Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorJiun-Yann Yuen
dc.contributor.author游鈞彥zh_TW
dc.date.accessioned2021-05-20T20:14:35Z-
dc.date.available2009-07-29
dc.date.available2021-05-20T20:14:35Z-
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-17
dc.identifier.citation1. C. W. Oyster, The human eye: structure and function (Sinauer Associates, Sunderland, Mass., 1999), pp. 470, 562.
2. Medisave, retrieved http://www.medisave.co.uk/welch-allyn-panoptic-ophthalmoscope-p-4469.html.
3. E. Meyer, 'Early ophthalmoscope', retrieved http://medschool.umaryland.edu/ophthalmology/History.asp.
4. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, 'Flying spot TV ophthalmoscope,' Applied Optics 19(17), 2991-2997 (1980).
5. C. Sheppard and D. Shotton, Confocal laser scanning microscopy (BIOS Scientific; Springer in association with the Royal Microscopical Society, 1997), p. 39.
6. D. T. Miller, D. R. Williams, G. M. Morris, and J. Z. Liang, 'Images of cone photoreceptors in the living human eye,' Vision Research 36(8), 1067-1079 (1996).
7. J. Z. Liang, D. R. Williams, and D. T. Miller, 'Supernormal vision and high-resolution retinal imaging through adaptive optics,' Journal of the Optical Society of America A-Optics Image Science and Vision 14(11), 2884-2892 (1997).
8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, 'Adaptive optics scanning laser ophthalmoscopy,' Optics Express 10(9), 405-412 (2002).
9. J. L. Duncan, Y. H. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, 'High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,' Investigative Ophthalmology & Visual Science 48(7), 3283-3291 (2007).
10. C. H. G. Wirght and S. F. Barrett, 'Hybrid retinal photocoagulation system ' in Ophthalmic Technologies VII, P. O. Rol, K. M. Joos M.D., and F. Manns, eds. (SPIE, San Jose, 1997), pp. 106-117.
11. S. Stevenson and A. Roorda, 'Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,' in Opthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (SPIE, San Jose, 2005), pp. 145-151.
12. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Investigate Ophthalmology and Visual Science 50(3), 1350-1359 (2009).
13. C. Chang, C. Chiao, and H. Y. Yan, “Ontogenetic changes in color vision in the milkfish (Chanos chanos Forsskal, 1775),” Zoological Science 26(5), 349-355 (2009).
14. K. Grieve, P. Tiruveedhula, Y. H. Zhang, A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Optics Express 14(25), 12230-12242 (2006).
15. H. Gross, Handbook of optical systems (Wiley-VCH, Weinheim, 2005), Vol. 3, pp. 82-99.
16. H. Gross, Handbook of optical systems (Wiley-VCH, Weinheim, 2005), Vol. 1, p. 503.
17. J. M. Stone and J. C. Knight, 'Visibly 'white' light generation in uniform photonic crystal fiber using a microchip laser,' Optics Express 16(4), 2670-2675 (2008).
18. J. B. Pawley, Handbook of biological confocal microscopy, 2nd ed. (Plenum Press, New York, 1990), pp. 167, 212.
19. A. Boyde, 'Stereoscopic Images in Confocal (Tandem Scanning) Microscopy,' Science 230(4731), 1270-1272 (1985).
20. G. J. Brakenhoff, H. T. M. Vandervoort, E. A. Vanspronsen, W. A. M. Linnemans, and N. Nanninga, '3-Dimensional chromatin distribution in neuro-blastoma nuclei shown by confocal scanning laser microscopy,' Nature 317(6039), 748-749 (1985).
21. K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlof, and N. Aslund, '3-dimensional microscopy using a confocal laser scanning microscope,' Optics Letters 10(2), 53-55 (1985).
22. N. Streibl, '3-dimensional imaging by a microscope,' Journal of the Optical Society of America a-Optics Image Science and Vision 2(2), 121-127 (1985).
23. R. W. W. Vanresandt, H. J. B. Marsman, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, 'Optical fluorescence microscopy in 3 dimensions - microtomoscopy,' Journal of Microscopy-Oxford 138(Apr), 29-34 (1985).
24. T. Wilson, 'Scanning optical microscopy,' Scanning 7(2), 79-87 (1985).
25. T. Wilson and A. R. Carlini, 'Size of the detector in confocal imaging-systems,' Optics Letters 12(4), 227-229 (1987).
26. H. W. Babcock, 'The possibility of compensating astronomical seeing,' Publication of the astronomical society of the pacific 65(386), 229-236 (1953).
27. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, 'Real-time atmospheric compensation,' Journal of the Optical Society of America 67(3), 360-369 (1977).
28. C. E. Max, G. Canalizo, B. A. Macintosh, L. Raschke, D. Whysong, R. Antonucci, and G. Schneider, 'The core of NGC 6240 from Keck adaptive optics and Hubble Space Telescope NICMOS observations,' Astrophysical Journal 621(2), 738-749 (2005).
29. M. S. Smirnov, “Measurement of wave aberration in human eye,” Biophysics-USSR 6(6), 52-& (1961).
30. F. Berny and S. Slansky, Optical instruments and techniques, H. Dickson, ed. (Oriel, London, 1970), pp. 375-386.
31. G. Walsh, W. N. Charman, and H. Howland, “Objective technique for the determination of monochromatic aberrations of the human-eye,” Journal of the Optical Society of America A-Optics Image Science and Vision 1(9), 987-992 (1984).
32. J. Z. Liang, B. Grimm, S. Goelzs, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” Journal of the Optical Society of America A-Optics Image Science and Vision 11(7), 1947-1957 (1994).
33. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, 'Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,' Journal of the Optical Society of America a-Optics Image Science and Vision 24(5), 1313-1326 (2007).
