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摘要 

本研究的主要目的為建立一套雞隻動作型態識別與活動力估測之系統。根據

裝置在雞隻上的加速度計訊號，來判斷其動作型態，包括走路、啄食、起身與坐

下、休息和其他等動作；活動力則以加速度訊號的能量來評估。研究架構分成資

料擷取、處理與分析，動作型態識別與活動力估測。資料擷取部分主要整合微機

電式三軸加速度計、ZigBee 元件與電腦成一無線加速度紀錄器，將此三軸加速度

記錄器背負在雞隻的背部，以量測活動的加速度訊號，透過 ZigBee 將加速度訊號

傳回電腦端儲存，同時以 DV 拍攝活動紀錄；在資料處理與分析方面採用內插法，

並將加速度訊號對比相對應的影像資訊，找出不同動作之特徵，本研究採用之特

徵，包括三維訊號兩兩間之相關係數、中位數、四分位數間距、峰值數目、頻譜

能量、頻譜熵，小波不同頻段之峰值、能量、主頻率等。動作識別部分以動作特

徵建立並測試了 63 種分類模型，以建模資料進行十疊交叉驗證法 (10-fold 

cross-validation)，貝式(Bayesian)網路分類器的辨識準確率為 86.1%；以測試資料測

驗模型，同種(Homogeneous)資料測試結果，貝式網路的辨識準確率為 74.42%；異

種(Heterogeneous)資料測試結果，貝式網路的辨識準確率為 72.10%，顯示貝式網

路之辨識結果較為強健，適合應用在雞隻的動作型態識別。活動力估測係從雞隻

活動加速度訊號求得活動資訊，使用小波轉換、活動框架偵測與訊號能量等方法，

得到活動框架的平均功率，用以評估雞隻的活動情形與健康程度，達到疾病預警

的目的。 

 

關鍵字：活動力估測、動作識別、加速度、貝式網路分類器、小波轉換、平均功
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Abstract 

The purpose of this paper is to design a system to recognize activity pattern and 

estimate vitality of chicken. The activity to be recognized includes walk, peck, stand-up 

and sit-down, rest, and other, etc. The vitality is estimated by energy of acceleration 

signal. The framework of this study consists of data collection, processing and analysis, 

activity pattern recognition, and vitality estimation. On data collection, a Wireless 

Acceleration Logger is designed by integrating MEMS 3-axis accelerometer with 

ZigBee devices. The three-axis acceleration signals is collected by attaching the 

Acceleration Logger on the back of chicken, and the collected acceleration signals will 

be sent to computer by ZigBee. At the same time, a digital video camera is used to 

record the behavior of chickens. For data processing and analysis, interpolation and 

wavelet method are used for signal processing. By comparing acceleration signals with 

the corresponding video clips, the features of various activities could be determined and 

acquired for further analysis. The features used in this study are correlation coefficients 

between signals in different axes, median, interquartile range, peak, spectrum energy, 

spectrum entropy, principal frequency of wavelet bands, amplitude of principal 

frequency of wavelet bands, and energy of wavelet bands. As of activity recognition, 63 

models have been constructed and validated. The accuracy of Bayesian network is 
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86.10% by 10-fold cross-validation. However, at testing stage, the accuracy of Bayesian 

network on testing homogeneous dataset is up to 74.42%; the accuracy of Bayesian 

network with heterogeneous dataset is around 72.10%. The result shows that Bayesian 

network has the best prediction capability for chicken activity recognition than other 

models and is also more robust. On vitality estimation, vitality index is estimated from 

acceleration signals of chicken through wavelet transform, activity frame detection, and 

the average power of activity frames. The health condition of chicken could be 

evaluated to achieve the purpose of sickness early warning based on the vitality 

information. 

 

Keywords: vitality estimation, activity recognition, acceleration, Bayesian network 

classifier, wavelet transform, average power 
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Chapter 1  Introduction 

Chicken is one of the most important sources of meat, and it is protein-rich, low fat 

and rich in amino acids. The production value of the chicken industry ranks second in 

the domestic livestock and poultry in Taiwan, and it is only next to swine industry 

(Council of Agriculture, Executive Yuan, 2009). The production value of chicken is 

greatly reduced by avian influenza or other diseases, particularly in December 2003. 

Therefore, the study aims to develop a system to facilitate the management of chicken 

house by early warning on the decay of chicken health condition. 

 To avoid disease spreading out in a chicken house, the health of chickens based on 

their behavior or vitality should be frequently monitored. The vitality could be 

estimated by their motion in terms of moving distance in 10 minutes (Chen, 2006) or 

acceleration (Green et al., 2009). In previous study, some researchers use cameras to 

capture the motion and make judgment (Chen, 2006; Wang et al., 2010). Besides, 

activity patterns provide useful information to analyze vitality in more details. The 

human acceleration data have been widely studied for the activity pattern recognition of 

human (Bao and Intille, 2004). To be applied in animals, the methods still have to be 

further investigated. 

 



 

2 
 

 In this study, the activity pattern and vitality of chicken are investigated for 

evaluating the health condition of chickens by developing a system with accelerometers, 

wireless transceiver devices and analysis algorithm. 

The rest of this thesis is organized as follows: Related literature will be discussed 

in Chapter 2. Then the acceleration signal acquirement, activity recognition and vitality 

estimation method are presented in Chapter 3. In Chapter 4, the result of activity pattern 

recognition and vitality estimation will be discussed and illustrated. Finally, the 

conclusion is given in Chapter 5. 
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Chapter 2  Literature Review 

The animal science has being developed for more than hundred years. In this field, 

research on animal behavior gradually draws attention. According to the definition of 

animal behavior by Animal Behavior Society (ABS), “animal behavior is the scientific 

study of everything animals do” (ABS, 2006). 

