisker plot for correlation coefficient of signals in X-axis and
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Fig. 3-14 Box-and-whisker plot for interquartile range of Y-axis

In this study, the 27 selected features are correlation coefficient in X-axis and

Y-axis, interquartile range of X, peak number of X, spectrum energy of X, spectrum
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entropy of X, D1 power of peak frequency of X, D1 energy of X, D3 power of peak
frequency of X, D3 energy of X, D4 peak frequency of X, AS peak frequency of X,
median of Y, interquartile range of Y, peak number of Y, D1 power of peak frequency of
Y, D1 energy of Y, D3 energy of Y, D4 peak frequency of Y, D5 peak frequency of Y,
median of Z, interquartile range of Z, peak number of Z, power of peak frequency of Z,
D1 power of peak frequency of Z, D3 power of peak frequency of Z, D3 energy of Z,

D5 peak frequency of Z.

3.3.1.4 Homogeneous and Heterogeneous Datasets

The homogeneous and heterogeneo&s datasets vare prepared once the feature
extraction is done. Each homogenedus_ dataset has its unique pattern. However, the
activity pattern in heterogeneous dataset may contain more than one activity patterns
and needs to be classified to the activity pattern with the highest percentage. That is that
the winner pattern compared with other patterns occupies highest percentage of duration
in the clip. However, an exception is that a clip of signal contains activity pattern rest
“R” and other activity patterns. To be classified as “R” is not based on majority. The
percentage of rest has to be over a specific threshold, which is set at 92% in the study.

Otherwise, it is referred to as the other activity patterns.
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3.3.2 Model Selection

In model selection process, two-step process is performed. The first step is
candidate model selection. The second step is candidate model testing. In the end, a
winner model will be chosen based on the best performance of activity pattern

recognition.

3.3.2.1 Candidate Model Selection

The section is to illustrate howsthe candidatéumodels are selected from 63 models.
10-fold cross-validation is used to build- éﬁ(}"'vélidate models with homogeneous dataset
as shown in Fig. 3-15. The 10-fold crpss-validation divides dataset into 10 parts; 9 parts
out of the 10 are chosen as training se1; to .build model and the rest for validation till
each part has served as a validation set in turn. Finally, the preliminary candidate
models are chosen for averaged accuracy higher than 85%.

Weka software version 3.6.4 is used to build and validate models in this study.
Weka, developed by Machine Learning Group at University of Waikato, is a freeware
which is the collection of more than 110 machine learning algorithms for data mining

(Weka, 2010).
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Fig. 3-15 Model selection-with training/validation data

3.3.2.2 Model Testing

In model testing phase, these selected candidate models will then be tested with
both homogeneous and heterogeneous datasets, respectively. Signals are collected on
another day for those datasets to estimate the prediction ability of model. Finally, the

best model is chosen based on the accuracy of prediction in the test shown in Fig. 3-16.
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3.4 Vitality Estimation

The vitality could be estimated by various ways. In general, the chicken with
higher vitality walks around or moves about more often. In the study, the average power
of acceleration signals is used as the index of vitality. Average power is energy divided
by the number of sampling points. Start time, end time, and duration of motion need to
be first estimated to obtain the index value, which forms the frame of acceleration signal
representing activity, defined as an activity frame. Subsequently, the average power of

the signal can be calculated.

3.4.1 Determination of Activity{f*’fame

The acceleration signals contains gravity:.component on 3-axis and noise, which
should be filtered out before the detection of activity frame. In this study, wavelet
transform with Daubechies 11 basis is used to decompose 3-axis acceleration signals
into signals in different frequency bands as shown in Fig. 3-17. To filter out gravity
component on 3-axis, low-frequency signal components A5 are discarded. For noise
reduction, D1 is excluded, which is the component of the highest frequency. Finally, the
signals of D2, D3, D4, and D5 are synthesized to form signals in X, Y, and Z, which

have expelled the gravity component and noise as shown in Fig. 3-18.
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Fig. 3-17 Signal decomposed by wavelet basis db10
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Fig. 3-18 Synthesized signals in 3-axis

