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摘要 

眼底鏡對眼科醫師而言，就像聽診器對外科醫師一樣重要。這兩個儀器有一個共通的特

性：不必透過血淋淋的解剖就能得到極有價值的資訊。然而直到上世紀末，也就是在荷姆霍

茲(Hermann von Helmholtz)發明它的兩百多年之後，隨著雷射掃描顯微術與適應性光學元件的

蓬勃發展，此儀器的光學設計才有重大的演進。 

近年來的適應性光學雷射掃描眼底鏡正是一個顯著的例子。它大體上繼承了共軛焦雷射

掃描顯微術的架構，但因為應用上的所遭遇的問題，仍需要許多修改。主要的問題在於從眼

底反射回來的光強度太弱，相較之下掃描系統中的透鏡所產生的表面反射會造成相對明亮的

背景。在這篇論文裡，我們將發表一個僅由面鏡架構而成的適應性光學雷射掃描眼底鏡。當

我們以球面鏡取代凸透鏡，可以有效解決表面反射的問題。但球面鏡架構並不是一個完美的

解決方案，它會造成斜向入射像差。本文將分析球面鏡架構的斜向入射像差，並提出一個特

殊的幾何設計來補償這種像差。只有面鏡的適應性光學雷射掃描眼底鏡有另一發展潛力：在

寬頻的光源/光訊號上的應用。將寬頻雷射光源導入這個系統，可提供光譜解析度極高的影像

資訊。 

我們的眼底鏡的性能經過光學程式的模擬及最佳化之後，在整個掃描範圍之內，都能達

到繞射極限的標準。文中將描述它的架構方式，並說明如何將系統的密實度、光路架設的可

行性以及系統性能全部納入考慮。透過波前及光譜的測量，我們將展示在光波長 550 nm 至

750 nm 之間，這個系統達到繞射極限的能力。 
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Abstract 

The significance of an ophthalmoscope to an oculist is as that of a stethoscope to a cardiologist, 
because these instruments collect valuable information without things going into bloody anatomy. 
Nevertheless, after Hermann von Helmholtz invented his ophthalmoscope in 1851, there was no 
major improvement of its optical design until the booming era of laser scanning microscopy and 
adaptive optics in the late twentieth century. 

    Though the adaptive optics scanning laser ophthalmoscope (AOSLO) inherits the concept of 
confocal laser scanning microscopy (CLSM), modifications should be done to suit its application. 
The main issue is that the extremely weak signal, due to the low reflectivity of the retina, would 
suffer from a relatively bright background scattered back from the surfaces of convex lenses of the 
scanning system. In this thesis, a spectro-ophthalmoscope with mirror-based scanning system and 
adaptive optics system is demonstrated, mainly to replace all the convex lenses with spherical 
mirrors. The disadvantage of mirror-based systems, the off-axis aberration, is illustrated and 
analyzed. We propose a specific geometrical design to compensate this aberration. With only 
mirrors in our spectro-ophthalmoscope, broadband capability can be achieved by choosing 
appropriate metallic coatings. Coupled with a broadband laser source the possibility of obtaining 
high-spectral-resolution information is provided. 

The performance of our spectro-ophthalmoscope is simulated and optimized using optical 
design software. Through the optimization the diffraction-limited performance is achieved within 
the entire scanning area. The physical construction of this system is presented, and the compactness, 
optics alignment and performance of the system are all taken into considerations. With wavefront 
measurements, we demonstrate the diffraction-limited performance of this system from 550-nm to 
750-nm wavelength. 
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Chapter I  Introduction 

To say the inventor of the ophthalmoscope is a physicist would be just out of my arrogance of 
physics, because this inventor is also recognized as a talented physiologist and mathematician, as 
much as a pianist and an enthusiastic mountain climber, and that is Hermann von Helmholtz [1]. If 
we compare his ophthalmoscope, which should be an antique nowadays, with a “modern” one that 
our oculists usually hold in their hands, we can see that the major improvement is in the human 
factor rather than the optical design of this tool [2]. 

 

Figure 1.1 Helmholtz’s ophthalmoscope. In the inset candle light is used as the illumination 

source and Lens 1 of the scheme is omitted [3]. 

 

The first revolution of the ophthalmoscope design took place in 1980, more than 200 years 
after Helmholtz’s invention. Webb et al. transferred the concept of confocal microscopy to build 
their scanning laser ophthalmoscope (SLO) [4]. Equipped with the photomultiplier this new 
ophthalmoscope achieves much higher sensitivity of the retinal imaging than that of photographic 
films, and thus provides the possibilities of real-time retinal video. With the help of a pinhole to 
block the light from out-of-focus plane, optical sectioning is also realized. 

However, SLO cannot achieve higher lateral resolution than traditional ophthalmoscopes, 
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because it still suffers from the strong aberration induced by the cornea (and sometimes even the 
lens) of the eye. Though it has been calculated that the aid of appropriate confocal pinhole would 
improved the lateral resolution by a factor of approximately 1.4 [5], under strong high-order 
aberrations this factor is of no significance. By measuring this aberration with a Shack-Hartmann 
wavefront sensor, Miller et al. simulated the corresponding point spread function and obtained 
retinal images with cellular resolution through de-convolution. Yet their method succeeded only for 
optically excellent eyes, while the cone mosaic still seemed quite blurred in general cases [6]. More 
recently, Liang et al. combined their custom-built Shack-Hartmann wavefront sensor with a 
commercial 37-actuator deformable mirror to construct a close-loop adaptive optics system, and 
demonstrated to the world that their subcellular-resolution retinal images can be obtained from 
general eyes [7]. 

Liang’s close-loop adaptive optics has been widely adopted for various applications in 
ophthalmological imaging systems from then on. Roorda et al. integrated this adaptive optics 
system into a SLO and demonstrated the first AOSLO [8]. This combination of the advantages of 
SLO and high-resolution retinal imaging provided many potential applications to ophthalmology 
and such as the disease diagnostics, micro surgery on the retina and ultra-high-precision eye 
tracking [9-11]. 