In animal behavior study, observing what animals do is the most basic step. The 

oldest method is to observe and record information of animals by human. Droege and 

Sauer (1989) reported the project of a survey on North American breeding bird, 

beginning in 1966, and the project was carried out mainly human observation. The 

method has two defects, first one is the animal information will be lost due to human 

neglect. Second one is data only recorded while animals appear before observers. 

During the last several decades, there has been a rapid growth of mechatronic 

technology. Therefore, people have been trying to utilize new technology, like 

radio-telemetry and loggers, to obtain information on animal behavior. The advantages 

of using such a technology are as follows: (1) It can reduce human error and 

interference on animals. (2) The information of animal can be acquired automatically. 

Currently, people try to use radio-telemetry technology to study animal behavior. 

The radio-telemetry method can acquire information and location of animal within 
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sensing range. Ostfeld (1986) used radio-telemetry method to investigate territoriality 

and mating system of California Voles. Severinghaus (2000) used radio-telemetry to 

study territoriality of Lanyu Scops Owl. 

Bressers (1993) investigated automatic oestrus detection for group housed sows in 

1993. He hung a 3-axis accelerometer neck collar on sows. Two parameters, which are 

mean amplitude and the number of signal passing a threshold, are used to differentiate 

pre-oestrus and oestrus conditions. 

Over the past two decades, the trend of using data-logging devices appended on 

animal is more clear (Muramoto et al., 2004; Ropert-Coudert and Wilson, 2005), and 

the logging technology have improved the research method on animal study. The issues 

about Bio-logging were officially introduced on International Symposium on 

Bio-logging Science in 2003 (Naito at el., 2004). The definition of Bio-logging is “the 

theory and practice of logging and relaying of physical and biological data using 

animal-attached tags” (Hooker et al., 2007). Some people studied penguins via loggers 

to acquire its activity information including speed (Wilson and Bain, 1984), acceleration, 

and diving depth (Yoda et al., 1999; Yoda et al., 2001). Some researchers used logger to 

study flight, foraging, and diving behavior of birds (Ropert-Coudert and Wilson, 2005; 

Pelletier et al., 2007). 
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 Recently, many advances have been made in the area of automatic recognition. 

Among these domains, using acceleration to recognize daily activity of animal has been 

rapidly developed. Bao and Intille (2004) studied human activity recognition by using 

accelerometers which are worn on thigh, ankle, arm, wrist, and hip. The goal in their 

study is aiming to recognize 20 daily activities. Activity features used in the study are 

mean, spectrum energy, spectrum entropy, and correlation between signals in different 

axes. They tested four models which consist of Decision Table, IBL, C4.5 decision tree, 

and Naive Bayesian. The test shows the C4.5 decision tree classifier performed best. 

The recognition accuracy achieved 80% on a variety of 20 daily activities at model 

validation stage. 

Bayesian network, developed based on a rigorous probability approach, is 

particularly good at capturing relationships between variables, handling hundreds of 

variables with noise data, describing processes composed of locally interacting elements, 

providing causal influence. Therefore, the model is a suitable solution for problems 

involving reasoning under uncertainty, and it has shown promise in many applications 

(Friedman et al., 2000; Myers et al., 1999; Pearl and Russell, 2002; Yu et al., 2004). 

Previous research compared the ability of classification for Bayesian network 

classifier with other models, and the results in average end in a draw or are even better 

(Langley et al., 1992; John and Langley, 1995; Baesens et al., 2004; Pernkopf, 2005). 
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Langley et al. (1992) performed a comparison among Bayesian network, C4, and 

frequency-based classifiers on datasets from the databases of 5 domains. The result 

shows Bayesian network classifier has best performance in 4 domains. 

John and Langley (1995) compared two types of Bayesian network classifier, 

which are Naïve Bayes and Flex, with C4.5 Decision Tree classifier. They tested those 

classifiers on the datasets from databases of 11 domains, and the result with Bayesian 

network classifier is the best in 8 domains. 

Baesens et al. (2004) used Bayesian network classifiers for identifying the slope of 

the customer-lifecycle of long-life customers. They compared 5 types of Bayesian 

network classifier, which are Naïve Bayes, TAN, CL multinet, GBN, and GBN multinet, 

with C4.5, C4.5reles, LDA, and QDA classifiers. In average, Bayesian network 

classifiers perform better in predicting future customer evolution. 

Pernkopf (2005) compared Bayesian network with k-NN classifier on datasets 

from the databases of 8 domains. The Bayesian network classifier out-performed in 5 

domains, so they prefer to choose Bayesian network classifier. 

In this study, a data-logger is developed to be attached on the back of chickens to 

acquire acceleration data for the activity pattern recognition and vitality estimation of 

chickens.  In chapter 3, the development of our system will be described in detail. 
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Chapter 3  Materials and Methods 

This chapter is arranged as follows: In section 3.1, the overview of approach 

developed in this study will be illustrated. In section 3.2, the acceleration logger system 

is introduced. Then how the acceleration logger system is used to collect and 

pre-process acceleration data. Section 3.3 will illustrate the recognition process of 

activity patterns. Finally, the vitality estimation method will be presented in section 3.4. 

 

3.1 Approach Overview 

The flowchart of approach employed in this study is shown in Fig. 3-1. The 

objective of this chapter is to develop a system to evaluate the health condition of 

chickens by recognizing activity patterns and estimating the vitality of chickens. The 

whole processes to achieve our objective are based on the analysis of acceleration 

signals. Therefore, an acceleration wireless logger system is necessary to be developed 

for acquiring acceleration signals. The detailed descriptions will be given in following 

sections. 
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Acquirement of Chicken 
Acceleration and Video

Activity Pattern 
Recognition

Vitality Estimation

Acceleration Analysis

 

Fig. 3-1 Approach flowchart 

 

3.2 Acceleration Signal Acquisition and Pre-processing 

 The acceleration signal acquisition of chickens is the first stage in the process of 

the activity pattern recognition and vitality estimation. To achieve this goal, a tiny 

acceleration logger to record the acceleration signal of chicken is designed and created. 