Next, the activity frames are 'decided frém thesynthesized signals by thresholding.
However, the synthesized signal may contain'weak signals which could be excluded. In
this study, averaged power calculation with | sample points is taken to reduce the effect
of those weak signals and not to ignore meaningful signals.
There are three steps in activity frame determination. The first one is to calculate
the averaged power of the synthesized signals in every | = 5 sampling points in our
study. The averaged power formula in X, Y, and Z are shown in Eq. (3-4), Eq. (3-5), and
Eq. (3-6). The Px, Py, Pz and Agn x, Agn v, and Agn 7 are the averaged power and the
synthesized signals, respectively. | in these equations, 5 time points in this study,

indicates the duration where power is accumulated.
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1 (j- 1)*I+I

Plil=y > |An K] (3-4)
l k=(j-1)*1+1
1 (j=D* +l

RUI=T X |An Sk (3-5)
k=(j-1)*1+1

] 1 (j=D*I+ 2

PLl=7 X A, 2[K] (3-6)

k=( j—1)*1+1

The second one is to decide the activity frames from the average power over a

specified threshold. The thresholds in 3-axis may not be the same. Fig. 3-19 shows the

preliminary activity frames.

The last step is combining these activity frames in

considering of frames in 3-axis by union, neighboring joining and spike deletion shown

in Fig. 3-20.
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Fig. 3-19 Activity frames of X-axis, Y-axis, and Z-axis
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Fig. 3-20 Activity frame post-processing
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3.4.2 Estimation of Average Power for Activity Frame

The vitality index in this study is the average power P[i] for a specific activity
frame, shown in Eq. (3-7). The average power is calculated by Eq. (3-7) to Eq. (3-11).
The Agn_x, Asn v, and Agpn 7 are the synthesized signals in 3-axis. i indicates the number
of activity frame. The g[i] is the start point of activity frame i. The I[i] is the length of
activity frame i. The Egrame x[1], Errame v[1], Errame Z[1] are the energy of activity frame i
in 3-axis. Finally, the average power of all activity frames can be obtained to represent
the vitality of chicken.

Pli] = ELdy/1i] (3-7)

E[i] = Emme_'x[i]' + Epraniely 1] # Errame_z[i] (3-8)
Errame x[i] = Zper | Ay x (k1| (3-9)
Erramey[il = i A, o k) (3-10)
Erramez[il = et Ay, k1| (3-11)
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Chapter 4 Results and Discussion

The results of this study will be shown and discussed in the following sections. In
section 4.1, the results of candidate models selection via 10-fold cross-validation will be
illustrated. Next, the results of the candidate model testing with homogeneous dataset
and heterogeneous dataset will be demonstrated. Finally, Bayesian network classifier is
the winning model and the recognition detail on Bayesian network classifier is
illustrated. The results of the vitality estimation are presented in section 4.2.
Comprehensive discussion on' the results andurelevant problems will be given and

addressed in section 4.3.

4.1 Activity Recognition

A signal for training and validation with 1930 seconds in total is shown in Fig. 4-1,
and a signal for testing with 122 seconds long which are collected on another day is
shown in Fig. 4-2. They are prepared for activity pattern recognition.

Subsection 4.1.1 presents the result of the candidate model selection via 10-fold
cross-validation with the homogeneous dataset for training and validation. The testing
result of the candidate models with homogeneous and heterogeneous datasets is

presented in subsection 4.1.2. In subsection 4.1.3, the validation and testing for
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Bayesian network classifier will be mentioned in details.

The ground in chicken house paved with rice hulls or soil is uneven. The uneven
ground and the stoop of chicken will cause the tilting of accelerometers attached on the
back of chicken, thus affect the components of gravity projected on three axes. In the
study, X-axis is aligned with the lateral direction of chicken, and the longitudinal
direction of chicken is coincided with Y-axis. The recognition accuracy can be improved

if the interference mentioned above can be carefully dealt with.
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Fig. 4-1 Acceleration signal for training and validation
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Fig. 4-2 Acceleration signal for testing
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4.1.1 Candidate Model Selection via 10-fold Cross-Validation

The models with accuracy higher than 85% through 10-fold cross-validation will
be chosen as candidate models for further model testing. There are 35 candidate models
in total. The models and their corresponding accuracies are shown in Table 4-1. The
abbreviated names of models just follow the definition in Weka software, e.g., BayesNet

represents Bayesian network classifier.