Hyper-spectral imaging is another objective to be expected in the next-generation 
ophthalmoscopes. It has been known that from spectral information we can obtain molecular 
contrast without complicated staining processes which may even be deleterious for in-vivo 
applications. Our retinas naturally bear profound spectral information due to its design for color 
vision. With in-vivo observations of the spectral information on the retina, great improvement will 
be made for our understanding of the function of color vision [12,13]. 

Methods of spectro-ophthalmoscope developed in the last five years were mainly based on 
switching color filters in front of a broadband source or adopting two or more laser sources in a 
system [7,12,14]. These approaches increase the complexity of the optical system yet provide a very 
limited number of the spectral bands. In this thesis I will focus on how to modify an AOSLO design 
to equip it with hyper-spectral imaging capability with up to 40 spectral bands within the visible 
regime, which offers wavelength flexibility and spectral resolution adequate for biomedical and 
psychological studies. With our innovative design, it is possible to collect the hyper-spectral images 
in real-time. 

In chapter II I will introduce the brief histories as well as mechanisms of the main components 
of my spectro-ophthalmoscope. Most of details of the optical design are analytically described and 
numerically simulated in chap. III. I will demonstrate that this system is in itself diffraction-limited 
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without the aid of adaptive optics or any other correction devices. Practical constructions and 
experimental confirmations of my spectro-ophthalmoscope will be given in chap IV and V 
respectively. In the future we will utilize this spectro-ophthalmoscope to study the degeneracy of 
color vision of deep sea fishes before we activate it into human vision study. 
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Chapter II  Backgrounds of an AOSLO 

II.1 Overview 

For an AOSLO, as in fig. 2.1.1, there should be at least one light source which generates EM waves 
to interact with the object of observation, a scanning system to transform the fixed light source into 
a scanning beam, and then some detection devices to collect the signal and display the images. The 
adaptive optics, which seems unnecessary for imaging formation, is actually a revolution to 
ophthalmoscopes. This device, providing a similar yet better function as our spectacles, helps us 
correct the optically imperfect eyes and thus enhance the resolution of the image to subcellular 
level. 

 

Figure 2.1.1 The scheme of an AOSLO. 
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II.2 Diffraction-limited performance 

Since we are talking about a high-resolution imaging system, we should first certify the meaning of 
“high-resolution.” Through the theory of EM waves it has been known that the resolution of an 
far-field imaging system is ultimately limited by diffraction. Practically, diffraction limit can be 
defined in several aspects. The Strehl ratio is a simple criterion which describes the complicated 
behavior of the point spread function (PSF) in an aberrated system by only one value [15]. This 
ratio is equal to the reduced intensity of the peak point of the aberrated system referenced to an 
ideal aberration-free system, as fig. 2.2.1. Normally a system with Strehl ratio higher than 0.8 is 
considered diffraction-limited. Another aspect, the Marechál criterion defines the diffraction limit 
as a root-mean-square (rms) wavefront error less than 1/14 wavelength. The definition of rms 
wavefront error is illustrated in fig. 2.2.2 that, 

rms wavefront error ൌ ଵ
A ׬ ሺzሺr, θሻ െ zതሻଶ da 

T୦ୣ ୟ୰ୣୟ  

while 

zത ൌ ଵ
A ׬ zሺr, θሻda 

T୦ୣ ୟ୰ୣୟ  

These two criteria are both deduced from the Rayleigh criterion, and are in fact only equivalent 
to it under the consideration that spherical aberration is the only source of the aberration in the 
optical system. Nevertheless they are still good approximation under complicated superposition of 
aberrations [15]. Therefore, we can simulate the PSF and wavefront map at the focal plane of the 
objective, as fig. 3.1.4, to compare our system with the 0.8-Strehl-ratio, the Marechál criterion and 
the Rayleigh criterion to determine how far we are away from being perfect. In the whole design of 
our system, the aberration is always our first consideration. 

Eq. 2.2.1(a) 

Eq. 3.1.1(b) 
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Figure 2.2.1 The Strehl ratio. 

 

 

Figure 2.2.2 An aberrated wavefront. 
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To analyze the aberration in an optical system, Frist Zernike, the inventor of phase contrast 
microscope and the Nobel laureate rewarded for this invention, had developed a set of orthonormal 
2-dimension polynomials to describe the wavefront map. This analysis is extremely useful to 
identify the types of aberrations in various kinds of imaging systems and facilitate the system 
correction. Lots of terms we use to describe the defect of an optical system, such as defocus and 
astigmatism, are in fact evolved from this set of polynomials. Table 3.2.1 is the first few terms of 
Zernike polynomials and their corresponding expressions [16]. 

 

 

Table 2.2.1 Several low-order terms of Zernike polynomials, Z୬
୫. 

 

II.3 The light source 

From fig. 1.1.1 we see that at Helmholtz’s time, candle light is used as the light source, and after 
two hundred years, people have replaced it with various lamps. Then, in the first scanning laser 
ophthalmoscope Webb adopted an Ar+ laser (514-nm wavelength) after spatial filtering as the light 
source [4], and Roorda coupled a diode laser into a single-mode optical fiber to achieve even better 
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beam mode and wavefront flatness for high resolution imaging[8]. Both of these two 
ophthalmoscopes require precise alignment for the light source, therefore modification of the light 
source is quite inconvenient. Liang’s ophthalmoscope, sometimes called a fundus camera, used a 
flash lamp for illumination [7]. Beam mode and wavefront flatness of the source are not so critical 
in this type of applications because they attempt to illuminate the whole area of interest with each 
single flash. Though the light source of Liang’s ophthalmoscope can be easily modified to suit 
specific purpose, in his scheme there is hardly possibility for optical sectioning and other 
advantages of SLO as we mentioned in Chap. I. 

In order to acquire the spectral information without complicate combination of various laser 
sources and losing optical sectioning ability, we adopted the supercontinuum generation, using a 
photonic crystal fiber (PCF) coupled with an ultra-fast laser source [17], as our light source. This 
supercontinuum generation provides a broadband light source starting from ultra-violet, through 
visible, to near-infrared regime. With such a broad bandwidth, adequate spectral information can be 
expected, and new possibilities of experiment design for vision studies are also provided. 