In this section, an acceleration logger device will be introduced first. And then, the 

environment of chicken house where to collect acceleration signal will be described. 

Next, the acquisition of acceleration signal will be presented. Finally, acceleration 

pre-processing and activity labeling will be mentioned. 
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3.2.1 Acceleration Logger 

 The acceleration logger is a device to collect acceleration data through wireless 

transmission. The structure diagram of acceleration logger is shown in Fig. 3-2. It 

contains two parts, an acceleration transmitter and a receiver. The acceleration 

transmitter is in charge of acceleration detection, and then transmits wirelessly the 

acceleration signal to the receiver connected with a computer. Finally, the received raw 

data are recorded in the computer. 

The dimensions of the acceleration transmitter are 47 mm * 23 mm * 13 mm. Its 

weight is about 14 g. The max linear sensing range is ±3.6 G, and beyond this range is 

nonlinear. And the sampling frequency is 50 Hz. The acceleration transmitter is powered 

by a 3.7 V Li-ion battery. For providing steady voltage 3 V to SimpleNode and 2.5 V to 

ADXL330, two LDO linear voltage regulators are used to achieve this. The ADXL330 

senses the acceleration in 3-axis, X, Y, Z and outputs corresponding voltage. The output 

pins are connected in parallel with 0.1 μF capacitors to form a low-pass filter with 

bandwidth 50 Hz for noise filtering. The microcontroller in SimpleNode receives the 

filtered signals through embedded ADC converters, and then transmits the data to the 

acceleration receiver via ZigBee IC. Next, the microcontroller in the acceleration 

receiver stores the data in the computer through UART interface with baud rate 57,600 
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Fig. 3-2 Structure diagram of acceleration logger 

 

 

Fig. 3-3 Function Block diagram of ADXL330 (Analog Devices, 2006) 
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 The main components of the acceleration logger include two LDO linear voltage 

regulators, an accelerometer, and two ZigBee devices. The accelerometer ADXL330 is 

a tiny, low-power, 3-axis MEMS accelerometer developed by Analog Devices, Inc. The 

linear sensing range of the ADXL330 is ±3.6 G, and it can sense the static acceleration 

of gravity (Analog Devices, 2006). This sensor has been widely used in many 

applications. One of the most well known is implemented in Nintendo Wii Remote 

controllers. The function block diagram of ADXL330 is shown in Fig. 3-3 where the 

operating voltage ranges from 1.8 V to 3.6 V. A capacitor for decoupling needs to be 

added in parallel to the power input. The ST pin is used for self-testing. The output pins 

in X, Y, Z are paralleled with the capacitors for anti-aliasing and noise reduction. In this 

study, ADXL330 module is connected in parallel with 0.1 μF output filter capacitors 

and 0.1 μF decoupling capacitors at power line. 

 Two parameters in the ADXL330 need to be measured for the calculation of the 

detected acceleration. One is sensitivity, which is used to describe output voltage VA 

versus sensed acceleration A. The other is zero G bias Vbias, which indicates an offset, 

typically VS/2. These two parameters are usually affected by operating voltage VS. The 

formula to calculate acceleration is shown in Eq. (3-1).  
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SimpleNode is a WSN Device based on ZigBee, developed by Wireless Sensor 

Network Center (WSNC, 2007), National Taiwan University. It consists of C8051F411 

microcontroller (Silicon Laboratories, 2008), UZ2400 ZeeBee IC (UBEC, 2005), and 

antenna. The microcontroller in SimpleNode contains a 12-bit ADC with four selectable 

input pins which are used to read acceleration voltages VA from ADXL330. The 

conversion formula of the ADC is shown in Eq. (3-2), where reference voltage VREF is 

2.2 V in the study; the converted value D is raw data in this study. 

 

ܣ = (ಲି್ೌೞ)௦௦௧௩௧௬      (3-1) 

ܸ = ோܸாி ସଽ      (3-2) 

 

There are two LDO (low-dropout) regulators used in this study, TI TPS73125 2.5 

V and TPS73130 3.0 V (Texas Instruments, 2009). The LDO components are widely 

used in Li-ion battery based products. The LDO could work under small voltage 

difference between input and output. In this study, TPS73125 provides 2.5 V to 

ADXL330, and TPS73130 supplies 3.0 V to SimpleNode. The schematic of acceleration 

transmitter is shown in Fig. 3-4, and the products are shown in Fig. 3-5. 
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Fig. 3-4 Schematic of acceleration transmitter 

 

 

Fig. 3-5 Entities of acceleration transmitter 
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3.2.2 Signal Acquisition 

The experimental chicken house is located in the Department of Animal Science 

and Technology at National Taiwan University. The house is divided into three sections 

as shown in Fig. 3-6 and is equipped with a cooling pad ventilation system. Each 

section has 4 m long and 2 m wide. The one in the middle is used for our experiment, 

where a laying nest, a feed trough, and a water trough are placed inside. Two cocks and 

thirteen hens are reared, and the corresponding stocking density is 1.875 birds/m2. The 

species of reared chicken is Cobb Avian 48 broiler breeder. The chickens are born out of 

season. The acceleration signals are collected at the age of 82 weeks of chickens. 

 

 

Fig. 3-6 Layout of chicken house 

 

The environment control and feeding simply follow Cobb Avian breeder 

management guide published in 2008. The environment control system includes a fan, a 
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pad, and light sources. The fan turns on while temperature is higher than 22°C and the 

pad turns on and off at temperature higher than 31°C and lower than 30°C, respectively. 