34. D. C. Hanna, 'Astigmatic Gaussian beams produced by axially asymmetric laser cavities,' Ieee Journal of Quantum Electronics Qe 5(10), 483-& (1969).
35. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, 'STED microscopy with a supercontinuum laser source,' Optics Express 16(13), 9614-9621 (2008).
36. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, 'Correction of low order aberrations using continuous deformable mirrors,' Optics Express 16(5), 2859-2866 (2008).
37. A. Leray, K. Lillis, and J. Mertz, 'Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,' Biophysical Journal 94(4), 1449-1458 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9250-
dc.description.abstract眼底鏡對眼科醫師而言,就像聽診器對外科醫師一樣重要。這兩個儀器有一個共通的特性:不必透過血淋淋的解剖就能得到極有價值的資訊。然而直到上世紀末,也就是在荷姆霍茲(Hermann von Helmholtz)發明它的兩百多年之後,隨著雷射掃描顯微術與適應性光學元件的蓬勃發展,此儀器的光學設計才有重大的演進。
近年來的適應性光學雷射掃描眼底鏡正是一個顯著的例子。它大體上繼承了共軛焦雷射掃描顯微術的架構,但因為應用上的所遭遇的問題,仍需要許多修改。主要的問題在於從眼底反射回來的光強度太弱,相較之下掃描系統中的透鏡所產生的表面反射會造成相對明亮的背景。在這篇論文裡,我們將發表一個僅由面鏡架構而成的適應性光學雷射掃描眼底鏡。當我們以球面鏡取代凸透鏡,可以有效解決表面反射的問題。但球面鏡架構並不是一個完美的解決方案,它會造成斜向入射像差。本文將分析球面鏡架構的斜向入射像差,並提出一個特殊的幾何設計來補償這種像差。只有面鏡的適應性光學雷射掃描眼底鏡有另一發展潛力:在寬頻的光源/光訊號上的應用。將寬頻雷射光源導入這個系統,可提供光譜解析度極高的影像資訊。
我們的眼底鏡的性能經過光學程式的模擬及最佳化之後,在整個掃描範圍之內,都能達到繞射極限的標準。文中將描述它的架構方式,並說明如何將系統的密實度、光路架設的可行性以及系統性能全部納入考慮。透過波前及光譜的測量,我們將展示在光波長550 nm至750 nm之間,這個系統達到繞射極限的能力。
zh_TW
dc.description.abstractThe significance of an ophthalmoscope to an oculist is as that of a stethoscope to a cardiologist, because these instruments collect valuable information without things going into bloody anatomy. Nevertheless, after Hermann von Helmholtz invented his ophthalmoscope in 1851, there was no major improvement of its optical design until the booming era of laser scanning microscopy and adaptive optics in the late twentieth century.
Though the adaptive optics scanning laser ophthalmoscope (AOSLO) inherits the concept of confocal laser scanning microscopy (CLSM), modifications should be done to suit its application. The main issue is that the extremely weak signal, due to the low reflectivity of the retina, would suffer from a relatively bright background scattered back from the surfaces of convex lenses of the scanning system. In this thesis, a spectro-ophthalmoscope with mirror-based scanning system and adaptive optics system is demonstrated, mainly to replace all the convex lenses with spherical mirrors. The disadvantage of mirror-based systems, the off-axis aberration, is illustrated and analyzed. We propose a specific geometrical design to compensate this aberration. With only mirrors in our spectro-ophthalmoscope, broadband capability can be achieved by choosing appropriate metallic coatings. Coupled with a broadband laser source the possibility of obtaining high-spectral-resolution information is provided.
The performance of our spectro-ophthalmoscope is simulated and optimized using optical design software. Through the optimization the diffraction-limited performance is achieved within the entire scanning area. The physical construction of this system is presented, and the compactness, optics alignment and performance of the system are all taken into considerations. With wavefront measurements, we demonstrate the diffraction-limited performance of this system from 550-nm to 750-nm wavelength.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:14:35Z (GMT). No. of bitstreams: 1
ntu-98-R96222041-1.pdf: 15125958 bytes, checksum: fa2d35f9ceb51397c25bd0462388edbe (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsThesis committee approvement 2
Acknowledgement 3
Chinese abstract 5
English abstract 6
Chapter I Introduction 11
Chapter II Backgrounds of an AOSLO 14
II.1 Overview 14
II.2 Diffraction-limited performance 15
II.3 Light source 17
II.4 Confocal laser scanning system 18
II.5 Adaptive optics 23
II.6 Digital image formation 26
Chapter III Optical design: optimization of the scanning system 27
III.1 Off-axis aberrations 27
III.2 Compensation of coma and astigmatism 28
Chapter IV Realization of a spectro-ophthalmoscope 35
IV.1 Specification of devices 36
IV.2 Collimated supercontinuum source 38
IV.3 Scanning system 39
IV.4 Adaptive optics 41
IV.5 Image acquisition 43
Chapter V System performance 44
V.1 Spectral resolution 44
V.2 Wavefront flatness 46
Chapter VI Discussion and conclusion 49
VI.1 Discussion 49
VI.2 Conclusion 49
Figure index 51
Table index 53
Reference 54
dc.language.isoen
dc.title可提供光譜分析的細胞級解析度眼底鏡zh_TW
dc.titleA subcellular-resolution spectro-ophthalmoscopeen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高甫仁,孫啟光
dc.subject.keyword光譜影像,共軛焦掃描顯微術,適應性光學,幾何像差,眼底鏡,zh_TW
dc.subject.keywordSpectral imaging,confocal scanning microscopy,adaptive optics,geometrical aberration,ophthalmoscope,en
dc.relation.page57
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf14.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved