Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏鴻威zh_TW
dc.contributor.advisorHung-Wei Yenen
dc.contributor.author呂紹綸zh_TW
dc.contributor.authorShao-Lun Luen
dc.date.accessioned2024-03-29T16:13:18Z-
dc.date.available2024-03-30-
dc.date.copyright2024-03-29-
dc.date.issued2024-
dc.date.submitted2024-03-27-
dc.identifier.citation[1] O. Bouaziz, H. Zurob, M.X. Huang, "Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications", Steel Research International 84(10) (2013) 937-947.
[2] B.C. De Cooman, K.-G. Chin, J. Kim, "High Mn TWIP steels for automotive applications", New trends and developments in automotive system engineering (1) (2011) 101-128.
[3] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, "Carbon partitioning into austenite after martensite transformation", Acta Materialia 51(9) (2003) 2611-2622.
[4] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, "Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation", Current Opinion in Solid State & Materials Science 8(3-4) (2004) 219-237.
[5] R.L. Miller, "Ultrafine-Grained Microstructures and Mechanical Properties of Alloy-Steels", Metallurgical Transactions 3(4) (1972) 905-&.
[6] D.K. Matlock, J.G. Speer, E. De Moor, P.J. Gibbs, "Recent developments in advanced high strength sheet steels for automotive applications: an overview", Jestech 15(1) (2012) 1-12.
[7] H. Aydin, E. Essadiqi, I.H. Jung, S. Yue, "Development of 3rd generation AHSS with medium Mn content alloying compositions", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 564 (2013) 501-508.
[8] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, "An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design", Annual Review of Materials Research, Vol 45 45 (2015) 391-431.
[9] R. Rana, S.B. Singh, Automotive steels: design, metallurgy, processing and applications, Woodhead Publishing2016.
[10] M. Mannerkoski, "On the Decomposition of Austenite in a 13% Cr Steel", Acta. Polithec. Scand. Chem 26 (1964) 7-62.
[11] K. Relander, "Austenitzerfall Eines 0,18 Percent C-2 Percent Mo-Stahles Im Temperaturbereich Der Perlitstufe", Acta Polytechnica Scandinavica-Chemistry Including Metallurgy Series 34(34) (1964) 7-&.
[12] A.T. Davenport, R.W. Honeycombe, "Precipitation of Carbides at Gamma-Alpha Boundaries in Alloy Steels", Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 322(1549) (1971) 191-+.
[13] R.W.K. Honeycombe, "Transformation from Austenite in Alloy-Steels", Metallurgical Transactions a-Physical Metallurgy and Materials Science 7(7) (1976) 915-936.
[14] F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers1978.
[15] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, "Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides", Isij International 44(11) (2004) 1945-1951.
[16] T. Shimizu, Y. Funakawa, S. Kaneko, "High strength steel sheets for automobile suspension and chassis use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts", JFE technical report 4 (2004) 25-30.
[17] Y. Funakawa, K. Seto, "Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides", Tetsu-to-Hagane(Journal of the Iron and Steel Institute of Japan) 93(1) (2007) 49-56.
[18] N. Iwasa, N. Sakata, J. Takahashi, D. Raabe, Y. Takemoto, T. Senuma, "Precipitation behavior of v and/or cu bearing middle carbon steels", Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 98(8) (2012) 434-441.
[19] Y. Murase, N. Iwasa, Y. Takemoto, T. Senuma, "Precipitation hardening behavior of V and/or Cu bearing middle carbon steels", Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 99(11) (2013) 669-675.
[20] M.Y. Chen, B.M. Hwuang, J.R. Yang, "Microstructural Characterizations of Ultra-High Strength Steel Bars", Advanced Materials Research 168 (2011) 796-804.
[21] I. Machida, M. Narita, R. Kureura, M. Morita, N. Aoyagi, M. Sano, "Reduction in weight of steel wheels by development of 780 MPa-grade hot rolled steel sheets", SAE transactions (1994) 311-320.
[22] J. Hu, L.X. Du, J.J. Wang, C.R. Gao, T.Z. Yang, A.Y. Wang, R.D.K. Misra, "Microstructures and Mechanical Properties of a New As-Hot-Rolled High-Strength DP Steel Subjected to Different Cooling Schedules", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 44a(11) (2013) 4937-4947.
[23] N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamot, T. Furuhara, "Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides", Isij International 55(8) (2015) 1781-1790.
[24] C.N. Li, X.L. Li, G. Yuan, R.D.K. Misra, J. Kang, G.D. Wang, "Precipitation behavior and mechanical properties of a hot rolled Ti-bearing dual phase steel", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 673 (2016) 213-221.
[25] S.P. Tsai, C.H. Jen, H.W. Yen, C.Y. Chen, M.C. Tsai, C.Y. Huang, Y.T. Wang, J.R. Yang, "Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel", Materials Characterization 123 (2017) 153-158.
[26] S.P. Tsai, T.C. Su, J.R. Yang, C.Y. Chen, Y.T. Wang, C.Y. Huang, "Effect of Cr and Al additions on the development of interphase-precipitated carbides strengthened dual-phase Ti-bearing steels", Materials & Design 119 (2017) 319-325.
[27] E. Chandiran, Y. Sato, N. Kamikawa, G. Miyamoto, T. Furuhara, "Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 50a(9) (2019) 4111-4126.
[28] C.-H. Li, C.-Y. Chen, S.-P. Tsai, J.-R. Yang, "Microstructure characterization and strengthening behavior of dual precipitation particles in CuTi microalloyed dual-phase steels", Materials & Design 166 (2019) 107613.
[29] C.Y. Chen, C.H. Li, T.C. Tsao, P.H. Chiu, S.P. Tsai, J.R. Yang, L.J. Chiang, S.H. Wang, "A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite", Materials Today Communications 23 (2020) 100895.
[30] E. Chandiran, N. Kamikawa, Y. Sato, G. Miyamoto, T. Furuhara, "Improvement of Strength-Ductility Balance by the Simultaneous Increase in Ferrite and Martensite Strength in Dual-Phase Steels", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 52(12) (2021) 5394-5408.
[31] J.T. Wang, H. Beladi, L.B. Pan, F. Fang, J. Hu, L.X. Kong, P.D. Hodgson, I. Timokhina, "Interphase precipitation hardening of a TiMo microalloyed dual-phase steel produced by continuous cooling", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 804 (2021) 140518.
[32] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.
[33] U. Jansson, E. Lewin, "Sputter deposition of transition-metal carbide films - A critical review from a chemical perspective", Thin Solid Films 536 (2013) 1-24.