The lighting is on from 5:00 to 22:00, lasting 17 hours. 

The feeding plan is that the diary feed for over 80-week chickens is 420 kcal/bird 

referred to Cobb Avian breeder management guide. Male and female chickens eat 

altogether. The brand of feed is Uni-President Enterprise Corp, and the Metabolizable 

Energy (ME) is 2800 Kcal/kg. The feed is measured the day before, and put it in two 

troughs once a day. Unlimited water is provided by water trough. Since the chickens eat 

altogether, the weight of chicken is difficult to control. Nevertheless, the weight of 

chicken is not our major concern in this study. 

The acceleration receiver, computer, and DV recorder are put in the section next to 

the middle section. The acceleration transmitter is attached on the back of a cock to 

collect acceleration signals. In the mean time, the DV records chicken’s activity 

simultaneously. 

In this study, RealTerm is a software for serial communication used to transmitting 

receiving and recording serial data. The recorded data includes recording time, 

acceleration logger ID, wireless package sequence, and raw data in X-axis, Y-axis, and 

Z-axis. The recorded data format is shown in Fig. 3-7. 
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Fig. 3-7 Format of recorded data 

 

3.2.3 Signal Pre-processing 

 A couple of procedures should be done before conducting the activity pattern 

recognition and vitality estimation. The first one is to process acceleration raw data. The 

second one is to convert raw data into corresponding acceleration signal. The third one 

is to match the acceleration signal with specific activity shown in the video clip.  

It is likely to lose packages during wireless data transmission and to cause data 

errors due to asynchronous serial communication. Two measures are taken to restore the 

raw data by removing error data and adding missing data by interpolation based on 

smoothing the sequence. 

The raw data are transformed into acceleration by using Eq. (3-3) which is 

modified from Eq. (3-1) and Eq. (3-2). 

 

ܣ = ( ோܸாி ସଽ − ܸ௦)/(3-3)     ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ 
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After the raw data is converted into acceleration, the acceleration data and content 

in the video clips will be compared and matched. Hence, the specific activity will be 

labeled on the acceleration signal. The labeling includes the start time, end time, and 

pattern of activity. Five activity patterns in this study are covered, i.e., R for Rest or 

motionless, W for walking, P for pecking, eating or drinking, U for sit-down and 

stand-up, and O for other activities hard to be recognized. 
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3.3 Activity Pattern Recognition 

 In this section, the framework of activity pattern recognition will be first 

introduced. Then the construction and validation of the recognition model will be 

illustrated. 

Modeling

Model Validation

Validation Result 
and Accuracy

Dataset for 
Training

Dataset for 
Validation

 

Fig. 3-8 Flowchart of pattern recognition 

 

Fig. 3-8 shows the flowchart of the activity pattern recognition algorithm. Datasets 

should be prepared and processed before constructing models and performing activity 

pattern recognition. They are categorized into training, validation, and testing datasets. 

Training and validation datasets are used to construct and validate recognition models, 

respectively. And the testing datasets are employed to test models. The model with 

highest accuracy is selected to predict the pattern of unknown datasets. 
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3.3.1 Dataset Preparation 

 In this study, four datasets need to be prepared for activity pattern recognition, 

which are homogeneous datasets for training, validation, testing, and heterogeneous 

dataset for testing. The procedures of dataset preparation are shown in Fig. 3-9.  

 

Accelerometer 
Signals

Video

Corresponding Signal of 
Acceleration

Activity Pattern
Within a Certain Period

Homogeneous 
Dataset for 

Training

Homogeneous 
Dataset for 
Validation

Feature Extraction
50 sampling pts

90% overlap

Homogeneous
Signals for 
Training

Homogeneous 
Signals for 
Validation

Feature Extraction
50 sampling pts

90% overlap

Homogeneous 
Dataset for 

Testing

Heterogeneous 
Dataset for 

Testing

Feature Extraction
50 sampling pts

50% overlap

Homogeneous
Signals for 

Testing

Heterogeneous 
Signals for 

Testing

Feature Extraction
50 sampling pts

50% overlap

 

Fig. 3-9 Dataset Preparation for activity recognition 
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3.3.1.1 Homogeneous Signals 

The collected acceleration signals are aligned and matched with their 

corresponding activity patterns shown in video installed in the chicken house. Based on 

the each individual activity synchronized with the video, the acceleration signals are 

further clipped into homogeneous signals for training, validation and testing.  

A sliding window is designed to clip signals with fixed length of samples and 

certain percentage overlapping with its neighboring windows. Features are extracted 

and calculated from signal in one sliding window. In the study, the window for the 

homogeneous signal of training and validation is set at size of 50 samples which last 

one second, and then shifts 5 samples, i.e., 90% overlapping, to the next. 

In practical application, feature calculation will be time consuming if sliding 

windows with 90% overlapping. Therefore, 50% overlapping, 25 samples shift for the 

window size of 50 samples, is applied to the homogeneous signal for testing, and the 

heterogeneous signal for testing in consideration of both efficiency and prediction 

accuracy. 

A specific segment of homogeneous signal is the collection of signals only 

corresponding to one single activity pattern as shown in Fig. 3-10.  
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Fig. 3-10 Homogeneous signal 

 

3.3.1.2 Heterogeneous Signals 

In fact, the activity pattern of acceleration signal is unknown in practical 

application. Therefore the signal cannot be divided according to its activity pattern 

beforehand. The clipped signals by sliding window may contain more than one activity 

patterns as shown in Fig. 3-11. Therefore, test with heterogeneous signals, which may 

have lower recognition accuracy, is proposed to evaluate the models. 