The supercontinuum is not the only candidate of broadband light source, and in fact we have 
considered the xenon arc lamp for its easier setup compared with coupling the pump laser into the 
photonic crystal fiber. However we observed that the beam profile of the lamp is far from any 
regular or symmetrical distribution and mode filtering is extremely necessary. As a result of the 
irregular mode of the xenon lamp this mode filtering would give us tremendous power loss, and this 
inevitable tradeoff shows the other advantage of supercontinuum generation over the xenon arc 
lamp. The PCF we use is in itself a single-mode fiber with its core around 5 μm in diameter, and 
thus the generated supercontinuum is easy to be modified as a collimated Gaussian beam without 
chromatic aberration by using a parabolic mirror. 

 

 

II.4 Scanning system 

Before we look into my scanning system we should first review some important works about 
confocal microscopy, the fundamental concept which this system is constructed with. 

As Prof. James Pawley remarked in the preface of The Hand Book of Biological Confocal 
Microscopy, confocal microscopy is a good idea that was invented, forgotten, and then reinvented. 
This idea was brought forward to the world in 1957 by Marvin Minsky, a postdoctoral fellow at 
Harvard University then. Fig. 2.4.1 is Minsky’s confocal microscope applied for patent in 1957[18]. 
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Figure 2.4.1 Minsky’s confocal scanning microscope. The condenser lens C projects the 

point-like source from the first pinhole P1 onto a thick specimen S, and the objective lens O 

projects the scattered light from the specimen onto the second pinhole P2. The first pinhole is 

conjugated with the point D and the second pinhole. Another point, such as E in the 

specimen, would be less illuminated because the light source mainly focuses on D, and 

furthermore, most of light scattered from it would not pass the second pinhole. Therefore, the 

light reaching the phototube P from E is greatly attenuated compared with that from D. In 

Minsky’s design the scanning is performed by two orthogonally vibrating tuning forks 

supporting the specimen stage, driven by electromagnets at 60 and 6,000 Hz.  

 

This fantastic idea had not had a stage equal to its insight into biomedical applications until the 
late seventies, when computers and lasers became affordable to scientists. Soon in 1985, six papers 
from four separate research groups independently demonstrated the unusual capability of this new 
technique to reduce blurring of the image in thick light-scattering objects, and therefore 
three-dimensional information can be obtained through non-invasive optical sectioning [19-24]. 

Based on the scheme in fig. 2.4.1 it is clear that the capability of optical sectioning would 
depend on the size of the detector, or the pinhole. To derive this function of optical sectioning 
theoretically we will consider a uniformly illuminated plane as the object, and calculate the 
averaged intensity falling on a circular-aperture detector along the optical path, as in fig. 2.4.2(a). If 
we have an ideal single point detector, under the paraxial approximation, the axial intensity I 
distribution along the optical path is derived as [5]: 

Iሺuሻ ൌ ቀୱ୧୬୳ ଶ⁄
୳ ଶ⁄ ቁ

ଶ
 

While u is related to real axial distance z, that 

Eq. 2.4.1 
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u ൌ ଼஠୸
஛

sinଶ ቀ஑
ଶ

ቁ 

where λ is the wavelength. In fig. 2.4.2 (b) eq. 2.4.1 is plotted to illustrate the effect of optical 
sectioning, showing an axial resolution of 

஛
ସ ୱ୧୬మಉ

మ
 ൎ  ஛

NAమ 

Here NA denotes the numerical aperture of the lens. Further calculations for finite-size pinhole 
would show that this sectioning ability is insensitive to pinhole radius up to rd/3.77, while rd is 
referred to the Airy radius at the image plane [25]. 

 

Figure 2.4.2 On-axis intensity distribution. 

Eq. 2.4.2 

Eq. 2.4.3 

(a) (b) 
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A major issue for Minsky’s design is that the scanning is performed through vibrating the 
specimen in a high frequency, usually several KHz, a method not feasible for most of in-vivo 
observations. Nowadays most scanning laser microscopy adopt scanning mirrors, usually called 
scanners, to delineate scanning pattern on a fixed specimen.The scanner we use here is actually a 
flat mirror tilting along a specific axis, and intuitively we can find that with only a scanner we are 
not able to perform scanning because the beam enters the pupil only within a very small angle, as 
fig. 2.4.3(a), and therefore we need some other optical design to confine the scanning beam to the 
pupil. A telescope is an ideal solution for this application, with the scanner and pupil being correctly 
placed in conjugation, as in fig. 2.4.4. 

 

 

Figure 2.4.3 Projection of the scanning beam. 

(a) 

(b) 
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Figure 2.4.4 Telescopes in a scanning system. 

 

As to relay the scanning beam, a telescope consists of concave mirrors can work as well as the 
one consists of converging lenses, and mirror-based telescopes have some significant advantages in 
ophthalmology. The first and the most important advantage is that lenses produce ghost reflections 
but mirrors don’t. To image the retina in-vivo, what we can collect is only the light scattered back to 
the optical system, which is relatively weak compared with our light source due to the low 
reflectivity of our retinas, typically around 5 %, and only 1 % of this reflected light exits the pupil. 
Under this circumstance the ghost reflection will be extremely harmful to the contrast of the image. 
Though we can always choose antireflection coating on lens surfaces for desirable wavelength, 
these coatings still allows about 1 % reflection, which is one-order above the scale of the signal 
from the retina, and this reflection adds up for all the lenses in the optical system. 

(b) 

(a) 
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Figure 2.4.5 Images with different contrast. A white background is added to the image on the 

right hand side, and thus lower the contrast. 

 

 

Another disadvantage of lens-based telescopes is the chromatic aberration, which is not as 
critical as ghost reflection but requires additional adjustment of the system after the laser source 
being tuned to a different wavelength. 

As illustrated in fig. 2.4.4(b), mirror-based telescope requires off-axis incidence on mirrors, 
which brings much complication in alignment of these optics. Complicated alignment can be 
accomplished by hard working, yet off-axis incidence induces more troubles than that, the off-axis 
aberrations. Details about this issue are discussed later in Chap. III. 