[34] B. Wang, Y. Liu, J.W. Ye, "Mechanical properties and electronic structures of VC, V4C3 and V8C7 from first principles", Physica Scripta 88(1) (2013) 015301.
[35] L.L. Wu, Y.C. Wang, Z.G. Yan, J.W. Zhang, F.R. Xiao, B. Liao, "The phase stability and mechanical properties of Nb-C system: Using first-principles calculations and nano-indentation", Journal of Alloys and Compounds 561 (2013) 220-227.
[36] Q.F. Zeng, J.H. Peng, A.R. Oganov, Q. Zhu, C.W. Xie, X.D. Zhang, D. Dong, L.T. Zhang, L.F. Cheng, "Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure", Physical Review B 88(21) (2013) 214107.
[37] C. Xu, K. Bao, S. Ma, D. Li, D. Duan, H. Yu, X. Jin, F. Tian, B. Liu, T. Cui, "Revealing unusual rigid diamond net analogues in superhard titanium carbides", RSC Adv 8(26) (2018) 14479-14487.
[38] X.-X. Yu, C.R. Weinberger, G.B. Thompson, "Ab initio investigations of the phase stability in group IVB and VB transition metal carbides", Computational Materials Science 112 (2016) 318-326.
[39] X.X. Yu, G.B. Thompson, C.R. Weinberger, "Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides", Journal of the European Ceramic Society 35(1) (2015) 95-103.
[40] H.K.D.H. Bhadeshia, Theory of transformations in steels, CRC Press2021.
[41] T. Epicier, D. Acevedo, M. Perez, "Crystallographic structure of vanadium carbide precipitates in a model Fe-C-V steel", Philosophical Magazine 88(1) (2008) 31-45.
[42] B.X. Dong, H.Y. Yang, F. Qiu, Q. Li, S.L. Shu, B.Q. Zhang, Q.C. Jiang, "Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation", Materials & Design 181 (2019) 107951.
[43] E.K. Storms, N.H. Krikorian, "The Variation of Lattice Parameter with Carbon Content of Niobium Carbide", J Phys Chem-Us 63(10) (1959) 1747-1749.
[44] J. Billingham, P.S. Bell, M.H. Lewis, "A superlattice with monoclinic symmetry based on the compound V6C5", Philosophical Magazine 25(3) (1972) 661-671.
[45] E. Parthé, V. Sadogopan, "The structure of dimolybdenum carbide by neutron diffraction technique", Acta Crystallographica 16(3) (1963) 202-205.
[46] M. He, C. Onwudinanti, Y. Zheng, X. Wu, Z. Zhang, S. Tao, "Ab initio study of metal carbide hydrides in the 2.25 Cr1Mo0. 25V steel", Physical Chemistry Chemical Physics 23(9) (2021) 5199-5206.
[47] K. Yvon, E. Parthé, "On the crystal chemistry of the close-packed transition-metal carbides. I. The crystal structure of the ζ-V, Nb and Ta carbides", Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 26(2) (1970) 149-153.
[48] K.J. Irvine, F.B. Pickering, T. Gladman, "Grain-Refined C-Mn Steels", Journal of the Iron and Steel Institute 205(2) (1967) 161-+.
[49] K. Narita, "Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel", Transactions of the Iron and Steel Institute of japan 15(3) (1975) 145-152.
[50] K.A. Taylor, "Solubility Products for Titanium-Carbide, Vanadium-Carbide, and Niobium-Carbide in Ferrite", Scripta Metallurgica Et Materialia 32(1) (1995) 7-12.
[51] H. Nordberg, B. Aronsson, "Solubility of Niobium Carbide in Austenite", Journal of the Iron and Steel Institute 206(12) (1968) 1263-&.
[52] R.C. Hudd, A. Jones, M.N. KALE, "Method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride", J Iron Steel Inst 209(2) (1971) 121-125.
[53] K. Bungardt, K. Kind, W. Oelsen, "Die Löslichkeit des Vanadinkarbids im Austenit", Archiv für das Eisenhüttenwesen 27(1) (1956) 61-66.
[54] H. Sekine, T. Inoue, Ogasawar.M, "Solubility of V4c3 in Alpha-Iron", Transactions of the Iron and Steel Institute of Japan 8(2) (1968) 101-&.
[55] E.J. Pavlina, J.G. Speer, C.J. Van Tyne, "Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron", Scripta Materialia 66(5) (2012) 243-246.
[56] J. Cermak, L. Kral, "Carbon diffusion in carbon-supersaturated ferrite and austenite", Journal of Alloys and Compounds 586 (2014) 129-135.
[57] A.T. Davenport, L.C. Brossard, R.E. Miner, "Precipitation in Microalloyed High-Strength Low-Alloy Steels", Jom-Journal of Metals 27(6) (1975) 21-27.
[58] C.S. Smith, "Grains, phases, and interfaces: An introduction of microstructure", Trans. Metall. Soc. AIME 175 (1948) 15-51.
[59] S.-C. Yang, Study on Microalloyed Medium-Manganese Steels in Quenching and Austenite Reversion Process, Master Thesis. Taipei, Taiwan: National Taiwan University; 2019.
[60] S.L. Lu, S.C. Yang, K.Y. Zhu, Y.S. Chen, J.M. Cairney, C.M. Lin, H.W. Yen, "Strategy of complex carbides in microalloyed 4Mn steels processed by quenching and austenite reversion", Materials & Design 230 (2023) 111951.
[61] R.G. Baker, J. Nutting, "Precipitation processes in steels", Iron and Steel Institute Special Report 64 (1959) 1.
[62] A. Guinier, "Structure of age-hardened aluminium-copper alloys", Nature 142(3595) (1938) 569-570.
[63] G.D. Preston, "Structure of age-hardened aluminium-copper alloys", Nature 142(3595) (1938) 570-570.
[64] M. Perez, E. Courtois, D. Acevedo, T. Epicier, P. Maugis, "Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling", Philosophical Magazine Letters 87(9) (2007) 645-656.
[65] S. Yamasaki, H.K.D.H. Bhadeshia, "M4C3precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping", Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 462(2072) (2006) 2315-2330.
[66] D. Raabe, B.H. Sun, A.K. Da Silva, B. Gault, H.W. Yen, K. Sedighiani, P.T. Sukumar, I.R. Souza, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.L. Wong, C. Baron, M. Diehl, F. Roters, D. Ponge, "Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 51(11) (2020) 5517-5586.
[67] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, "Quantitative measurements of phase equilibria at migrating α/γ interface and dispersion of VC interphase precipitates: Evaluation of driving force for interphase precipitation", Acta Materialia 128 (2017) 166-175.