 

 

Fig. 3-11 Heterogeneous signal 
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3.3.1.3 Feature Extraction 

 The homogeneous or heterogeneous datasets are the feature sets extracted from the 

corresponding homogeneous or heterogeneous signal, individually. 

The features of various activity patterns may be distinguishable on specific 

frequency bands of acceleration signals and on the other bands may not be true. 

Therefore, features calculated from various frequency bands might be necessary. For 

features extracted from the signal of different frequency bands, the signal needs to be 

decomposed into the signals in different frequency bands in advance. Wavelet transform 

is one of the best choices to achieve this purpose. 
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3.3.1.3.1 Wavelet Transform 

 Fourier transform is a traditional method to analyze signals in frequency domain, 

but it does not contain information of time domain. Short-time Fourier transform uses 

short-time window to partially solve this problem. However, the fixed window size is 

less flexible in accurately identifying time point or duration. In general, low frequency 

signal lasts longer, so a window with larger size may be enough; however, signals with 

high frequency changes rapidly, which require short-time window to quantify their 

properties. 

The wavelet transform could automatically adjust window size according to signal 

frequency. A wavelet basis could generate bases with different resolution in time and 

frequency domain through dilation and translation. There are many different wavelet 

bases, e.g., Harr, Coiflet, Mexicana hat, Morlet, Daubechies, etc. The basis of 

Daubechies 11 (Daubechies, 1988) which is indicated by db10 in MATLAB as shown in 

Fig. 3-12 (a) is applied in the study. Bases with different resolution could form a set of 

wavelet package bases shown in Fig. 3-12 (b). 

To be done in a computer, wavelet transform needs to be discretized. The discrete 

filter bank algorithm is performed with the structure shown in Fig. 3-12 (c), A signal x[n] 

is divided into high frequency component D1 and low frequency component A1 through 
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level 1 wavelet transform, where HP block represents a high-pass filter; LP block means 

a low-pass filter; ↓2 block is a down-sampling process. The algorithm is constructed by 

a series of high-pass, low-pass filter and downsampling procedures. A1 component can 

be further decomposed into high frequency component D2 and low frequency 

component A2 through level 2 wavelet transform. Processes for the analysis of the 

following levels are similar. The frequency property for each component is shown in Fig. 

3-12 (d), and the fn is an Nyquist frequency of the input signal x[n]. 

 

x[n]
HP

LP

D1

D2

D3

A3

A1

A2 …

↓2

↓2
HP

LP

↓2

↓2

HP

LP

↓2

↓2

Level 1Level 2Level 3

fn/2fn/4fn/8 fn

D1D2D3A3

fn/2

fn/4

fn/8

fn

t

(b)

(c)

(d)

(a)

 

Fig. 3-12 Wavelet Transform (a) DB10 basis (b) Time-frequency boxes of wavelet 

package basis (c) Discrete filter bank algorithm (d) Filter bank 
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In this study, 5-level decomposition is performed to obtain the signals of different 

frequency bands which are D1, D2, D3, D4, D5 and A5, and then these signals will be 

used to calculate features of specific frequency bands. 

 

3.3.1.3.2 Feature Selection 

Before feature extraction is performed, what kinds of features are essential for 

activity recognition should be evaluated. Careful feature selection for the model may 

enhance the power of classification. Hence, a feature selection process will be executed 

first. The features of signals in literatures consist of mean (Lester et al., 2006; Huynh 

and Schiele, 2005; Ermes et al., 2008; Pirttikangas et al., 2006; Wang et al., 2005; Yang, 

2009; Yang et al., 2008), variance (Lester et al., 2006; Pärkkä et al., 2006; Huynh and 

Schiele, 2005; Ermes et al., 2008; Yang et al., 2008), standard deviation (Pirttikangas et 

al., 2006; Wang et al., 2005; Yang, 2009; Yang et al., 2008), correlation among data in 

various axes (Lester et al., 2006; Huynh and Schiele, 2005; Pirttikangas et al., 2006; 

Wang et al., 2005; Yang, 2009; Yang et al., 2008), median (Pärkkä et al., 2006; Ermes et 

al., 2008), 25th percentile (Ermes et al., 2008), 75th percentile (Ermes et al., 2008; Yang, 

2009), interquartile range (Yang, 2009; Yang et al., 2008), root mean square (Yang et al., 

2008), peak numbers (Ward et al., 2006), principal frequency (Pärkkä et al., 2006), 
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power of principal frequency (Pärkkä et al., 2006; Ermes et al., 2008), spectrum energy 

(Wang et al., 2005; Huynh and Schiele, 2005; Yang et al., 2008), spectrum entropy 

(Huynh and Schiele, 2005; Ermes et al., 2008; Wang et al., 2005; Yang, 2009), power of 

principal frequency of different frequency bands (Ermes et al., 2008), etc. Besides, 

principal frequency of different frequency bands and energy of different frequency 

bands are also used in this study. The features in different frequency bands realized by 

wavelet transform are also investigated in this study. 

Among 96 features for three-axis, 27 features are selected for feature extraction 

based on box-and-whisker plots of features, which can distinguish an activity pattern 

from others. Two examples are used to illustrate the ideas. The correlation coefficient of 

signals in X-axis and Y-axis shown in Fig. 3-13 could tell at least 50% of activity 

pattern “W” from other activity patterns. And interquartile range of Y-axis in Fig. 3-14 

could also differentiate most of activity pattern “R” and “O” from other activity pattern. 