 

 

II.5 Adaptive optics 

Coincidently, adaptive optics shares similar fate with the confocal microscopy. Horace Babcock 
suggested in 1953 that through a close-looped compensation of wavefront error induced by 
atmospheric turbulence, there would be considerable improvement in performance for large 
ground-based astronomical telescopes [26]. However, not until twenty years later had Hardy and his 
colleagues demonstrated the first real-time adaptive optics system at frequency in the kilohertz 
range [27]. With the improvement in computer technology in the 1990s adaptive optics systems 
began to be adopted for many major ground-based telescopes, which now even achieve images with 
higher resolution than those obtained with the Hubble space telescope [28]. 
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Figure 2.5.1 Simplified scheme of Hardy’s close-loop adaptive optics. The wavefront is 

measured by wavefront sensor and reconstructed by the computer. After the reconstruction 

the computer output the corresponding correction to the wavefront corrector, which is a 

deformable mirror driven by many small actuators.  

 

The capability of image enhancement of adaptive optics soon aroused the attention of 
researchers in ophthalmology, because wavefront error induced by irregular cornea has been known 
as the main issue for both poor vision and dissatisfying resolution of retinal image. In 1997, Liang 
et al. published the first ophthalmoscope based on a close-looped adaptive optics system capable of 
high-order-aberration correction, along with convincing subcellular-resolution retinal images [7]. 
Several types of wavefront sensors had been developed for measuring ocular aberrations since 
1950s. They were based on subjective ray tracing, the Foucault test and modified aberroscopes 
[29-31]. However, these methods either require lengthy calculations, complicated design, or provide 
analysis for only low-order aberrations, which means they are not ready for clinical applications. 
This situation changed when Liang demonstrated that it was possible to adopt Shack-Hartmann 
wavefront sensor to measure the ocular aberrations [32]. This wavefront sensor with lens array is a 
modified Hartmann test in which local slopes of a wavefront is tested. 

There is a slightly different function of adaptive optics between the Hardy’s design and the 
AOSLO. The adaptive optics is not only set to correct the signal but also pre-correct the source. Fig. 
2.5.2 illustrates that to minimize the focal spot on the retina, the source should be pre-corrected to 
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compensate the wavefront distortion of the cornea. The relation between the focal spot and the 
aberration will be described in III.3. Details of arrangement of the adaptive optics will be given in 
IV.4. 

 

 

 

 

Figure 2.5.2 Schematic of the function of adaptive optics in a retinal imaging system. 

(b) 

(a) 
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II.6 Digital image formation 

One of the natures of the scanning mechanism is that spatial information of the object would be 
transferred into temporally sequential data. We used a photomultiplier tube to collect this data, for 
its extreme sensitivity to photons. To plot the image out of these sequential data requires dramatic 
technical efforts, and fortunately, similar techniques have been developed long time ago for our 
daily-life technology, the TVs. In fact since the 1990s various image-processing techniques, of both 
hardware and software, have been invented to suit specific purposes of different kinds of confocal 
microscopy [18]. Nevertheless, we still rely on a TV-related technique, the frame grabber, for its 
readiness of high speed processing. 

Frame grabbers are by themselves developed for high-frame-rate and real time video 
acquisition, and thus make the AOSLOs suitable for clinical applications. Another advantage of the 
high frame rate is that the short acquisition time prevents the image blurring due to eye movement, 
which is a complicated oscillation of around 10 Hz in frequency [33]. Details of synchronization 
between the scanning system and the frame grabber would be presented in IV.5. 
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Chapter III  Optical design: optimization of the scanning system 

III.1 Off-axis aberrations 

We have discussed the advantages of mirror-based telescopes while applied to the laser scanning 
microscopy (LSM) in chap. II.3, nevertheless, most LSM, no matter commercial or custom-built 
systems, adopt lens-based telescopes in their scanning system. In addition that lens-based telescope 
makes the alignment easier, a more critical issue is that, the aberrations introduced by oblique 
incidence on spherical mirrors deteriorate the resolution of the entire imaging system significantly. 

Fig. 3.1.1 shows the design of our first-generation mirror-based scanning system in our 
laboratory. In this design we adopt long-focus spherical mirrors in order to reduce both the angle of 
oblique incidence and f-number (beam diameter / focus) on spherical mirrors of the scanning 
system. 

 

Figure 3.1.1 Our first-generation mirror-based scanning system. VS, vertical scanner; HS, 

horizontal scanner; SM1-3, spherical mirrors with 500-mm radius of curvature; SM4, 

spherical mirror with 1000-mm radius of curvature; FM: flat mirror; IL: ideal lens with 

18-mm focus. 

SM1 

SM2 

SM3 

VS 

FM 

HS 

SM4 

FM 

FM 

FM 

IL 
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Here we simulate the system performance through an optical design program ZEMAX. The 
objective of the microscope is set as an ideal thin lens in simulation so that we can identify the 
aberrations only from the scanning system. 

 

Figure 3.1.2 Simulations of our first-generation mirror-based scanning system, at the center 

of the scanning area. The corresponding Strehl ratio is 0.641; rms wavefront error, 0.12 wave; 

wavelength: 532 nm. 

 

The wavefront map in fig. 3.1.2 can be expanded in Zernike polynomials, 

 

െ0.0001 Zଶ
଴ െ 0.1223 Zଶ

ଶ െ 0.0004 Zଷ
ିଵ ൅ Oሺ10ିହሻ 

 

and from table 2.2.1 we can identify the off-axis alignment results in significant astigmatism and 
slight coma. 

 

 

III.2 Compensation of astigmatism and coma 

Eq. 3.1.1 tells us that the wavefront error is mostly contributed by astigmatism, so let us focus on its 
compensation with more discussion. As a matter of fact, astigmatism is usually the only concerned 
aberration in current scanning systems for AOSLO [8, 33]. The residual coma, which is at least 

Eq. 3.1.1 
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one-order smaller than astigmatism, is considered to be ignorable compared with the aberration 
induce by the cornea. 

Astigmatism can be compensated by different approaches if we start from different questions: 
what is it? Or how is it introduced by a spherical mirror? To answer the first question we can simply 
find the expression of astigmatism in Zernike polynomials, and the plot of it shows inverse 
curvatures along two orthogonal axes, as in table 2.2.1. Therefore, to compensate astigmatism, we 
need a correction optics exhibiting different optical power along these two axes, as illustrated in fig. 
3.2.1. Besides that a cylindrical lens turns out to be straightforward solution [8], laser cavity 
designers have also found a Brewster-cut crystal useful to astigmatism correction for a focusing 
beam [34]. 

 

Figure 3.2.1 Compensation of astigmatism. 

To answer the second question, we should define sagittal and tangential plane before further 
discussion. For an oblique incidence the definition of tangential plane is identical to plane of 
reflection (considering the chief ray only), and the plane containing orthogonal to the tangential 
plane would be sagittal plane, as shown in fig. 3.2.2. 

 

Figure 3.2.2 Off-axis incidence on a spherical mirror. Radius of curvature of the spherical 

mirror: 200 mm, beam diameter: 5 mm, incident angle: 8∘. 

Tangential view Sagittal view X Z 

Y 

Y Z

X
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Spherical mirrors are known for half-radius focus in normal incidence case under paraxial 
approximation, but in off-axis case, tangential beam and sagittal beam in fact “experience” different 
focal lengths [34]. Instead of complicated geometry and derivations, here I simply present the 
simulation results of through-focus spot diagram of the scheme in fig. 3.2.3, which shows the slight 
difference between the focal lengths of these two planes. This difference in focal lengths adds 
astigmatism to our scanning system. Besides that the focal point is about 1.5 times larger than the 
airy diameter in the dimensions of our setup, astigmatism also significantly elongates the depth of 
focus. These two phenomena would result in lower lateral resolution and axial resolution. 

 

Figure 3.2.3 The astigmatism induced by oblique incidence in fig. 3.2.2. The radius of 

curvature of this mirror is 200 mm and the beam diameter is 5 mm. 

 

Since Maxwell’s equations are by themselves time-reversible, we can consider about this 
problem of astigmatism backward. As in fig. 3.2.4., the time reversal of our case is, interestingly, 
that astigmatism is removed after the reflection by a spherical surface. Therefore, the strategy of 
astigmatism compensation is simply to find out the form of astigmatism on the surface of the 

Focus of 

tangential 

plane 

Focus of 

sagittal 

plane 
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second spherical mirror of the telescope and tilt this mirror along a specific axis, which would be 
easily proved to be orthogonal to the axis of tilt of the first spherical mirror. I use an ideal lens Obj, 
as shown in fig. 3.2.5, to demonstrate this geometrical compensation design. 

 

 

Figure 3.2.4 Oblique incidence on a spherical mirror. 

 

Now we can play the same time-reversal trick on coma compensation. However, due to the 
geometrical properties of coma and astigmatism we found that the axis of tilt for coma 
compensation is perpendicular to the one for astigmatism compensation.  All the compensation 
design are illustrated and simulated in fig. 3.2.5. Note that the astigmatism compensation design 
demonstrates not only greatly improved symmetry along the optical axis, but also much reduced 
focal spot size, which predict improvement in both axial and lateral resolution. 

 



 

 32

 

Figure 3.2.5 Schemes and simulations of (a) a typical design, (b) coma compensation design 

and (c) astigmatism compensation design of relaying telescopes. The spot diagrams along 

beam propagation direction (50 mm interval) and at focal point are shown respectively under 

the corresponding scheme. Scale: the circle in the spot diagram indicates the Airy disk, 

which is 7.8 mm in diameter. The oblique incidence is 10 degree on each spherical mirror. 

Note that the focal spot size in (c) is one order of magnitude smaller than that in (b). SMs: 

concave spherical mirror with 200-mm radius of curvature; Obj: ideal thin lens with 18-mm 

focal length.  

 

Based on these two kinds of aberration compensations discussed above, the choice of the axis 
of tilt of the second spherical mirror determines which kind of aberrations will be compensated. 
This finding indicates that an off-axis incidence on the first spherical mirror induces both 
astigmatism and coma, but only one of them can be removed after the beam being reflected by the 
second spherical mirror. According to the design mentioned in II.4, there would be actually four 
spherical mirrors in my scanning system. Let’s consider naively if we have four spherical mirrors, 
can we remove coma and astigmatism simultaneously by carefully choosing the axis of tilt for each 
mirror? Fortunately, the answer from numerical simulation is yes. With four spherical mirrors in the 
path, it is possible to compensate coma and astigmatism simultaneously, as the layout shown in fig. 
3.2.6. The horizontal scanner (HS), vertical scanner (VS), and the back aperture of the objective are 
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conjugate planes to each other. In this layout the astigmatism compensation pairs are SM 1 + 2 and 
SM 3 + 4, while the coma compensation pairs are SM 1 + 3 and SM 2 + 4. 

 

 

Figure 3.2.6 Mirror-based scanning system with both coma and astigmatism compensated. 

 

 

As discussed in III.1, to examine the performance of the scanning system, here I present 
simulation results on rms wavefront error and Strehl ratio, and compare them with the wavefront 
measurement, as shown in fig. 3.2.7. Note that these results are only from the center of the scanning 
area, and therefore I further simulated the rms wavefront errors and Strehl ratios with the 4-mm 
beam diameter within a 3°×3° scanning range, according to the ideal lens L. See fig. 3.2.8. 

(a) 

(b) 
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Figure 3.2.7 Simulations at the center of the scanning area of our off-axis aberration 

compensation design. The corresponding Strehl ratio and rms wavefront error are 1.000 and 

0.0001 λ. Wavelength: 532 nm. 

 
Figure 3.2.8 Simulated rms wavefront error and Strehl ratio within the scanning range. The 

pink planes indicate the criteria of diffraction limit, a 0.07-wave rms wavefront error and a 

0.8 Strehl ratio. 

 

In Zernike-polynomial analysis of this scanning system we found that all the coefficients 
belong to order of 10-5 or even lower, at the center of the scanning area. Please notice that in our 
first-generation scanning system we adopt a much smaller f-number design, in which higher-order 
aberrations are usually insignificant. Now with the geometrical compensation technique we could 
have a larger f-number design, in other words, the shorter radius of curvature of the spherical 
mirrors, to satisfy both performance and compactness.
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Chapter IV  Realization of a spectro-ophthalmoscope 

In this chapter, I will first list all the devices adopted for my spectr-ophthalmoscope in the first 
section, and further discuss the details of these devices and constructions following this section. In 
figure 4.1 the laser source part is separated from the whole system for clarity. The corresponding 
symbol of each device can be found in the notes of the part lists. 
 