[68] R.M. Smith, D.P. Dunne, "Structural aspects of alloy carbonitride precipitation in microalloyed steels", Materials forum (Rushcutters Bay), 1988, pp. 166-181.
[69] C.J. Tillman, D.V. Edmonds, "Alloy carbide precipitation and aging during high-temperature isothermal decomposition of an Fe-4Mo-0· 2C alloy steel", Metals Technology 1(1) (1974) 456-461.
[70] D.V. Edmonds, "OCCURRENCE OF FIBROUS VC DURING TRANSFORMATION OF AN FE-V-C STEEL", J Iron Steel Inst 210(5) (1972) 363-365.
[71] A. Barbacki, R.W.K. Honeycombe, "Transitions in Carbide Morphology in Molybdenum and Vanadium Steels", Metallography 9(4) (1976) 277-291.
[72] M.Y. Chen, H.W. Yen, J.R. Yang, "The transition from interphase-precipitated carbides to fibrous carbides in a vanadium-containing medium-carbon steel", Scripta Materialia 68(11) (2013) 829-832.
[73] M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, J.R. Yang, "Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation", Acta Materialia 64 (2014) 78-92.
[74] M.Y. Chen, M. Gouné, M. Militzer, Y. Bréchet, J.R. Yang, "Superledge Model for Interphase Precipitation During Austenite-to-Ferrite Transformation", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 45a(12) (2014) 5351-5361.
[75] K. Campbell, R.W.K. Honeycombe, "The isothermal decomposition of austenite in simple chromium steels", Metal Science 8(1) (1974) 197-203.
[76] Y. Funakawa, "Interphase Precipitation and Application to Practical Steels", Materials Transactions 60(10) (2019) 2086-2095.
[77] R.A. Ricks, P.R. Howell, "Bowing Mechanism for Interphase Boundary Migration in Alloy-Steels", Metal Science 16(6) (1982) 317-321.
[78] R.A. Ricks, P.R. Howell, "The Formation of Discrete Precipitate Dispersions on Mobile Interphase Boundaries in Iron-Base Alloys", Acta Metallurgica 31(6) (1983) 853-861.
[79] R. Okamoto, A. Borgenstam, J. Ågren, "Interphase precipitation in niobium-microalloyed steels", Acta Materialia 58(14) (2010) 4783-4790.
[80] H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, "Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel", Acta Materialia 59(16) (2011) 6264-6274.
[81] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, "Effects of α/γ orientation relationship on VC interphase precipitation in low-carbon steels", Scripta Materialia 69(1) (2013) 17-20.
[82] H.K. Dong, Y.J. Zhang, G. Miyamoto, M. Inomoto, H. Chen, Z.G. Yang, T. Furuhara, "Unraveling the effects of Nb interface segregation on ferrite transformation kinetics in low carbon steels", Acta Materialia 215 (2021) 117081.
[83] I. Bikmukhametov, H. Beladi, J. Wang, V. Tari, A.D. Rollett, P.D. Hodgson, I. Timokhina, "Interface characteristics and precipitation during the austenite-to-ferrite transformation of a Ti-Mo microalloyed steel", Journal of Alloys and Compounds 893 (2022) 162224.
[84] G. Miyamoto, K. Yokoyama, T. Furuhara, "Quantitative analysis of Mo solute drag effect on ferrite and bainite transformations in Fe-0.4 C-0.5 Mo alloy", Acta Materialia 177 (2019) 187-197.
[85] A.J. Ardell, "Precipitation Hardening", Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(12) (1985) 2131-2165.
[86] H.-W. Yen, Talk 6 - Crystal Stregtening, MSE7014 Mechanical Behaviors of Materials course handout, National Taiwan University, 2022.
[87] A. Kelly, R. Nicholson, Strengthening Methods in Crystals, Halstead Press Division, John Wiley & Sons, New York, 1971.
[88] Z.L. Guo, W. Sha, "Quantification of precipitation hardening and evolution of precipitates", Materials Transactions 43(6) (2002) 1273-1282.
[89] D. Raynor, J.M. Silcock, "Strengthening mechanisms in γ′ precipitating alloys", Metal Science Journal 4(1) (1970) 121-130.
[90] P.B. Hirsch, A. Kelly, "Stacking-Fault Strengthening", Philosophical Magazine 12(119) (1965) 881-&.
[91] E. Nembach, "Precipitation Hardening Caused by a Difference in Shear Modulus between Particle and Matrix", Physica Status Solidi a-Applied Research 78(2) (1983) 571-581.
[92] V. Gerold, H. Haberkorn, "On the critical resolved shear stress of solid solutions containing coherent precipitates", physica status solidi (b) 16(2) (1966) 675-684.
[93] B. Jansson, A. Melander, "On the critical resolved shear stress from misfitting particles", Scripta Metallurgica 12(6) (1978) 497-498.
[94] T. Gladman, "Precipitation hardening in metals", Materials Science and Technology 15(1) (1999) 30-36.
[95] I.A. Ibrahim, A.J. Ardell, "The mechanism of overaging in Cu3Au-1.5 at.% Co alloy single crystals", Materials Science and Engineering 36(1) (1978) 139-143.
[96] K. Matsuura, M. Kitamura, K. Watanabe, "The precipitation hardening of Cu–Fe alloy single crystals with coherent γ-iron particles", Transactions of the Japan Institute of Metals 19(1) (1978) 53-59.
[97] S.R. Yeomans, P.G. McCormick, "An investigation of precipitation and strengthening in age-hardening copper-manganese alloys", Materials Science and Engineering 34(2) (1978) 101-109.
[98] E.J.Z.P. Orowan, "The crystal plasticity. III: about the mechanism of the sliding", Z Physik 89 (1934) 634-659.
[99] T.D.C. George S. Ansell, and Fritz V. Lenel, Oxide dispersion strengthening; proceedings of a symposium, Gordon and Breach New York, 1968.
[100] U.F. Kocks, "On the spacing of dispersed obstacles", Acta Metallurgica 14(11) (1966) 1629-1631.
[101] H.L. Liu, J.C. Zhu, Y. Liu, Z.H. Lai, "First-principles study on the mechanical properties of vanadium carbides VC and V4C3", Materials Letters 62(17-18) (2008) 3084-3086.
[102] Y. Liu, Y. Jiang, R. Zhou, J. Feng, "First principles study the stability and mechanical properties of MC (M= Ti, V, Zr, Nb, Hf and Ta) compounds", Journal of alloys and compounds 582 (2014) 500-504.