Other undistinguished activity pattern could be distinguished via other useful features as 

well. Hopefully, all activity patterns could be all distinguished. 
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Fig. 3-13 Box-and-whisker plot for correlation coefficient of signals in X-axis and 

Y-axis  

 

 

Fig. 3-14 Box-and-whisker plot for interquartile range of Y-axis 

 

In this study, the 27 selected features are correlation coefficient in X-axis and 

Y-axis, interquartile range of X, peak number of X, spectrum energy of X, spectrum 
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entropy of X, D1 power of peak frequency of X, D1 energy of X, D3 power of peak 

frequency of X, D3 energy of X, D4 peak frequency of X, A5 peak frequency of X, 

median of Y, interquartile range of Y, peak number of Y, D1 power of peak frequency of 

Y, D1 energy of Y, D3 energy of Y, D4 peak frequency of Y, D5 peak frequency of Y, 

median of Z, interquartile range of Z, peak number of Z, power of peak frequency of Z, 

D1 power of peak frequency of Z, D3 power of peak frequency of Z, D3 energy of Z, 

D5 peak frequency of Z. 

 

3.3.1.4 Homogeneous and Heterogeneous Datasets 

The homogeneous and heterogeneous datasets are prepared once the feature 

extraction is done. Each homogeneous dataset has its unique pattern. However, the 

activity pattern in heterogeneous dataset may contain more than one activity patterns 

and needs to be classified to the activity pattern with the highest percentage. That is that 

the winner pattern compared with other patterns occupies highest percentage of duration 

in the clip. However, an exception is that a clip of signal contains activity pattern rest 

“R” and other activity patterns. To be classified as “R” is not based on majority. The 

percentage of rest has to be over a specific threshold, which is set at 92% in the study. 

Otherwise, it is referred to as the other activity patterns. 
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3.3.2 Model Selection 

In model selection process, two-step process is performed. The first step is 

candidate model selection. The second step is candidate model testing. In the end, a 

winner model will be chosen based on the best performance of activity pattern 

recognition. 

 

3.3.2.1 Candidate Model Selection 

The section is to illustrate how the candidate models are selected from 63 models. 

10-fold cross-validation is used to build and validate models with homogeneous dataset 

as shown in Fig. 3-15. The 10-fold cross-validation divides dataset into 10 parts; 9 parts 

out of the 10 are chosen as training set to build model and the rest for validation till 

each part has served as a validation set in turn. Finally, the preliminary candidate 

models are chosen for averaged accuracy higher than 85%. 

Weka software version 3.6.4 is used to build and validate models in this study. 

Weka, developed by Machine Learning Group at University of Waikato, is a freeware 

which is the collection of more than 110 machine learning algorithms for data mining 

(Weka, 2010). 
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Fig. 3-15 Model selection with training/validation data 

 

3.3.2.2 Model Testing 

In model testing phase, these selected candidate models will then be tested with 

both homogeneous and heterogeneous datasets, respectively. Signals are collected on 

another day for those datasets to estimate the prediction ability of model. Finally, the 

best model is chosen based on the accuracy of prediction in the test shown in Fig. 3-16. 
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Fig. 3-16 Model selection with testing data 
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3.4 Vitality Estimation 

The vitality could be estimated by various ways. In general, the chicken with 

higher vitality walks around or moves about more often. In the study, the average power 

of acceleration signals is used as the index of vitality. Average power is energy divided 

by the number of sampling points. Start time, end time, and duration of motion need to 

be first estimated to obtain the index value, which forms the frame of acceleration signal 

representing activity, defined as an activity frame. Subsequently, the average power of 

the signal can be calculated. 

 

3.4.1 Determination of Activity Frame 

The acceleration signals contains gravity component on 3-axis and noise, which 

should be filtered out before the detection of activity frame. In this study, wavelet 

transform with Daubechies 11 basis is used to decompose 3-axis acceleration signals 

into signals in different frequency bands as shown in Fig. 3-17. To filter out gravity 

component on 3-axis, low-frequency signal components A5 are discarded. For noise 

reduction, D1 is excluded, which is the component of the highest frequency. Finally, the 

signals of D2, D3, D4, and D5 are synthesized to form signals in X, Y, and Z, which 

have expelled the gravity component and noise as shown in Fig. 3-18. 
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Fig. 3-17 Signal decomposed by wavelet basis db10 
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Fig. 3-18 Synthesized signals in 3-axis 

 

 Next, the activity frames are decided from the synthesized signals by thresholding. 

However, the synthesized signal may contain weak signals which could be excluded. In 

this study, averaged power calculation with l sample points is taken to reduce the effect 

of those weak signals and not to ignore meaningful signals. 

There are three steps in activity frame determination. The first one is to calculate 

the averaged power of the synthesized signals in every l = 5 sampling points in our 

study. The averaged power formula in X, Y, and Z are shown in Eq. (3-4), Eq. (3-5), and 

Eq. (3-6). The PX, PY, PZ and Asyn_X, Asyn_Y, and Asyn_Z are the averaged power and the 

synthesized signals, respectively. l in these equations, 5 time points in this study, 

indicates the duration where power is accumulated. 
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     (3-4) 

     (3-5) 

     (3-6) 

 

The second one is to decide the activity frames from the average power over a 

specified threshold. The thresholds in 3-axis may not be the same. Fig. 3-19 shows the 

preliminary activity frames. The last step is combining these activity frames in 

considering of frames in 3-axis by union, neighboring joining and spike deletion shown 

in Fig. 3-20. 

 

 

Fig. 3-19 Activity frames of X-axis, Y-axis, and Z-axis 
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Fig. 3-20 Activity frame post-processing 
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3.4.2 Estimation of Average Power for Activity Frame 

The vitality index in this study is the average power P[i] for a specific activity 

frame, shown in Eq. (3-7). The average power is calculated by Eq. (3-7) to Eq. (3-11). 

