請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9237完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎(Kwang Cheng Chen) | |
| dc.contributor.author | Chu-Hsiang Huang | en |
| dc.contributor.author | 黃楚翔 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:14:05Z | - |
| dc.date.available | 2009-07-24 | |
| dc.date.available | 2021-05-20T20:14:05Z | - |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-21 | |
| dc.identifier.citation | [1]. Kailath, T., 'An innovations approach to least-squares estimation--Part I: Linear
filtering in additive white noise,' Automatic Control, IEEE Transactions on , vol.13, no.6, pp. 646-655, Dec 1968 [2]. Lee, C.C., 'Fuzzy logic in control systems: fuzzy logic controller. I,' Systems, Man and Cybernetics, IEEE Transactions on , vol.20, no.2, pp.404-418, Mar/Apr 1990 [3]. Blum, R.S.; Kassam, S.A.; Poor, H.V., 'Distributed detection with multiple sensors II. Advanced topics,' Proceedings of the IEEE , vol.85, no.1, pp.64-79, Jan 1997 [4] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,” Phil. Trans. Roy. Soc., London, vol.222, 309 (1922) [5] C.H Huang, K.C Chen, “Decision-Prediction Sensor Fusion for Intelligent Mobile Device Navigation” 100 [6] J. Crank. “The Mathematics of Diffusion,” Oxford, UK: Oxford University Press, 1956. [7] Hoover, A.; Olsen, B.D., 'Sensor network perception for mobile robotics,' Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on , vol.1, no., pp.342-347 vol.1, 2000 [8] Sijs, J.; Papp, Z.; van den Bosch, P.P.J., 'Vehicle motion-state-estimation using distributed sensing,' Intelligent Vehicles Symposium, 2008 IEEE , vol., no., pp.458-463, 4-6 June 2008 [9] H. van Trees, Detection, Estimation, and Modulation Theory, New York: Wiley, vol. I, 1968. [10] Masehian, E.; Amin-Naseri, M.R., 'Sensor-Based Robot Motion Planning - A Tabu Search Approach,' Robotics & Automation Magazine, IEEE , vol.15, no.2, pp.48-57, June 2008 [11] Batalin, M.A.; Sukhatme, G.S.; Hattig, M., 'Mobile robot navigation using a sensor network,' Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on , vol.1, no., pp. 636-641 Vol.1, 26 April-1 May 2004 [12] Murtra, A.C.; Tur, J.M.M.; Sanfeliu, A., 'Efficient active global localization for mobile robots operating in large and cooperative environments,' Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on , vol., no., pp.2758-2763, 19-23 May 2008 101 [13] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “A distributed coordination framework for wireless sensor and actor networks,” in Proceedings of ACM Mobihoc 2005, Urbana-Champaign, IL, May 2005. [14] Venkitasubramaniam, P.; Adireddy, S.; Tong, L., 'Sensor networks with mobile access: optimal random access and coding,' Selected Areas in Communications, IEEE Journal on , vol.22, no.6, pp. 1058-1068, Aug. 2004 [15] Batalin, M.A.; Sukhatme, G.S., 'Using a sensor network for distributed multi-robot task allocation,' Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on , vol.1, no., pp. 158-164 Vol.1, 26 April-1 May 2004 [16] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery. “Information fusion for wireless sensor networks: Methods, models, and classifications.” ACM Computing Surveys, 39(3):9, 2007. [17] Muller, H.C.; Fischer, A., 'A robust fire detection algorithm for temperature and optical smoke density using fuzzy logic,' Security Technology, 1995. Proceedings. Institute of Electrical and Electronics Engineers 29th Annual 1995 International Carnahan Conference on , vol., no., pp.197-204, 18-20 Oct 1995 [18] Jianwei Zhang; Wille, F.; Knoll, A., 'Fuzzy logic rules for mapping sensor data to robot control,' Advanced Mobile Robot, 1996., Proceedings of the First Euromicro Workshop on , vol., no., pp.29-38, 9-11 Oct 1996 102 [19] Lima, P.U., 'A Bayesian Approach to Sensor Fusion in Autonomous Sensor and Robot Networks,' Instrumentation & Measurement Magazine, IEEE , vol.10, no.3, pp.22-27, June 2007 [20] Obradovic, D.; Lenz, H.; Schupfner, M., 'Fusion of Sensor Data in Siemens Car Navigation System,' Vehicular Technology, IEEE Transactions on , vol.56, no.1, pp.43-50, Jan. 2007 [21] Chunlin Chen; Han-Xiong Li; Daoyi Dong, 'Hybrid Control for