[103] A. Batte, R. Honeycombe, "Strengthening of ferrite by vanadium carbide precipitation", Metal Science Journal 7(1) (1973) 160-168.
[104] E. Pereloma, D. Cortie, N. Singh, G. Casillas, F. Niessen, "Uncovering the mechanism of dislocation interaction with nanoscale (< 4 nm) interphase precipitates in microalloyed ferritic steels", Materials Research Letters 8(9) (2020) 341-347.
[105] N. Singh, G. Casillas, D. Wexler, C. Killmore, E. Pereloma, "Application of advanced experimental techniques to elucidate the strengthening mechanisms operating in microalloyed ferritic steels with interphase precipitation", Acta Materialia 201 (2020) 386-402.
[106] S.A. Parsons, D.V. Edmonds, "Microstructure and Mechanical-Properties of Medium-Carbon Ferrite Pearlite Steel Microalloyed with Vanadium", Materials Science and Technology 3(11) (1987) 894-904.
[107] H.C. Sorby, Iron, S. Institute, On the microscopical structure of iron and steel, 1887.
[108] C.A. Dubé, Ph.D. Thesis. Pittsburgh, Pennsylvania, United States: Carnegie Mellon University; 1948.
[109] H.I. Aaronson, "The Proeutectoid Ferrite and the Proeutectoid Cementite Reaction", in: V.F. Zackay, H.I. Aaronson (Eds.) Decomposition of Austenite by Diffusional Processes, Interscience Publishers, Philadelphia, Pennsylvania, 1962, p. 387.
[110] M. Strangwood, "Fundamentals of ferrite formation in steels", Phase transformations in steels, Elsevier2012, pp. 187-224.
[111] H. Bhadeshia, "BCC-BCC orientation relationships, surface relief and displacive phase transformations in steels", Scripta Metallurgica 14(7) (1980) 821-824.
[112] H.K.D.H. Bhadeshia, "A Rationalization of Shear Transformations in Steels", Acta Metallurgica 29(6) (1981) 1117-1130.
[113] H.K.D.H. Bhadeshia, J. Christian, "Bainite in steels", Metallurgical transactions A 21 (1990) 767-797.
[114] U. Dahmen, "Orientation Relationships in Precipitation Systems", Acta Metallurgica 30(1) (1982) 63-73.
[115] M. Kral, "Proeutectoid ferrite and cementite transformations in steels", Phase transformations in steels, Elsevier2012, pp. 225-275.
[116] C.S. Smith, Transactions of the American Society for Metals 45 (1953) 533.
[117] G. Miyamoto, T. Furuhara, "Interaction of Alloying Elements with Migrating Ferrite/Austenite Interface", Isij International 60(12) (2020) 2942-2953.
[118] K. Kinsman, H. Aaronson, "Influence of Al, Co, and Si upon the kinetics of the proeutectoid ferrite reaction", Metallurgical transactions 4 (1973) 959-967.
[119] V. Edmonds, R. Honeycombe, "Photoemission electron microscopy of growth of grain boundary ferrite allotriomorphs in chromium steel", Metal Science 12(9) (1978) 399-405.
[120] G. Kurdjumov, G. Sachs, "Oberden mechanismus det stahlhirtung", Z. Physik 64 (1930) 225.
[121] G. Wassermann, "Einfluß der α‐γ‐Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit", Archiv für das Eisenhüttenwesen 6(8) (1933) 347-351.
[122] Z. Nishiyama, "Sci. Rep. Res.", 23(638) (1934-1935).
[123] A.B. Greninger, A.R. Troiano, "The Mechanism of Martensite Formation", T Am I Min Met Eng 185(9) (1949) 590-598.
[124] Y.L. He, S. Godet, J.J. Jonas, "Observations of the Gibeon meteorite and the inverse Greninger-Troiano orientation relationship", Journal of Applied Crystallography 39(1) (2006) 72-81.
[125] W. Pitsch, "The Martensite Transformation in Thin Foils of Iron-Nitrogen Alloys", Philosophical Magazine 4(41) (1959) 577-584.
[126] W. Pitsch, "Der Orientierungszusammenhang Zwischen Zementit Und Austenit", Acta Metallurgica 10(Sep) (1962) 897-&.
[127] A. Hultgren, "Isothermal transformation of austenite", Transactions of the American Society for Metals 39 (1947) 915-1005.
[128] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van Der Zwaag, H. Zurob, "Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels", Materials Science and Engineering: R: Reports 92 (2015) 1-38.
[129] M.Hillert, "Paraequilibrium", Swedish Institute for Metals Research, Stockholm, Sweden, 1953.
[130] M.Hillert, "The Role of Interfaces in Phase Transformations", in: R.B.C. Nicholson, J.W. Greenwood, G.W. Nutting, J Smallman, R.E. (Ed.) The Mechanism of Phase Transformations in Crystalline Solids The Institute of Metals, University of Manchester, Manchester, England, 1968, p. 231.
[131] D.E. Coates, "Diffusional Growth Limitation and Hardenability", Metallurgical Transactions 4(10) (1973) 2313-2325.
[132] H. CHEN, C. ZHANG, J. ZHU, Z. YANG, R. DING, C. ZHANG, Z. YANG, "Austenite/ferrite interface migration and alloying elements partitioning: an overview", Acta Metall Sin 54(2) (2017) 217-227.
[133] M.S. Rashid, "GM 980X-Potential applications and review", SAE Transactions (1977) 935-946.
[134] N.J. Kim, G. Thomas, "Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1 C steel", Metallurgical Transactions A 12 (1981) 483-489.
[135] Y.G. Deng, H.S. Di, J.C. Zhang, "Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels", Acta Metallurgica Sinica-English Letters 28(9) (2015) 1141-1148.
[136] G.R. Speich, V.A. Demarest, R.L. Miller, "Formation of Austenite during Intercritical Annealing of Dual-Phase Steels", Metallurgical Transactions a-Physical Metallurgy and Materials Science 12(8) (1981) 1419-1428.
[137] C.W. Zheng, D. Raabe, "Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model", Acta Materialia 61(14) (2013) 5504-5517.
[138] X.L. Cai, J. Feng, W.S. Owen, "The Dependence of Some Tensile and Fatigue Properties of a Dual-Phase Steel on Its Microstructure", Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(8) (1985) 1405-1415.
[139] C.M. Poulin, S.C. Vogel, Y.P. Korkolis, B.L. Kinsey, M. Knezevic, "Experimental studies into the role of cyclic bending during stretching of dual-phase steel sheets", International Journal of Material Forming 13(3) (2020) 393-408.