4.1.2 Model Tested with Homogeneous and Heterogeneous

Datasets

Table 4-2 shows the result of- model testing with homogeneous and heterogeneous
datasets. Though the accuracy of Bayesian network classifier in 10-fold cross-validation
does not rank on top, 86.10% accuracy is still satisfied and gets into the final list. The
accuracy in model testing with homogeneous dataset is 74.42%, and testing with
heterogeneous dataset is also up to 72.10%. The Bayesian network classifier
outperforms on both two datasets. Therefore, the Bayesian network classifier is more

suitable to be the classification model than the others are in this study.
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Table 4-1 Accuracy of candidate models on 10-fold cross-validation

Model Accuracy Model Accuracy
(%) (%)

RandomCommittee 95.12 AttributeSelectedClassifier 90.15
RandomForest 9446 FT 89.90
RotationForest 94.43 LogitBoost 89.73
END 94.22 SimpleCart 89.65
Decorate 94.06 BFTree 89.48
ClassificationViaRegression 92.75 OrdinalClassClassifier 89.47
Bagging 92.33 Ridor 89.44
NBTree 92.33 REPTree 89.26
RandomSubSpace 92.24 DTNB 88.45
J48graft 91.46 RandomTree 88.45
KStar 91.28 RacedIncrementalLogitBoost 87.75
ND 91.24 FilteredClassifier 87.53
LMT 91.22 MultiClassClassifier 86.64
PART 91.17 SimpleLogistic 86.47
DataNearBalancedND 90.91 Logistic 86.23
J48 90.91 BayesNet 86.10
JRip 90.88 MultilayerPerceptron 85.32

ClassBalancedND 90.77




Table 4-2 Accuracy of candidate models on validation and testing

Cv Homogeneous Heterogeneous
Model Accuracy Dataset Dataset

(%) Accuracy (%)  Accuracy (%)
RandomCommittee 95.12 68.60 68.24
RandomForest 94.46 67.44 68.24
RotationForest 94.43 63.95 62.66
END 94.22 63.37 62.66
Decorate 94.06 63.95 65.24
ClassificationViaRegression 92.75 65.12 66.09
Bagging 92.33 65.12 66.52
NBTree 92.33 65.12 66.09
RandomSubSpace 92.24 70.35 69.53
J48graft 91.46 65.12 63.52
KStar 91.28 51.16 48.93
ND 91.24 60.47 62.23
LMT 91.22 57.56 60.09
PART 91.17 55.23 57.08
DataNearBalancedND 90.91 59.30 63.52
J48 90.91 64.53 61.80
JRip 90.88 65.70 64.38
ClassBalancedND 90.77 59.30 63.52
AttributeSelectedClassifier 90.15 62.79 61.80
FT 89.90 71.51 63.95
LogitBoost 89.73 69.19 66.95
SimpleCart 89.65 65.70 66.09
BFTree 89.48 66.86 64.38
OrdinalClassClassifier 89.47 54.07 57.51
Ridor 89.44 60.47 63.09
REPTree 89.26 68.02 67.38
DTNB 88.45 63.95 65.67

RandomTree 88.45 69.19 66.09
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Table 4-2 Accuracy of candidate models on validation and testing (Continued)

Cv Homogeneous Heterogeneous
Model Accuracy Dataset Dataset

(%) Accuracy (%)  Accuracy (%)
RacedIncrementalLogitBoost 87.75 65.70 63.95
FilteredClassifier 87.53 63.95 63.95
MultiClassClassifier 86.64 65.12 65.24
SimpleLogistic 86.47 69.77 70.39
Logistic 86.23 68.02 70.39
BayesNet 86.10 74.42 72.10
MultilayerPerceptron 85.32 51.74 54.08
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4.1.3 Confusion Matrix of Bayesian Network Classifier

In the 10-fold cross-validation, 7577 instances are used. Among them, the correctly
classified is 6524 instances and the incorrectly classified is 1053 instances, i.e., 86.10%
accuracy. Table 4-3 shows the confusion matrix of validation, the sign “R” stands for
rest or motionless, “O” for other movement hard to categorize, “W” for walk, “P” for

peck body, peck stuff, eat, and drink, “U” for sit-down or stand-up.