Robot Navigation - A Hierarchical Q-Learning Algorithm,' Robotics & Automation Magazine, IEEE , vol.15, no.2, pp.37-47, June 2008 [22] Gulrez, T.; Challa, S.; Yaqub, T.; Katupitiya, J.; Khan, N.M.; Ramer, R., 'Sensor Relevance Validation for Autonomous Mobile Robot Navigation,' Robotics, Automation and Mechatronics, 2006 IEEE Conference on , vol., no., pp.1-6, Dec. 2006 [23] Gulrez, T.; Challa, S.; Yaqub, T.; Katupitiya, J., 'Relevant opportunistic information extraction and scheduling in heterogeneous sensor networks,' Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on , vol., no., pp.161-164, 13-13 Dec. 2005 [24] Hanson, M.A.; Powell, H.C.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor, J.H.; Lach, J., 'Body Area Sensor Networks: Challenges and Opportunities,' Computer , vol.42, no.1, pp.58-65, Jan. 2009 103 [25] Taehong Kim; Young-Guk Ha; Jihoon Kang; Daeyoung Kim; Chong Poh Kit; Joo-Chan Sohn, 'Experiments on Building Ubiquitous Robotic Space for Mobile Robot Using Wireless Sensor Networks,' Advanced Information Networking and Applications - Workshops, 2008. AINAW 2008. 22nd International Conference on , vol., no., pp.662-667, 25-28 March 2008 [26] Kyuseo Han; Jaeyoung Lee; Sangik Na; Wonpil You, 'An Ambient Robot System Based on Sensor Network: Concept and Contents of Ubiquitous Robotic Space,' Mobile Ubiquitous Computing, Systems, Services and Technologies, 2007. UBICOMM '07. International Conference on , vol., no., pp.155-159, 4-9 Nov. 2007 [27] YuanYuan Li; Parker, L.E., 'Detecting and monitoring time-related abnormal events using a wireless sensor network and mobile robot,' Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no., pp.3292-3298, 22-26 Sept. 2008 [28] Sandberg, H.; Rabi, M.; Skoglund, M.; Johansson, K.H., 'Estimation over heterogeneous sensor networks,' Decision and Control, 2008. CDC 2008. 47th IEEE Conference on , vol., no., pp.4898-4903, 9-11 Dec. 2008 [29] Tae-Hwan Kim; Seung-Il Lee; Yong-Doo Lee; Won-Kee Hong, 'Design and evaluation of in-vehicle sensor network for Web based control,' Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International Symposium and Workshop on , vol., no., pp.10 pp.-218, 27-30 March 2006 104 [30] Sawant, H.; Jindong Tan; Qingyan Yang; Qizhi Wang, 'Using Bluetooth and sensor networks for intelligent transportation systems,' Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on , vol., no., pp. 767-772, 3-6 Oct. 2004 [31] Rimon, E.; Koditschek, D.E., 'Exact robot navigation using artificial potential functions,' Robotics and Automation, IEEE Transactions on , vol.8, no.5, pp.501-518, Oct 1992 [32] Bor-Sen Chen; Chang-Lan Tsai; Chia-Sheng Hsu, 'Robust adaptive MMSE/DFE multiuser detection in multipath fading channel with impulse noise,' Signal Processing, IEEE Transactions on , vol.53, no.1, pp. 306-317, Jan. 2005 [33] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1995. [34] Baldo, N.; Zorzi, M., 'Fuzzy logic for cross-layer optimization in cognitive radio networks,' Communications Magazine, IEEE , vol.46, no.4, pp.64-71, April 2008 [35] Youshen Xia; Kamel, M.S., 'Cooperative Learning Algorithms for Data Fusion Using Novel $L_{1}$ Estimation,' Signal Processing, IEEE Transactions on , vol.56, no.3, pp.1083-1095, March 2008 [36] B. V. Dasarathy. Information fusion - what, where, why, when, and how? In Proceedings of the 4th International Conference on Information Fusion, volume 2, pages 75–76, Feb. 2001. 105 [37] D. Tse and P. Viswanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. [38] J. Mitola and G. Q. Maguire, “Cognitive Radio: Making Software Radios More Personal,” IEEE Personal Communications, vol. 6, no. 4, August 1999, pp. 13-18. [39] A. Goldsmith, Wireless Communications Cambridge, U.K.: Cambridge Univ. Press, 2004. [40] M Basseville, IV Nikiforov, Detection of Abrupt Changes: Theorem and Application, Prentice Hall, 1993. [41] F. Gustafsson, Adaptive Filtering and Change Detection. New York: Wiley, 2000. [42] Digham, F.F.; Alouini, M.