[140] A.R. Marder, "Deformation Characteristics of Dual-Phase Steels", Metallurgical Transactions a-Physical Metallurgy and Materials Science 13(1) (1982) 85-92.
[141] A. Bag, K.K. Ray, E.S. Dwarakadasa, "Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 30(5) (1999) 1193-1202.
[142] Y. Mazaheri, A. Kermanpur, A. Najafizadeh, "Nanoindentation study of ferrite-martensite dual phase steels developed by a new thermomechanical processing", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 639 (2015) 8-14.
[143] Q.Q. Lai, L. Brassart, O. Bouaziz, M. Gouné, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, T. Pardoen, "Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling", International Journal of Plasticity 80 (2016) 187-203.
[144] R.G. Davies, "Influence of martensite composition and content on the properties of dual phase steels", Metallurgical Transactions A 9 (1978) 671-679.
[145] H. Mohrbacher, "Advanced metallurgical concepts for DP steels with improved formability and damage resistance", Proceedings of the international symposium on new developments in advanced high-strength sheet steels, Vail, AIST, 2013.
[146] J. Kadkhodapour, A. Butz, S.Z. Rad, "Mechanisms of void formation during tensile testing in a commercial, dual-phase steel", Acta Materialia 59(7) (2011) 2575-2588.
[147] "DIL 805A Quenching Dilatometers". https://www.tainstruments.com/dil-805a-quenching-dilatomers/).
[148] H. Bhadeshia, "Bainite: Overall transformation kinetics", Le Journal de Physique Colloques 43(C4) (1982) C4-443-C4-448.
[149] M. Onink, C. Brakman, F. Tichelaar, E. Mittemeijer, S. Van der Zwaag, J. Root, N. Konyer, "The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature", Scripta Metallurgica et Materialia;(United States) 29(8) (1993).
[150] W. Zhou, Z.L. Wang, Scanning microscopy for nanotechnology: techniques and applications, Springer science & business media2007.
[151] T.F. Kelly, D.J. Larson, "Local electrode atom probes", Materials Characterization 44(1-2) (2000) 59-85.
[152] B. Gault, M.P. Moody, F. De Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley, S.P. Ringer, "Advances in the calibration of atom probe tomographic reconstruction", Journal of Applied Physics 105(3) (2009) 034913.
[153] J. Takahashi, K. Kawakami, Y. Kobayashi, "Quantitative analysis of carbon content in cementite in steel by atom probe tomography", Ultramicroscopy 111(8) (2011) 1233-1238.
[154] R.K. Marceau, P. Choi, D. Raabe, "Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography", Ultramicroscopy 132 (2013) 239-247.
[155] T.F. Kelly, "Atom-probe tomography", Springer Handbook of Microscopy, Springer2019, pp. 715-763.
[156] A.I.C.E.-o.M. Testing, Standard test methods for tension testing of metallic materials, ASTM international2016.
[157] B. Sundman, H. Lukas, S. Fries, "Computational thermodynamics: the Calphad method", Cambridge university press Cambridge, 2007.
[158] G.E. Totten, STEEL HEAT TREATMENT: METALLURGY AND TECHNOLOGIES, CRC press2006.
[159] J. Kirkaldy, E. Baganis, "Thermodynamic prediction of the ae 3 temperature of steels with additions of Mn, Si, Ni, Cr, Mo, Cu", Metallurgical Transactions A 9 (1978) 495-501.
[160] "Metallurgy for Dummies, Phase Diagrams Fe-Mn, Fe-Co, Fe-Mo ". https://www.metallurgyfordummies.com/phase-diagrams-fe-mn-fe-co.html).
[161] H. Farahani, W. Xu, S. Van der Zwaag, "Prediction and Validation of the Austenite Phase Fraction upon Intercritical Annealing of Medium Mn Steels", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46a(11) (2015) 4978-4985.
[162] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, "An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design", Annual Review of Materials Research 45 (2015) 391-431.
[163] H. Kim, J. Inoue, M. Okada, K. Nagata, "Prediction of Ac3 and Martensite Start Temperatures by a Data-driven Model Selection Approach", Isij International 57(12) (2017) 2229-2236.
[164] H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, "Mechanism-based strain gradient plasticity - I. Theory", Journal of the Mechanics and Physics of Solids 47(6) (1999) 1239-1263.
[165] L.P. Kubin, A. Mortensen, "Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues", Scripta Materialia 48(2) (2003) 119-125.
[166] M. Shamsujjoha, "Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 776 (2020) 139039.
[167] C.Y. Huang, H.C. Ni, H.W. Yen, "New protocol for orientation reconstruction from martensite to austenite in steels", Materialia 9 (2020) 100554.
[168] C.Y. Huang, S.L. Lu, H.W. Yen, "Digital Reconstruction of Engineered Austenite: Revisiting Effects of Grain Size and Ausforming on Variant Selection of Martensite", Metals 12(9) (2022) 1511.
[169] H. Landheer, S.E. Offerman, R.H. Petrov, L.A.I. Kestens, "The role of crystal misorientations during solid-state nucleation of ferrite in austenite", Acta Materialia 57(5) (2009) 1486-1496.
[170] G.P. Krielaart, J. Sietsma, S. vanderZwaag, "Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 237(2) (1997) 216-223.
[171] J.W. Cahn, "The impurity-drag effect in grain boundary motion", Acta metallurgica 10(9) (1962) 789-798.
[172] R. Grange, C. Hribal, L. Porter, "Hardness of tempered martensite in carbon and low-alloy steels", Metallurgical transactions A 8 (1977) 1775-1785.
[173] P. Gong, X.G. Liu, A. Rijkenberg, W.M. Rainforth, "The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium", Acta Materialia 161 (2018) 374-387.
[174] H. Aaronson, W. Reynolds, G. Purdy, "Coupled-solute drag effects on ferrite formation in Fe-CX systems", Metallurgical and Materials Transactions A 35 (2004) 1187-1210.
[175] Y. Xia, G. Miyamoto, Z.-G. Yang, C. Zhang, T. Furuhara, "Effects of Mo on carbon enrichment during proeutectoid ferrite transformation in hypoeutectoid Fe-C-Mn alloys", Metallurgical and Materials Transactions A 46 (2015) 2347-2351.
[176] M. Enomoto, H. Aaronson, "Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-CX alloys", Metallurgical Transactions A 17 (1986) 1385-1397.
[177] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, "Weak influence of ferrite growth rate and strong influence of driving force on dispersion of VC interphase precipitation in low carbon steels", Acta Materialia 186 (2020) 533-544.