Table 4-3 Confusion matrix of 10-fold cross=validation of Bayesian network classifier

ImOut R 0 W P U
R 789 s || o 0 0
0 168 ' 1776/% 1140 61 1
w 07 ~ligga 1331 23 23
P 0%y 274 - #1530 2616 4
U 0 3 8 3 12

From the homogeneous dataset, 172 instances are employed for model testing

where the correctly classified is 128 instances and the incorrectly classified is 44

instances. The accuracy is 74.42%. Table 4-4 shows the confusion matrix of test.

In heterogeneous dataset, 233 instances are used to test the model. The correctly

classified is 168 instances and the incorrectly classified are 65 instances. The accuracy

is 72.10%. Table 4-5 shows the confusion matrix of test.
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Table 4-4 Confusion matrix of the test with homogeneous dataset of Bayesian network

classifier
In\Out R (0] W P U
R 28 2 0 0 0
Q) 1 55 11 1 0
W 0 4 42 8 1
P 0 8 0 3 0
U 0 0 8 0 0

Table 4-5 Confusion matrix of the test with heterogeneous dataset of Bayesian network

classifier
In\Out R o W P U
R 26 1 0 0 0
o) 5 80 18 9 0
w 0 4 53 8 1
p 0 8 0 9 0
U N\ 1 9 0 0

The confusion matrices in Table 4-3, Table 4-4, Table 4-5 show that the samples of
activity pattern “U” is much less than ones of the other activity patterns’, which is the
case of model building with scarce samples. In this case, the activity pattern “U” may be
easily classified as other activity patterns. A couple of methods could be applied to
overcome the case with scarce samples, like weighed support vector machine,
knowledge-based artificial neural networks (KBANNSs), or saturation labeling for

2D-DIGE analysis, etc.
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4.2 Vitality Estimation

The objective of vitality estimation is to provide management staffs on the
condition of chicken activity. The test signal is shown in Fig. 4-3. The procedure to
determine activity frames from acceleration signal is shown in Fig. 4-4.

After the activity frames are captured, the average power of activity frames are
calculated and referred as the vitality index. Average power, which is energy divided by
frame length, is a proper index to compare with the other frames for vitality evaluation.
Table 4-6 shows the result of the witality estimatioq. The vitality information in the table

contains the number of activity frames, energy,frame length, and average power.

Acceleration Data

4 T T T T I |
5 Accel. X
i Accel. Y ||
21 ———-hAccel. Z
o 1 .
=N . ; ils o ;b '
:g 0 -—-NW"'_"—"1 MNJMF;H.FU.#}?MJ;&MN 'II!_ w.\‘ﬁa‘“““""‘“"\'- A
= J
E =1 -.---{q&-—-“._m—.—-— J—— Wnﬁr .M_._,_ ]
@ ]
3L _
4L _
.5 ! ! ! ! 1 !
0 20 40 60 80 100 120
Time {s)

Fig. 4-3 Test signal for vitality estimation
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Acceleration Data
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Table 4-6 Results of vitality estimation

Frame Number Energy Frame Length  Average Power
(joule) (point) (watts)
1 2.20 394 0.005566
2 0.21 24 0.008918
3 0.08 44 0.001842
4 0.29 109 0.002630
5 1.39 94 0.014751
6 14.94 974 0.015335
7 35.27 174 0.202686
8 12.21 634 0.019257
9 7.81 1004 0.007779
10 0.03 14 0.002151
11 0.03 19 0.001563
12 41.38 114 0.363007
13 3.67 379 0.009675
14 2.23 209 0.010660
15 292 199 0.014665
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Chapter 5 Conclusions

In this study, a system to recognize activity pattern and estimate vitality of chicken
based on signals from a 3-axis accelerometer is developed, where the activity
recognition algorithm employs Bayesian network classifier to predict activity patterns
and the average power based vitality estimation algorithm can be obtained by wavelet
transform, activity frame determination, and energy calculation. The developed
algorithm can achieve the performance up to 86.10% accuracy by 10-fold
cross-validation with homogeneous|datasct for beth-training and validation, 74.42% and
72.10% in model testing on homo’g'e:nqqﬁs dataset, and heterogeneous dataset
respectively.

The recognition and estimation .is now conducted off-line. To accomplish the
objective of pre-warning of chicken in sick, an on-line system needs be further
developed. The separated algorithms on activity recognition and vitality estimation

could be also further integrated together in the future work.
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