-S.; Simon, M.K., 'On the energy detection of unknown signals over fading channels,' Communications, 2003. ICC '03. IEEE International Conference on , vol.5, no., pp. 3575-3579 vol.5, 11-15 May 2003 [43] Chennakeshu, S.; Anderson, J.B., 'Error rates for Rayleigh fading multichannel reception of MPSK signals,' Communications, IEEE Transactions on , vol.43, no.234, pp.338-346, Feb/Mar/Apr 1995 [44] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng., vol. 82, pp. 34-45, Mar. 1960. [45] G.Welch and G. Bishop. “An introduction to the kalman filter.” Technical Report 95-041, University of North Carolina, Department of Computer Science, 1995. [46] I.F. Akyildiz et al., 'Wireless Sensor Networks: A Survey,' Computer Networks, Elsevier Science, vol. 38, no. 4, 2002, pp. 393-422. [47] A. Mainwaring, “Wireless Sensor Networks for Habitat Monitoring,” in WSNA Atlanta, GA, Sept. 2002. [48] M. Bhardwaj, T. Garnett, A.P. Chandrakasan, Upperbounds on the lifetime of sensor networks, IEEE International Conference on Communications ICC’01, 106 Helsinki,Finland, June 2001. [49] C. C. Y. Poon, Y-T Zhang, S-D Bao, “A novel biometrics method to secure wireless body area sensor networks for telemedicine and mhealth,” IEEE Communications Magazine, vol. 44, pp. 73-81, April 2006 . [50] Farella, E.; Pieracci, A.; Benini, L.; Acquaviva, A., 'A Wireless Body Area Sensor Network for Posture Detection,' Computers and Communications, 2006. ISCC '06. Proceedings. 11th IEEE Symposium on , vol., no., pp. 454-459, 26-29 June 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9237 | - |
| dc.description.abstract | 從環境中蒐集資料的感測器網路讓許智慧型裝置,例如機器人、智慧型車輛甚致是生物
醫療器材的應用與設置成為可行的技術。我們觀察到傳統的方法分開執行感測器網路的訊息 融合、決策、與接下來的控制行動,而我們提出了一個創新的智慧型決策架構來做整個這些 裝置的系統之模型,而可以更進一步的增進系統效能來超越傳統方法。智慧型決策架構藉由 分開事件到觀察的映射,成為兩個映射,分別是從事件到物理量及從物理量到觀測,而改善 了傳統估計方法。數學公式化在本篇論文中建構出來而且應用於救火機器人的場景來展示它 的有效性。我們還更展示了智慧型決策架構在特定的條件下可以被退化成傳統的決策方法。 更重要的,我們可以把這個架構延展而超出傳統機制,到融合多個物理量的觀察然後獲得最 佳解條件。對於有限物理量相關性資訊下的決策,我們提出了觀察選擇然後求得其與最佳決 策等效之條件。較缺乏嚴謹數學架構的模糊邏輯常被應用於這樣的決策,而我們可以展示具 嚴謹定義的決策理論數學架構之觀察選擇可以退化成多觀察模糊邏輯決策。最後,模擬結果 顯示我們提出的智慧型決策架構的確改善了決策精準程度然後也增進了系統效能。除了感測 器網路,這個架構也可以應用於各種不同的智慧型或感知系統。我們提出了在智慧型決策架 構下發展出來的雙向時間分割頻譜偵測來展示除了感測器網路之外的應用。這個方法藉由僅 一個點的從獨立感測通道的多重觀察減低了隱藏點問題,而合作頻譜偵測則需要多重點去進 行多重觀察。這個方法更進一步的利用了因為地理位置間隔產生的路徑損失之資訊來增進感 測效能。分析及模擬結果顯示我們提出的頻譜偵測方法顯著的改善了傳統的頻譜偵測效能。 | zh_TW |
| dc.description.abstract | Sensor networks to collect various information from environments enable deployment and
application of many intelligent devices and systems, such as robots, intelligent vehicles, and even biomedical instruments. Observing traditional approach separately executing information fusion from sensor networks, decision, and later control functions, we propose a novel intelligent decision framework to allow thorough system modeling of such devices, and thus further enhancement beyond traditional approach. Intelligent decision framework improves traditional estimation theory by separating the mapping from event to observation into two mappings, the mapping from observed physical quantity to sensor observation and the mapping from target event to physical quantity. The mathematical formulation is constructed and applied in the firefighting robot navigation scenario to illustrate its effectiveness. We further shows that the intelligent decision framework can be degenerated to traditional decision schemes under special conditions. More importantly, we can extend the framework to fuse observations from multiple kinds of physical quantities and derive the optimal decision, beyond traditional statistical decision mechanisms. For the decision with limited knowledge of the correlations among physical quantities, we propose Observation Selection and derive the equality condition with optimal decision. While fuzzy logic of less strict-sense mathematic structure is commonly employed to resolve this application scenario, we can demonstrate that Observation Selection derived from well-defined decision theory can be degenerated to fuzzy logic of multiple kinds of observations. Finally, simulation results show that the proposed intelligent decision framework indeed improves the accuracy of the decision and enhances system performance. In addition to sensor network, this framework can also be applied in various intelligent system or cognitive systems. We propose a novel cognitive radio