[178] Y. Yang, X.F. Zhang, Y.M. Li, Q. Xie, Z.Y. Huang, "Complex isothermal precipitation behavior of V (C, N) in V-, N-added low carbon steel", Journal of Materials Science 56(3) (2021) 2638-2649.
[179] S. Mukherjee, I. Timokhina, J. Wang, A. Chakraborty, S. Pramanik, S. Kundu, P. Hodgson, "Interphase and fibrous precipitation in a thermomechanically processed V–Nb–Mo microalloyed steel", Materials Science and Technology 39(8) (2023) 1010-1020.
[180] K. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, "Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets", ISIJ international 44(3) (2004) 603-609.
[181] M. Bechtold, N. Kwiaton, C. Lesch, F. Klose, A. Holdinghausen, S. Schulz, "Versatile Dual Phase Steels: Balancing Hole Expansion and Elongation", International Conference on Steels in Cars and Trucks, Nordwijkerhout, NL, 2017, pp. 1-8.
[182] X. Hu, X. Sun, K. Raghavan, R. Comstock, Y. Ren, "Linking constituent phase properties to ductility and edge stretchability of two DP 980 steels", Materials Science and Engineering: A 780 (2020) 139176.
[183] C. Zener, "Theory of Growth of Spherical Precipitates from Solid Solution", Journal of Applied Physics 20(10) (1949) 950-953.
[184] H.H. Kuo, M. Umemoto, K. Sugita, G. Miyamoto, T. Furuhara, "Model for Predicting Phase Transformation and Yield Strength of Vanadium Microalloyed Carbon Steels", Isij International 52(4) (2012) 669-678.
[185] O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, "Analysis of three-dimensional atom-probe data by the proximity histogram", Microscopy and Microanalysis 6(5) (2000) 437-444.
[186] J.H. Woodhead, "The physical metallurgy of vanadium steels", Vanadium in High Strength Steel, Vanitec Publication, Chicago, 1979, pp. 3-10.
[187] T. Murakami, H. Hatano, G. Miyamoto, T. Furuhara, "Effects of Ferrite Growth Rate on Interphase Boundary Precipitation in V Microalloyed Steels", Isij International 52(4) (2012) 616-625.
[188] R. Lagneborg, S. Zajac, "A model for interphase precipitation in V-microalloyed structural steels", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 32(1) (2001) 39-50.
[189] Z.Q. Liu, G. Miyamoto, Z.G. Yang, T. Furuhara, "Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys", Acta Materialia 61(8) (2013) 3120-3129.
[190] G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, "Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite", Acta Materialia 58(19) (2010) 6393-6403.
[191] H. Dong, Y. Zhang, G. Miyamoto, M. Inomoto, W. Zhang, L. Liu, H. Chen, T. Furuhara, "Heterogeneous segregation behavior of Nb at the stepped migrating interface during phase transformation", Scripta Materialia 222 (2023) 115038.
[192] D. Vaumousse, A. Cerezo, P. Warren, "A procedure for quantification of precipitate microstructures from three-dimensional atom probe data", Ultramicroscopy 95 (2003) 215-221.
[193] E.A. Marquis, J.M. Hyde, "Applications of atom-probe tomography to the characterisation of solute behaviours", Materials Science and Engineering: R: Reports 69(4-5) (2010) 37-62.
[194] S. Dhara, R. Marceau, K. Wood, T. Dorin, I. Timokhina, P. Hodgson, "Atom probe tomography data analysis procedure for precipitate and cluster identification in a Ti-Mo steel", Data in Brief 18 (2018) 968-982.
[195] M.K. Miller, Atom probe tomography: analysis at the atomic level, Springer Science & Business Media2012.
[196] B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, "Impact of directional walk on atom probe microanalysis", Ultramicroscopy 113 (2012) 182-191.
[197] M. Thuvander, J. Weidow, J. Angseryd, L.K. Falk, F. Liu, M. Sonestedt, K. Stiller, H.-O. Andrén, "Quantitative atom probe analysis of carbides", Ultramicroscopy 111(6) (2011) 604-608.
[198] G. Krauss, "Solidification, segregation, and banding in carbon and alloy steels", Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 34(6) (2003) 781-792.
[199] J.D. Lavender, F.W. Jones, "An Investigation on Banding", Journal of the Iron and Steel Institute 163(1) (1949) 14-&.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92534-
dc.description.abstract鋼鐵中的界面析出物係指以陣列形式排列於肥粒鐵相中之奈米等級碳化物,界面析出物成核於鋼鐵沃斯田鐵相變至肥粒鐵過程中的相界面,其優異之析出強化貢獻為肥粒鐵系鋼種帶來不少新的可能。然而,至今為止,幾乎所有的界面析出型鋼種與界面析出物研究均聚焦於熱軋製程鋼板上,尚未有研究或產品探討將其導入冷軋製程鋼種之可能性,由於冷軋鋼種為汽車用鋼之大宗,本研究於是旨在設計出當代第一款界面析出型冷軋雙相鋼以提升現有鋼種性能,並對其合金設計、顯微組織演化與機械性能進行深入探討。
本研究於設計過程發現,現行冷軋產線之退火溫度上限(920 °C)應是導致界面析出物不易於冷軋鋼種中達成之主因,而若一味添加元素以滿足界面析出鋼需在退火溫度限制下完全沃斯田鐵化之要求,亦可能因添加不當,合金將無法誘發後續之肥粒鐵相變態及界面析出。於是,本團隊首先從製程及顯微組織層面考量,使用熱力學相圖計算輔助材料設計,並洞悉相變態之區域平衡理論,設計出一款理論上可達成界面析出型冷軋雙相鋼之合金成分: Fe-0.12C-2.0Mn-0.12V合金系統,簡稱1V鋼。
實驗部分首先及對設計之1V鋼進行驗證,檢驗其是否可實現界面析出型冷軋雙相鋼。於驗證過程中,吾人發現1V鋼可於870 °C持溫5分鐘即達到完全沃斯田鐵化,並在後續降至630–700 °C持溫10分鐘後達成雙相結構,證實了合金設計之成功。然而,於後續以穿透式電子顯微鏡觀察界面析物的過程,吾人亦發現1V鋼中的界面析出物數量稀少,且有分布不均、集中於一側晶界的現象,在後續與未添加析出元素之對照組相比,其機械性能對比並無顯著之提升。
為獲得更好的界面析出行為,吾人以兩種策略對1V鋼進行調整。首先,導入鉬元素希望藉由降低界面移動速率(1VMo鋼)使界面析出更容易發生;再者,添加更足量的釩以提升析出驅動能(2VMo鋼)。在成分調整後,兩種新合金仍能形成冷軋雙相鋼。藉由肥粒鐵硬度之測量,以及穿透式電子顯微鏡的觀察,皆顯示2VMo鋼中可以獲得最大量之界面析出物,以使肥粒鐵強度提升至201 HV。後續,吾人使用熱膨脹儀及三維原子探針深入解析其中原理,發現鉬之添加可以大幅降低界面移動速度,並在相界面處產生釩與鉬之複合偏析,而進一步添加足量的釩可使複合偏析量提升,提供更足量之析出驅動力,這兩種策略的協同作用是提升界面析出量的關鍵。