 
 

 
Figure 4.1 The whole system separated into (a) AOSLO and (b) wavelength selector. SMs: 

spherical mirror; F: flat mirror; DM: deformable mirror; P: pinhole; VS: vertical scanner; HS: 

horizontal scanner; PMT: photomultiplier tube; PCF: photonic crystal fiber; PM: parabolic 

mirror. Note that (a) and (b) are in different scale. 

(a) 

(b) 
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IV.1 Specifications of devices 

Laser source and photonic crystal fiber 
 Model number/  

manufacturer Description Notes  

Yb:fiber 
pulse laser 

Uranus 005-500-INS/ 
PolarOnyx Inc. 

Pulse width: 5 ps. 
Repetition rate: 50 MHz. 
Center wavelength: 1030 nm 
Pulse energy: 10 μJ. 

1030 nm 
pulse 
laser 

Photonic 
crystal fiber 

Custom-made by Center for 
Photonics and Photonic 
Materials, University of 

Bath 

Pumped by the Yb:fiber pulse laser the 
wavelength can be extended below 500 nm 
[17]. 

PCF 

 
Optics 

 
Model number/ 

manufacturer 

Description 
Notes  Radius of 

curvature 
Surface coating/ 
spectral range 

Surface 
accuracy 

Spherical 
mirror 

SMCC-1037-0.40-C/  
CVI Technical Optics Ltd. 400 mm 

EAV/  
>90% reflectance 

within 400~10000 nm

λ/10 
SM1, 
SM4, 
SM8 

SMCC-2037-2.00-C/ 
CVI Technical Optics Ltd. 2000 mm λ/10 SM2,3

10DC200/ 
Newport Corp. 200 mm 

AL.2/ 
>85% reflectance 

within 400~6000 nm
λ/4 SM5-7

Plano-conv
ex lens 

 Focal length    
LA1131-B/ 
Thorlabs Inc. 50 mm 

-B coating/ 
<1% reflectance within 

650~1100 nm 

— Lens2 

LA1608-B/ 
Thorlabs Inc. 75 mm — Lens3 

LA1986-B/ 
Thorlabs Inc. 125 mm — Lens5 

KPX097/ 
Newport Corp. 125 mm 

AR.18/ 
<1% reflectance within 

950~1700 nm
λ/4 Lens6 

Beam 
splitter 

BS013/ 
Thorlabs Inc. — — λ/10  

Parabolic 
mirror 

50328AL/ 
Newport Corp. 10 mm 

Protected 
Aluminum/ 

>80% reflectance 
within 300~10000 nm

— PM 

Aspherical 
Lens C330TME-B 3.1 mm 

-B coating/ 
<1% reflectance within 

650~1100 nm
— Lens4 
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Adaptive optics, scanners and the detector

 Model number/ 
manufacturer Description Notes  

Wavefront 
sensor 

FrontSurfer 
Shack-Hartmann 

Wavefront Sensor-1/ 
Flexible Optical B. V. 

Hexagonal 127-microlens array. 
Aperture: 3.9-mm diameter. 
Repeatability:λ/300. 

Wavefront 
sensor 

Deformable 
mirror 

30mm 37-channel 
PDM/ 

Flexible Optical B. V. 

Number of electrodes: 37 
Maximum stroke: 8 μm. 
Aperture: 30-mm diameter. 

DM 

Scanners 
PLD-XYG/ 

Electro-Optical Products 
Corp. 

The fast (resonant) and slow (galvo) 
Scanners are locked in raster scanning 
mode. 
Frequency: 16 KHz (fast)/ 28.5 Hz (slow) 

HS, VS 

PMT 
module 

H5783-01/ 
Hamamatsu Corp. 

Spectral response: 300~850 nm 
Anode sensitivity: 30000 A/W 
Dark current: 4 nA 

PMT 

 
 
 
Electronics and software programs 

 Model number/ 
manufacturer Description Notes  

Computer — 
Mainboard: Asus P5LD2. 
CPU: Intel Pentium (R) D CPU 3.40 GHz. 
RAM: 504 MB. 

Computer 

Frame 
grabber 

Alta-AN4/ 
BitFlow Inc. 

Analog frame grabber. 
Max. pixel clock rate: 160 MHz. 
Video signal voltage: 0~1 V. 
Frame/line enable: 0~3.5 V TTL. 

Installed on 
computer’s  
mainboard

PMT 
amplifier 

C6438-01/ 
Hamamatsu Corp. 

Gain: 25 mV/ 1 μA. 
Gain bandwidth: DC to 50 MHz. 
Max. output noise: 8 mV. 

 

Video 
acquisition 

program 
BitFlow SDK 5.00/ 

BitFlow Inc. —  

Adaptive 
optics 

program 
FrontSurfer 1.3.7.5/ 
Flexible Optical B. V. —  

Optical 
design 

program 
ZEMAX-EE/ 

ZEMAX Development Corp. —  
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Opto-mechanics 

 
Model number/ 

manufacturer 

Description 
Notes  Dimensions Resolution Tunable 

range 

Mount 

U100-A3K/  
Newport Corp. 1” aperture 3.8 arc sec ±7∘  

U100-A-LH-3K/  
Newport Corp. 1” aperture 3.8 arc sec ±7∘  

U200-P3K/  
Newport Corp. 2” aperture 2.4 arc sec ±5∘ For SM2,3 

KM100/ 
Thorlabs Inc. 1” aperture — ±4∘  

K6X/ 
Thorlabs Inc. 1” aperture — ±4∘ 

For 
wavefront 

sensor 

Stage 

06PTS-0.5M/  
Unice E-O Service Inc. 

60×60×22 
mm3 10 μm 13 mm For slit 

06TTS-3M/  
Unice E-O Service Inc. 

114×102×148 
mm3 100 μm 60 mm for 

each axis 

For 
wavefront 

sensor 

06DTS-3M/  
Unice E-O Service Inc. 

182×165×194 
mm3 5 μm 25 mm for 

each axis 

 For 
confocal 
pinhole 

MDE 122/  
Elliot Scientific Ltd. 

134×75×66 
mm3 20 nm 2 mm for 

each axis 
For PCF 
coupling 

Pinhole P50S/  
Thorlabs Inc. 

50-μm 
diameter 

2-μm 
tolerance 

— P 

Slit NT40-488/ 
Edmund Optics Inc. 

56×38×22 
mm3 10 μm 0~6.35 mm Slit 

Iris ID25/ 
Thorlabs Inc. 

43-mm 
diameter — 1~25-mm 

aperture  

 
Table 4.1.1 Part lists. λ here is 633 nm. 

 
 
 

IV.2 Collimated supercontinuum source and wavelength selection 

Fig. 4.1 (b) illustrates the idea of separating a narrowband light from a broadband source. After the 
supercontinuum generation from the PCF we can use a parabolic mirror to obtain collimated beam 
for without chromatic aberration. This broadband collimated beam is then dispersed by Prism1, and 
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thus different wavelength has its own direction before entering Lens5. The slight directional 
difference, after going through Lens5, is transformed to spatial difference on the focal plane of 
Lens5. The distance between Prism1 and Lens5 is 125 mm, the focal length of Lens5, so that the 
focused beams of different wavelengths are parallel to each other.  

With an adjustable slit on a linear stage on the focal plane of Lens5, we can pick the arbitrary 
central wavelength (by translating the stage) and bandwidth (by adjusting the slit) out of the original 
broadband source, as illustrated in fig. 4.2.1. 

 
Figure 4.2.1 The enlarged scheme at the focal plane of Lens5. 

 

 

 

Lens6 and Prism2 here are adopted to inversely transformed the selected light into collimated 
beam with fixed output beam path after Prism2. To perform this ability the deployment of Len6 and 
Prism 2 should be exactly symmetrical to that of Lens5 and Prism1 [35]. In practice Lens6 is 
installed on a linear stage in order to compensate slight chromatic aberration. 

 

 

IV.3 Scanning system 

If our construction the optical system relies only on calipers, triangle formula and visual perception, 
the precision we can achieve would be as large as several tens of micrometers. However, as we 
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discuss the performance of the system in the previous chapter, the scale of acceptable wavefront 
error is only one tenth of wavelength, which is tens of nanometers. Therefore, my strategy to 
overcome this discrepancy is to adopt high-precision adjustable mounts for spherical mirrors. The 
alignment was first roughly determined by calipers, and then fine tuned with these mirror mounts 
under the monitoring of the wavefront sensor. 

Here I present fig. 4.3.1 instead of all the construction details of these mirrors. The main 
strategy is using the distance and incident angle between each two mirrors to calculate the distance 
between their post holders. To determine the angle of incidence possible I projected the beam as far 
as I can so that the displacement would be measured more precisely. Table 4.3.1 gives the geometry 
of this scanning system. 

 
Figure 4.3.1 Calculations during the construction. (a) The distance between two optics. (b) 

The incident angle on one surface. 

 

 Description 
Radius of 
curvature 

(mm) 

Aperture 
size 

Distance to 
next device 

(mm) 
Tilt axis 

Incident 
angle 

(degree)

HS Horizontal scanner Infinity 4×4 mm2 100 Y — 

SM1 Spherical mirror 200 1” Dia. 200 Y 12.55 

SM2 Spherical mirror 200 1” Dia. 100 X 11 

VS Vertical scanner Infinity 5×8 mm2 100 X 21.64 

SM3 Spherical mirror 200 1” Dia. 300 X 10.64 

SM4 Spherical mirror 400 1” Dia. — Y 6.19 

Table 4.3.1 Geometry of the scanning system. Refer to fig. 3.2.6 for the denotation here. Dia.: 

diameter. 
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IV.4 Adaptive optics 

Apparently an AOSLO is quite large compared with a conventional scanning laser microscope, and 
the main reason for this hugeness is the adaptive optics. Though these actuators has 8-μm maximum 
stroke, being capable of compensating peak-to-valley wavefront error up to 15λ, it is not possible 

to pack 37 piezo-based actuators into a 5-mm aperture similar to the beam size. We would need one 
telescope to magnify the input beam to suit the aperture of the deformable mirror and another 
telescope to reduce it back. 

The two telescopes we used have 5X magnification/ reduction of the beam. The maximum 
diameters of human eyes are typically 8 mm, but with such a large beam the scanning area would be 
quite limited, and there are few high-speed resonant scanners fabricated with diameter larger than 5 
mm. Therefore we confine the input beam diameter into 4 mm and design the scanning system with 
2X magnification. Engineers at OKO have analyzed and demonstrated that the best wavefront 
correction can be achieved by using only 60% diameter of the DM aperture [36], and thus we adopt 
5X-magnification/ reduction telescopes in the adaptive optics design. 

Just as the scanning system, the AO system also requires two telescopes, or four spherical 
mirrors, the aberration compensation technique discussed in III.2 can be applied again. Table 4.4.1 
gives the geometry of this AO system. 

 
Figure 4.4.1. The AO system. 
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 Description 
Radius of 
curvature 

(mm) 

Aperture 
size 

Distance 
to next 
device 
(mm) 

Tilt axis 
Incident 

angle 
(degree)

SM1 Spherical mirror 400 1” Dia. 1200 Y 3 

SM2 Spherical mirror 2000 2” Dia. 1000 X 2.29 

DM Deformable mirror Infinity 30 mm 
Dia. 1000 X 3.42 

SM3 Spherical mirror 2000 2” Dia. 1200 X 1.14 

SM4 Spherical mirror 400 1” Dia. — Y 5 

 

Table 4.4.1. Geometry of the AO system. 
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IV.5 Image acquisition 

In this section, let us do some back-of-the-envelope calculation on the signal level to verify that the 
whole electronic system would work properly. The laser power after the supercontinuum generation 
is far more than enough for our usage, so we should start from considering the safety of the 
subject’s eye. 

1. Maximum laser power on human eyes: ~5 μw on the cornea 
2. Reflectivity of the retina: ~5% 
3. The pupil would block nearly 99% of this reflected light. 
4. 13 AL-coated mirrors in the AOSLO: reflectivity ~93% at visible band for each surface. 
5. 50:50 beam splitter: ~50% loss. 

From these five statements we derive that the residual power to PMT is 

5 μW × 0.05 × 0.01 × 0.9313 × 0.5 ≒ 0.0005 μW = 0.5 nW 

So far there is 0.5 nW on the PMT, and with a 30000-A/W anode sensitivity we obtain 15-μA 
current output, which is about 4000 times of the dark current, providing adequate signal-to-noise 
ratio. 

Alta-AN4 accepts only voltage input for video signal, therefore we adopted a 25 mV/μA 
amplifier to translate the PMT output current into the input voltage of the frame grabber. The 15-μA 
current is thus amplified to around 400 mV. The maximum gain of Alta-AN4 is 2, which makes the 
input voltage equivalent to 800 mV. This frame grabber can digitize 0~1-V signal into 16-bit data, 
and is thus ideal for the signal level of our ophthalmoscope. We synchronize Alta-AN4 with the 
scanning system through the TTL outputs that E.O.P.C. added for us. 

 

Eq. 5.5.1 
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Chapter V  System performance 

Since our ophthalmoscope is developed for high-resolution and hyper-spectral-imaging applications, 
the performance test will focus on its wavefront flatness and spectral resolution. 
 
 
 
V.1 Spectral resolution 

Figure 5.1.1 shows the full width at half maximum (FWHM) of the spectra at different wavelength. 
As mentioned in IV.2 the width of the slit would decide the bandwidth of the output beam, but this 
rule is not always true if the width of the slit is as small as the airy diameter. Below the airy 
diameter there would be no significant reduction of bandwidth but only tremendous power loss. In 
our case the airy diameter is roughly 40 μm, thus we set the width of the slit 50 μm. 
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Figure 5.1.1 Spectrographs from the wavelength selector. A.U., arbitrary unit. 

Fig. 5.1.1 demonstrates that the spectral resolution we can achieve is roughly 8-nm 
full-width-half-maximum (FWHM), which means we can divide the visible band up to 40 lines. 
This resolution decreases as wavelength grows, simply because light of longer wavelength projects 
larger airy diameter.



 

 46

V.2 Wavefront flatness 

In chap. III we mainly concentrate on the wavefront flatness at the output end, the pupil of the eye, 
of the ophthalmoscope. However, we should keep in mind that all these simulations are based on a 
input beam of ideal-plane-wave propagation mode, and therefore the wavefront quality of the 
source is critical as well. Fig. 5.2.1 shows the wavefront measurement and corresponding PSF of 
the output beam of the wavelength selector, from 550-nm to 750-nm wavelength. 

 

 

 

 

 

rms wavefront error: 
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Strehl ratio: 
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rms wavefront error: 
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Figure 5.2.1. Wavefront maps and point spread functions of different wavelengths. 
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Please note that there is indeed certain amount of chromatic aberration resulting from the 
telescope of the wavelength selector. This amount of chromatic aberration is about 0.5-wave rms 
wavefront error (mainly defocus) with 25-nm shift in central wavelength. We installed the second 
lens, Lens6 in fig. 4.1, on a linear stage to compensate this aberration. We recorded that from 
550-nm to 750-nm the stage should travel 2.4 mm, and all the measurements presented in fig. 5.2.1 
are under chromatic-aberration compensation. 

From the measurements above we can be confident of the wavefront flatness of light source, so 
now we can proceed to measure the wavefront error of the whole AOLSO. As we proposed in the 
introduction there is not one single lens in the adaptive optics and scanning system, therefore the 
system is totally free from chromatic aberration after the wavelength selection part. Under this 
condition the measurement with one fixed wavelength would be adequate to obtain the residual 
aberration of the system. In fig. 5.2.2 we confirm the diffraction-limited performance of our 
ophthalmoscope. 

 

 

Figure 5.2.2. Wavefront measurements of the whole system. The measurements are 
(a) at pupil of the eye, and (b) as setup in fig. 4.1 while the eye is replaced with a flat 
mirror. 
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Chapter VI  Discussion and Conclusion 

VI.1 Discussion 

Derivations in IV.5 have actually been simplified so the problem of weak signal is not revealed. In 
fact, reflectivity of the retina from 400-nm to 450-nm wavelength is only 0.1 %, which means the 
signal level would be two-order smaller than our estimation. This weak signal may be remedied in 
two ways. First, there are still some PMTs designed with higher anode sensitivity than H5783-01 
we used. We can also adopt second-stage amplification in the electronics part. 

To realize the function of real-time hyper-spectral imaging, we will to adopt motorized stages 
for both the slit and Lens6 in the wavelength selector in fig. 4.1 (b). These two stages perform 
automatic wavelength selection and chromatic aberration compensation, respectively. These two 
stages are synchronized to the vertical scanner so that the wavelength can be programmed as a 
function of frame number, and thus we can acquire images of different wavelengths time 
sequentially. Combining these frames of different wavelengths together a hyper-spectral image is 
obtained. 

 

VI.2 Conclusion 

In this thesis, we have demonstrated an ophthalmoscope which provides hyper-spectral images with 
diffraction-limited resolution and 8-nm (averaged) spectral resolution within the visible band. In 
this system our aberration-compensation design is used for the adaptive optics system and the 
scanning system. Without inserting any correction optics, our spectro-ophthalmoscope achieves 
diffraction-limited performance within a 3∘×3∘scanning range. The numerical simulation showed 

us this result is true for all the wavelengths above 532 nm, and we experimentally confirmed it from 
550 nm to 750 nm. With a 4-mm beam diameter on the cornea, the lateral resolution approximated 
by the airy disk formula is roughly 3 μm, fulfilling the subcellular resolution imaging capability. 
With the aid of adaptive optics the diffraction-limited performance can be expected even the beam 
diameter is as large as 8 mm [7], and thus the resolution may be improved to 1.5 μm. 

Besides the applications in laser scanning ophthalmoscope, this system can be easily modified 
to various high-resolution scanning laser microscopy with broadband capability, simply substituting 
a microscope objective for the eye. Since the supercontinuum generation bears the property of pulse 
laser, and the deformable mirror is in itself a phase modulator, our system can be adopted for 
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advanced applications such as the nonlinear excitation spectro-microscopy and 
phase-modulation-related microscopy [37]. 
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