spectrum sensing scheme, Dual-way Time-Division Spectrum Sensing, derived under intelligent decision framework to demonstrate the application of this general framework other than sensor network. This scheme mitigates the hidden terminal problem by only one node taking multiple observations from independent sensing channel, while cooperative spectrum sensing needs multiple nodes to perform multiple observation. Moreover, this scheme takes the path-loss due to geographical separation into consideration to improve the sensing performance. Analytical and simulation result shows that the proposed spectrum sensing scheme significantly improves the performance of traditional spectrum sensing. Keywords: Sensor network, information | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:14:05Z (GMT). No. of bitstreams: 1 ntu-98-R96942046-1.pdf: 1821428 bytes, checksum: 78eab53a2e4136faefb90f9c95e6e650 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………. ..I
中文摘要………………………………………………………………..II 英文摘要………………………………………………………………. IV List of Figures…………………………………………………………IX List of Tables…………………………………………………..………..XI Chapter 1 Introduction………………………………………...............….1 1.1 Information Fusion……………………....................................................1 1.2 Sensor Network Based Intelligent System.......................................................6 1.3 Organization….................................................................................................8 Chapter 2 Intelligent Decision Framework..............................................10 2.1 Framework Overview………………….......................................................10 2.2 System Model…….……………………......................................................12 Chapter 3 Sensor Network Navigation System for Firefighting Robot…18 3.1 Intelligent Decision Framework for Firefighting Robot………………….…19 3.2 Sensor Observation Model……............………………………………….…20 3.3 Degenerate Problem: State space model…………………………………...23 Appendix 3. State-space Model with Estimation of Previous State…...………..27 Chap t e r 4 I n t e l l i g e n t D e c i s i on Framework- Multip l e Observation……………………………………………………………31 4.1 Optimal Multi-Observation Decision System Model…………………….…32 4.2 Observation Selection...…………………………………………………….35 4.3 Cramer-Rao bound…………...……………………………………………..41 4.4 Optimal Ratio Combining…………………………………………………44 4.5 Fuzzy logic………………………………………………………………….46 4.6 Performance Comparison of Observation Selection and Ratio Combining...51 Chapter 5 Multi-Observation Sensor Network Navigation System for Firefighting Robot....................................................................................61 5.1 Multi-Observation Intelligent Decision System Model………………….…61 5.2 Degenerate Problem: Fuzzy Logic Controller...………………………….…62 Chapter 6 Experiments………………………………………………….64 6.1 Single Observation……………………………………………………….…64 6.2 Multiple Observation……………………………………………………..…69 Chapter 7 Cognitive Radio Spectrum Sensing under Intelligent Decision Framework………………………………………………………………74 7.1 Cognitive Radio Spectrum Sensing.…..………………………………….…74 7.2 Spectrum Sensing Model…………………….…………………………..…78 7.3 Spectrum Sensing Procedure and Algorithm…………………………..…81 7.4 Performance Analysis and Comparison……...…………………………..…86 7.5 Numerical Result……………………...……...…………………………..…90 Chapter 8 Conclusions and Future Works…………..…………………..97 Bibliography…………………………………………………………...99 | |
| dc.language.iso | en | |
| dc.title | 以感測器網路為基礎的智慧型系統之資料融合決策與控
制 | zh_TW |
| dc.title | Information Fusion, Decision and Control of
Sensor Network Based Intelligent Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張時中(Shi-Chung Chang),吳承崧(Cheng-Shong Wu),黃家齊(Chia-Chi Huang) | |
| dc.subject.keyword | 感測器網路,資訊融合,智慧型決策,資料融合,多重觀察,智慧型系統,機器人,導航,決策理論,感知無線電,頻譜感測,接受器感測,雙向時間分割頻譜, | zh_TW |
| dc.subject.keyword | Sensor network,information fusion,intelligent decision,data,fusion,multiple observation,intelligent system,robot,navigation,decision theory,cognitive radio,spectrum sensing,receiver sensing,DTD spectrum sensing, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 1.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