初步完成設計驗證工作後,吾人藉由串連各先進表徵技術,對擁有不同晶體方位關係之沃斯田鐵/肥粒鐵界面進行深入觀察研究,找尋相界面與界面析出之關聯,以更了解此設計鋼種中的界面析出行為。藉由三維原子探針數據的團簇分析與界面偏析定量,吾人發現當非共格界面方位越偏離理想K–S方位時,界面移動速率、界面偏析量及界面析出物大小將會上升,然而界面析出數量密度會下降,界面移動速率與偏析量同時上升之情形不符合現今主流以溶質擴散來解釋界面偏析產生的機制,吾人認為在本研究中產生界面偏析之機制更符合界面移動時將溶質掃入之機制。
此外,本研究亦使用電子微探儀及三維原子探針重構技術進行元素定量,以探討鋼鐵中微偏析帶對界面析出之影響,在定量結果中,發現肥粒鐵主要成核成長於微觀偏析缺乏帶上,由於此處缺乏所有溶質元素,大部分新形成的肥粒鐵將擁有較快的界面移動速度以及較少的析出驅動力,由定量結果我們可以證明微觀偏析帶對界面析出行為有害,應設法去除或避免他才能在冷軋雙相鋼中創造更好的界面析出行為。
zh_TW
dc.description.abstractInterphase precipitation in steel refers to nanoscale carbides arranged in an array within the ferrite phase. Interphase precipitation nucleates at the austenite/ferrite interface during the austenite to ferrite transformation, and their excellent precipitation hardening contributes to new possibilities for ferritic-based steels. However, to date, almost all research and product development on interphase precipitation have focused on hot-rolled steel strips, and there has been no investigation or exploration of their potential in cold-rolled processed steels. Since cold-rolled processed steels are mainly used in the automobile industry, this study thus aims to design the first contemporary interphase precipitation strengthened cold-rolled Dual Phase (DP) steel and thoroughly investigate its alloy design, microstructural evolution, and mechanical properties.
During the design of this research, we found out the main reason causes the difficulties in implementing interphase precipitation in the cold-rolled steel strips may be the ceiling annealing temperature (920 °C) of the continuous cold-rolled and annealing line. If we blindly added too many alloying elements to let the interphase precipitation strengthened steel reach full austenitization under the annealing temperature limit, the subsequent austenite to ferrite transformation might not be triggered and no interphase precipitation will form. Hence, this research first considered the possible processing route and the needed microstructure then applied CALPHAD-assisted design and taking into account the local equilibrium mechanism. Finally, an alloy composition that may have a chance to form interphase precipitation in the cold-rolled DP steel process was designed, which is the Fe-0.12C-2.0Mn-0.12V alloy system and is denoted as 1V steel
After alloy design, we initially validate through the designed 1V steel, checking its potential to become an interphase precipitation strengthened cold-rolled DP steel. During the validation, we found out that the designed alloy can be fully austenitized after holding at 870°C for 5 minutes, and can produce a dual phase microstructure after subsequent holding at 630–700°C for 10 minutes. These results demonstrated the success of alloy design. However, during the observation under transmission electron microscopy, we discovered that the quantity of interphase precipitation within the ferrite phase is scarce, unevenly distributed, and concentrated near one side of the ferrite grain boundary. As compared with the reference steel without interphase precipitation, the enhancement of mechanical properties in 1V steel is not profound.
To achieve better interphase precipitation behavior, we utilized two strategies for tuning the 1V steel. First, slow down the interface moving velocity by molybdenum addition (1VMo steel), which makes the nucleation of interphase precipitation easier at the interface. Second, adding an ampler amount of vanadium to enhance the precipitation driving force (2VMo steel). After composition tuning, both new alloys can still form a dual phase microstructure. According to the ferrite hardness results and throughout the transmission electron microscopy observation, 2VMo exhibits more interphase precipitation formation, leading to a 201 HV ferrite hardness. Subsequently, dilatometer and 3D atom probe tomography techniques were applied to understand the theory behind them. The Mo addition drastically decreased the interface velocity, exerting a V+Mo co-segregation at the interface. The ampler amount of V addition can enhance the interfacial segregation content, providing more precipitation driving force. The synergy effect of both strategies is the key to enhancing the amount of interphase precipitation.
After the work of validation, we then connected the use of various advanced characterization techniques, conducting an in-depth investigation on the austenite/ferrite interface with different crystallography orientation relationships to find out the correlation between the interface and the designed steel’s interphase precipitation behavior. From the cluster analysis and interfacial segregation quantification of 3D atom probe data, we found out that as an incoherent interface deviates more from the ideal K–S orientation relationship, the interface velocity, interfacial segregation, and interphase precipitation size will increase, while the number density of interphase precipitation will decrease. The simultaneous increment in interface velocity and interfacial segregation do not meet the mainstream nowadays, which considers the formation of interfacial segregation by bulk solute diffusion. We believe that the formation of interfacial segregation in this dissertation better aligns with the swept-in mechanism during interface movement.