The Asyn_X, Asyn_Y, and Asyn_Z are the synthesized signals in 3-axis. i indicates the number 

of activity frame. The s[i] is the start point of activity frame i. The l[i] is the length of 

activity frame i. The EFrame_X[i], EFrame_Y[i], EFrame_Z[i] are the energy of activity frame i 

in 3-axis. Finally, the average power of all activity frames can be obtained to represent 

the vitality of chicken. 

 

ܲ[݅] =  (7-3)       [݅]݈/[݅]ܧ

[݅]ܧ = [݅]ி_ܧ + [݅]ி_ܧ +  ி_[݅]    (3-8)ܧ

[݅]ி_ܧ = ∑ หܣ௦௬_[݇]หଶ௦[]ିଵା[]ୀ௦[]      (3-9) 

[݅]ி_ܧ = ∑ หܣ௦௬_[݇]หଶ௦[]ିଵା[]ୀ௦[]         (3-10) 

[݅]ி_ܧ = ∑ หܣ௦௬_[݇]หଶ௦[]ିଵା[]ୀ௦[]      (3-11) 
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Chapter 4  Results and Discussion 

The results of this study will be shown and discussed in the following sections. In 

section 4.1, the results of candidate models selection via 10-fold cross-validation will be 

illustrated. Next, the results of the candidate model testing with homogeneous dataset 

and heterogeneous dataset will be demonstrated. Finally, Bayesian network classifier is 

the winning model and the recognition detail on Bayesian network classifier is 

illustrated. The results of the vitality estimation are presented in section 4.2. 

Comprehensive discussion on the results and relevant problems will be given and 

addressed in section 4.3. 

 

4.1 Activity Recognition 

A signal for training and validation with 1930 seconds in total is shown in Fig. 4-1, 

and a signal for testing with 122 seconds long which are collected on another day is 

shown in Fig. 4-2. They are prepared for activity pattern recognition. 

Subsection 4.1.1 presents the result of the candidate model selection via 10-fold 

cross-validation with the homogeneous dataset for training and validation. The testing 

result of the candidate models with homogeneous and heterogeneous datasets is 

presented in subsection 4.1.2. In subsection 4.1.3, the validation and testing for 
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Bayesian network classifier will be mentioned in details. 

The ground in chicken house paved with rice hulls or soil is uneven. The uneven 

ground and the stoop of chicken will cause the tilting of accelerometers attached on the 

back of chicken, thus affect the components of gravity projected on three axes. In the 

study, X-axis is aligned with the lateral direction of chicken, and the longitudinal 

direction of chicken is coincided with Y-axis. The recognition accuracy can be improved 

if the interference mentioned above can be carefully dealt with. 

 

 

Fig. 4-1 Acceleration signal for training and validation 

 

 

Fig. 4-2 Acceleration signal for testing 
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4.1.1 Candidate Model Selection via 10-fold Cross-Validation 

The models with accuracy higher than 85% through 10-fold cross-validation will 

be chosen as candidate models for further model testing. There are 35 candidate models 

in total. The models and their corresponding accuracies are shown in Table 4-1. The 

abbreviated names of models just follow the definition in Weka software, e.g., BayesNet 

represents Bayesian network classifier. 

 

4.1.2 Model Tested with Homogeneous and Heterogeneous 

Datasets 

 Table 4-2 shows the result of model testing with homogeneous and heterogeneous 

datasets. Though the accuracy of Bayesian network classifier in 10-fold cross-validation 

does not rank on top, 86.10% accuracy is still satisfied and gets into the final list. The 

accuracy in model testing with homogeneous dataset is 74.42%, and testing with 

heterogeneous dataset is also up to 72.10%. The Bayesian network classifier 

outperforms on both two datasets. Therefore, the Bayesian network classifier is more 

suitable to be the classification model than the others are in this study. 
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Table 4-1 Accuracy of candidate models on 10-fold cross-validation 

Model 
Accuracy 

(%) 
Model 

Accuracy 

(%) 

RandomCommittee  95.12 AttributeSelectedClassifier 90.15

RandomForest  94.46 FT 89.90

RotationForest  94.43 LogitBoost  89.73

END  94.22 SimpleCart  89.65

Decorate 94.06 BFTree 89.48

ClassificationViaRegression 92.75 OrdinalClassClassifier  89.47

Bagging 92.33 Ridor  89.44

NBTree  92.33 REPTree  89.26

RandomSubSpace  92.24 DTNB 88.45

J48graft  91.46 RandomTree  88.45

KStar  91.28 RacedIncrementalLogitBoost  87.75

ND  91.24 FilteredClassifier 87.53

LMT 91.22 MultiClassClassifier  86.64

PART  91.17 SimpleLogistic  86.47

DataNearBalancedND 90.91 Logistic  86.23

J48  90.91 BayesNet 86.10

JRip  90.88 MultilayerPerceptron  85.32

ClassBalancedND 90.77  
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Table 4-2 Accuracy of candidate models on validation and testing 

Model 

CV 

Accuracy 

(%) 

Homogeneous 

Dataset 

Accuracy (%) 

Heterogeneous 

Dataset 

Accuracy (%) 

RandomCommittee  95.12 68.60 68.24

RandomForest  94.46 67.44 68.24

RotationForest  94.43 63.95 62.66

END  94.22 63.37 62.66

Decorate 94.06 63.95 65.24

ClassificationViaRegression 92.75 65.12 66.09

Bagging 92.33 65.12 66.52

NBTree  92.33 65.12 66.09

RandomSubSpace  92.24 70.35 69.53

J48graft  91.46 65.12 63.52

KStar  91.28 51.16 48.93

ND  91.24 60.47 62.23

LMT 91.22 57.56 60.09

PART  91.17 55.23 57.08

DataNearBalancedND 90.91 59.30 63.52

J48  90.91 64.53 61.80

JRip  90.88 65.70 64.38

ClassBalancedND 90.77 59.30 63.52

AttributeSelectedClassifier 90.15 62.79 61.80

FT 89.90 71.51 63.95

LogitBoost  89.73 69.19 66.95

SimpleCart  89.65 65.70 66.09

BFTree 89.48 66.86 64.38

OrdinalClassClassifier  89.47 54.07 57.51

Ridor  89.44 60.47 63.09

REPTree  89.26 68.02 67.38

DTNB 88.45 63.95 65.67

RandomTree  88.45 69.19 66.09
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Table 4-2 Accuracy of candidate models on validation and testing (Continued) 

Model 

CV 

Accuracy 

(%) 

Homogeneous 

Dataset 

Accuracy (%) 

Heterogeneous 

Dataset 

Accuracy (%) 

RacedIncrementalLogitBoost  87.75 65.70 63.95

FilteredClassifier 87.53 63.95 63.95

MultiClassClassifier  86.64 65.12 65.24

SimpleLogistic  86.47 69.77 70.39

Logistic  86.23 68.02 70.39

BayesNet 86.10 74.42 72.10

MultilayerPerceptron  85.32 51.74 54.08
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4.1.3 Confusion Matrix of Bayesian Network Classifier 

 In the 10-fold cross-validation, 7577 instances are used. Among them, the correctly 

classified is 6524 instances and the incorrectly classified is 1053 instances, i.e., 86.10% 

accuracy. Table 4-3 shows the confusion matrix of validation, the sign “R” stands for 

rest or motionless, “O” for other movement hard to categorize, “W” for walk, “P” for 

peck body, peck stuff, eat, and drink, “U” for sit-down or stand-up.  

 

Table 4-3 Confusion matrix of 10-fold cross-validation of Bayesian network classifier 

In\Out R O W P U 

R 789 94 0 0 0 

O 168 1776 140 61 11 

W 0 88 1331 23 23 

P 0 274 153 2616 4 

U 0 3 8 3 12 

 

From the homogeneous dataset, 172 instances are employed for model testing 

where the correctly classified is 128 instances and the incorrectly classified is 44 

instances. The accuracy is 74.42%. Table 4-4 shows the confusion matrix of test. 

In heterogeneous dataset, 233 instances are used to test the model. The correctly 

classified is 168 instances and the incorrectly classified are 65 instances. The accuracy 

is 72.10%. Table 4-5 shows the confusion matrix of test. 
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Table 4-4 Confusion matrix of the test with homogeneous dataset of Bayesian network 

classifier 

In\Out R O W P U 

R 28 2 0 0 0 

O 1 55 11 1 0 

W 0 4 42 8 1 

P 0 8 0 3 0 

U 0 0 8 0 0 

 

Table 4-5 Confusion matrix of the test with heterogeneous dataset of Bayesian network 

classifier 

In\Out R O W P U 

R 26 1 0 0 0 

O 5 80 18 9 0 

W 0 4 53 8 1 

P 0 8 0 9 0 

U 1 1 9 0 0 

 

The confusion matrices in Table 4-3, Table 4-4, Table 4-5 show that the samples of 

activity pattern “U” is much less than ones of the other activity patterns’, which is the 

case of model building with scarce samples. In this case, the activity pattern “U” may be 

easily classified as other activity patterns. A couple of methods could be applied to 

overcome the case with scarce samples, like weighed support vector machine, 

knowledge-based artificial neural networks (KBANNs), or saturation labeling for 

2D-DIGE analysis, etc. 
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4.2 Vitality Estimation 

 The objective of vitality estimation is to provide management staffs on the 

condition of chicken activity. The test signal is shown in Fig. 4-3. The procedure to 

determine activity frames from acceleration signal is shown in Fig. 4-4. 

After the activity frames are captured, the average power of activity frames are 

calculated and referred as the vitality index. Average power, which is energy divided by 

frame length, is a proper index to compare with the other frames for vitality evaluation. 

Table 4-6 shows the result of the vitality estimation. The vitality information in the table 

contains the number of activity frames, energy, frame length, and average power. 

 

 

Fig. 4-3 Test signal for vitality estimation 
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Fig. 4-4 Procedure of activity frame determination 
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Table 4-6 Results of vitality estimation 

Frame Number 
Energy 

(joule) 

Frame Length 

(point) 

Average Power 

(watts) 

1 2.20 394 0.005566 

2 0.21 24 0.008918 

3 0.08 44 0.001842 

4 0.29 109 0.002630 

5 1.39 94 0.014751 

6 14.94 974 0.015335 

7 35.27 174 0.202686 

8 12.21 634 0.019257 

9 7.81 1004 0.007779 

10 0.03 14 0.002151 

11 0.03 19 0.001563 

12 41.38 114 0.363007 

13 3.67 379 0.009675 

14 2.23 209 0.010660 

15 2.92 199 0.014665 
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Chapter 5  Conclusions 

 In this study, a system to recognize activity pattern and estimate vitality of chicken 

based on signals from a 3-axis accelerometer is developed, where the activity 

recognition algorithm employs Bayesian network classifier to predict activity patterns 

and the average power based vitality estimation algorithm can be obtained by wavelet 

transform, activity frame determination, and energy calculation. The developed 

algorithm can achieve the performance up to 86.10% accuracy by 10-fold 

cross-validation with homogeneous dataset for both training and validation, 74.42% and 

72.10% in model testing on homogeneous dataset, and heterogeneous dataset 

respectively.  

The recognition and estimation is now conducted off-line. To accomplish the 

objective of pre-warning of chicken in sick, an on-line system needs be further 

developed. The separated algorithms on activity recognition and vitality estimation 

could be also further integrated together in the future work. 
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