Moreover, the present dissertation also utilized electron probe micro-analyzer and 3D atom probe tomography techniques on chemical quantification to discuss the impact of micro-segregation bands on interphase precipitation behavior in steels. In the quantification results, ferrite was found to predominantly nucleate and grow on the micro-depletion bands, which lacks in all solute elements. Therefore, most ferrite grains grow too rapidly and possess insufficient precipitation driving force. The quantification results demonstrated that micro-segregation bands are harmful to the interphase precipitation behavior. It should be eliminated or avoided for better interphase precipitation behavior in the cold-rolled dual phase steel.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-29T16:13:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-29T16:13:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENTS ix
LIST OF FIGURES xiv
LIST OF TABLES xxx
Chapter 1 General Introduction 1
Chapter 2 Literature Review 4
2.1 Interphase Precipitation and Precipitation Hardening in Microalloyed Steels 4
2.1.1 Introduction 4
2.1.2 Microalloyed Carbides in Microalloyed Steels 6
2.1.3 Precipitation Reactions of Microalloyed Carbides in Steels 9
2.1.4 Formation Mechanism of Interphase Precipitation 18
2.1.5 Precipitation Hardening Theory 24
2.1.6 Precipitation Hardening of Interphase Precipitation 30
2.2 Diffusional Austenite to Ferrite (γ→α) Transformation 34
2.2.1 Introduction 34
2.2.2 Morphology of Proeutectoid Ferrite in Steels 36
2.2.3 Crystallographic Orientation Relationship of Allotriomorphic Ferrite 39
2.2.4 Local Conditions at γ/α Interface and Equilibrium during γ→α Transformation of the Ternary Fe-C-Mn System 42
2.3 Dual Phase (DP) Steels 47
2.3.1 Introduction 47
2.3.2 Forming Dual Phase Microstructure 47
2.3.3 General Mechanical Properties and Performance of DP Steels 51
2.3.4 Interphase Precipitation Strengthened Hot-Rolled DP Steels 54
Chapter 3 General Experimental Procedure 57
3.1 Means of Heat Treatment 57
3.1.1 Dilatometer 57
3.1.2 Salt Bath Furnace 59
3.1.3 Muffle Furnace 59
3.2 Microstructural Characterization 60
3.2.1 Optical Microscopy (OM) 60
3.2.2 Energy-Dispersive X-ray Spectroscopy (EDS) 61
3.2.3 Electron Backscattered Diffraction (EBSD) 61
3.2.4 Transmission Electron Microscopy (TEM) 63
3.2.5 Transmission Kikuchi Diffraction (TKD) 64
3.2.6 Electron Probe Micro-Analyzer (EPMA) 65
3.2.7 Atom Probe Tomography (APT) 66
3.3 Mechanical Test 71
3.3.1 Vickers Hardness Test 71
3.3.2 Uniaxial Tensile Test 71
Chapter 4 Alloy Design of Interphase Precipitation Strengthened Cold-Rolled DP Steel 73
4.1 Introduction 73
4.2 Challenges and Solutions of Alloy Design 74
4.2.1 Complete Austenitization and Carbide Dissolution Below 920 °C 75
4.2.2 Austenite to Ferrite Transformation Kinetics 77
4.3 The Designed Alloy System: Fe-0.12C-2.0Mn-V 78
4.3.1 Thermodynamic Calculation 78
4.3.2 As-received microstructure 82
Chapter 5 Validation of the Designed Alloy System: Fe-0.12C-2.0Mn-0.12V Alloy Steel 87
5.1 Introduction 87
5.2 Experimental Procedure 87
5.3 Experimental Results 89
5.3.1 Determination of Austenitization Temperature 89
5.3.2 Microstructure Validation of Subsequent γ→α Transformation 95
5.3.3 Isothermal Holding Temperature’s Effect on Interphase Precipitation 99
5.4 Discussion 102
5.4.1 Effect of Vanadium Addition on Austenitization 102
5.4.2 Effect of Vanadium Addition on γ→α Transformation 104
5.4.3 Effect of Interphase Precipitation on Mechanical Properties 106
5.5 Summary 109
Chapter 6 Tuning of the Designed Alloy System: Microalloying Effect of Molybdenum and Ampler Amount of Vanadium 110
6.1 Introduction 110
6.2 Experimental Procedure 111
6.3 Experimental Results 113
6.3.1 Austenitization Condition for 1VMo and 2VMo 113
6.3.2 Microstructure Characterization after γ→α Transformation 117
6.3.3 Response of Mechanical Properties after Microalloying Tuning 123
6.4 Discussion 126
6.4.1 Effect of Microalloying Tuning on Interface Velocity 126
6.4.2 Effect of Microalloying Tuning on Interfacial Supersaturation 133
6.4.3 Effect of Microalloying Tuning on Solute Partitioning Behavior 137
6.5 Summary 141
Chapter 7 Exploring the Relationship between Austenite/Ferrite Interface Character and Interphase Precipitation Behavior 142
7.1 Introduction 142
7.2 Experimental Procedure 143
7.3 Experimental Results 145
7.3.1 Characterization Results of γ/α Interface with ΔθKS < 5° 145
7.3.2 Characterization Results of γ/α Interface with 5° < ΔθKS < 16° 149
7.3.3 Characterization Results of γ/α Interface with ΔθKS > 16° 154
7.4 Discussion 163
7.4.1 Effect of ΔθKS on Interphase Precipitation Character 163
7.4.2 Effect of ΔθKS on Interfacial Segregation 165
7.5 Summary 167
Chapter 8 Effect of Micro-Segregation Bands on Interphase Precipitation Behavior 168
8.1 Introduction 168
8.2 Experimental Procedure 169
8.3 Experimental Results and Discussion 171
8.3.1 EPMA Compositional Quantification of the Micro-Segregation /Micro-Depletion Bands and their Influence on γ→α Transformation 171
8.3.2 Microstructure and Interphase Precipitation Behavior after Eliminating Micro-Segregation Bands 173
8.3.3 APT Compositional Quantification of the Micro-Segregation/ Micro-Depletion Bands 176
8.4 Summary 178
Chapter 9 General Conclusion 179
APPENDICES 182
Appendix A. Source Code of CALPHAD 182
Appendix B. Calculation of the γ(α′)/α Interface’s ∆θKS from EBSD Datasets 186
Appendix C. APT Mass Spectrum Labeling Example 190
Appendix D. APT Data Obtained by LEAP 4000XSi 192
REFERENCE 197
-
dc.language.isoen-
dc.title界面析出型冷軋雙相鋼之合金設計、組織演化及機械性能研究zh_TW
dc.titleInvestigation of Alloy Design, Microstructure Evolution, and Mechanical Properties of Interphase Precipitation Strengthened Cold-Rolled Dual Phase Steelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee張六文;楊國政;蔡哲瑋;蔡劭璞zh_TW
dc.contributor.oralexamcommitteeLiu-Wen Chang;Kuo-Cheng Yang;Che-Wei Tsai;Shao-Pu Tsaien
dc.subject.keyword界面析出物,雙相鋼,計算相圖,穿透式電子顯微鏡,三維原子探針重構,zh_TW
dc.subject.keywordInterphase Precipitation,Dual Phase Steel,CALPHAD,Transmission Electron Microscopy,3D Atom Probe Tomography,en
dc.relation.page219-
dc.identifier.doi10.6342/NTU202400821-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-03-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-03-27-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf45.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved