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Abstract

Sensor networks to collect various information from environments enable deployment and
application of many intelligent devices and systems, such as robots, intelligent vehicles, and even
biomedical instruments. Observing traditional approach Separately executing information fusion
from sensor networks, decision, and later/control fu_rlqtions, we propose a novel intelligent decision
framework to allow thorough system modeiiﬂéi_.é_f .such devices, and thus further enhancement
beyond traditional approach. Intelligent declislion I'E;f'ram_éwork improves traditional estimation theory
by separating the mapping from eve.n.t to: obsgwatioﬁ into two mappings, the mapping from
observed physical quantity to sensor observation and the mapping from target event to physical
quantity. The mathematical formulation is constructed and applied in the firefighting robot
navigation scenario to illustrate its effectiveness. We further shows that the intelligent decision
framework can be degenerated to traditional decision schemes under special conditions. More
importantly, we can extend the framework to fuse observations from multiple kinds of physical
quantities and derive the optimal decision, beyond traditional statistical decision mechanisms. For
the decision with limited knowledge of the correlations among physical quantities, we propose
Observation Selection and derive the equality condition with optimal decision. While fuzzy logic of
less strict-sense mathematic structure is commonly employed to resolve this application scenario,
we can demonstrate that Observation Selection derived from well-defined decision theory can be

v



degenerated to fuzzy logic of multiple kinds of observations. Finally, simulation results show that
the proposed intelligent decision framework indeed improves the accuracy of the decision and
enhances system performance. In addition to sensor network, this framework can also be applied in
various intelligent system or cognitive systems. We propose a novel cognitive radio spectrum
sensing scheme, Dual-way Time-Division Spectrum Sensing, derived under intelligent decision
framework to demonstrate the application of this general framework other than sensor network.
This scheme mitigates the hidden terminal problem by only one node taking multiple observations
from independent sensing channel, while cooperative spectrum sensing needs multiple nodes to
perform multiple observation. Moreover, this scheme takes the path-loss due to geographical
separation into consideration to improve the sensing performance. Analytical and simulation result
shows that the proposed spectrum sensing ‘scheme: significantly improves the performance of

traditional spectrum sensing.
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Keywords: Sensor network, information | fusion, intelligent decision, data, fusion, multiple
observation, intelligent system, robot, navigations deciéiqn theory, cognitive radio, spectrum sensing,

receiver sensing, DTD spectrum sensing
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Chapter 1

Introduction

In this chapter, we provide an” overview on the information fusion and its
application. Here we explain why inféﬁhﬁtion fusion is an important concept
nowadays and why application’; of information fusion in sensor network based

intelligent system is a challenging problenr. We summarize organization of this thesis

in the end of the chapter.

1.1 Information Fusion

Information fusion is a widely applied technique in various areas, including
sensor network, GPS navigation systems, image processing and communication
systems. The term “information fusion” has been defined as follows [36] : “in the
context of its usage in the society, it encompasses the theory, techniques and tools

created and applied to exploit the synergy in the information acquired from multiple



sources (sensor, databases, information gathered by humans, etc.) in such a way that
the resulting decision or action is in some sense better (qualitatively or quantitatively,
in terms of accuracy, robustness, etc.) than would be possible if any of these sources
were used individually without such synergy exploitation.”

The information fusion techniques can be classified in three categories according
to the sources: complementary, Redundant, and Cooperative. The relationship can be

illustrated as the following figure [16]:

“USED
@ m INFORMATION

COMFLEMENTARY REDUNDANT COOFERATIVE INFORMATION
FUSION FUSION FUSION FUSION

A 7
=1 52 53 @ 55 SOURCES
. S A
a’, b . B

¢
d S
-

c

.
.
%
u

[ A ] [ B J INFORMATION

Fig. 1.1 Types of information fusion based on the relationship among the sources.

Then we describe the three types of information fusion [16]:

® Complementary. When information provided by the sources represents different
portions of a broader scene, information fusion can be applied to obtain a piece
of information that is more complete (broader).

® Redundant. If two or more independent sources provide the same piece of
information, these pieces can be fused to increase the associated confidence.

® (Cooperative. Two independent sources are cooperative when the information
provided by them is fused into new information (usually more complex than the

original data) that, from the application perspective, better represents the reality.



In this paper, we focus on the information fusion techniques applied in sensor
network cooperating with intelligent systems. We begin with a brief review of
information fusion method and algorithms which are able to applied in sensor
networks.

1.1.1 Inference

®  Bayesian Inference:

In the context of Bayesian inference, the information is represented in terms
of conditional probabilities conditioned on the hypothesis we would like to

infer and choose. The inference is based on the Bayes’ rule:

Pr (X|Y)Pr (Y
Pr(Y|X) = r(PIr ()X)r( ) (1.1)

The posterior probability Pr(¥|X) represents the “belief” of hypothesis ¥
given the information X._ With__ the g prior probability Pr (Y) and
conditional probability Pr (X [;TF), we can- derive the “belief” of the
hypothesis when we have the ir&‘(')rm_étion X'and make inference according
to the “belief.” | .
® Fuzzy Logic:

Fuzzy logic is concerned with the formal principles of approximate
reasoning, with precise reasoning viewed as a limiting case. Fuzzy logic
tries to model the imprecise modes of reasoning that play an essential role
in the remarkable human ability to make rational decisions in an
environment of uncertainty and imprecision. The following question is an
example for the reasoning process that fuzzy logic aims to model.

“Most of those who live in Belvedere have high incomes. It is probable that

Mary lives in Belvedere. What can be said about Mary's income?”

The question involves many unspecific terms in natural language. Fuzzy



logic theorem tries to establish a theoretical framework to deal with this
kind of logic and reasoning.

Fuzzy set is the fundamental concept of fuzzy logic. It transforms the
traditional set theory to fuzzy set by defining the membership function 4,
A:X - [0,1] (1.2)
which maps the members to values in [0,1] to represent its membership in
the set. The membership can be some value between 0 and 1 to represent
the ambiguity of the concepts or terms involved in the nature language. For
example, the description of temperature can be fuzzy set which has the
membership function as the following figure:

cold WA hot

temperature——:l_i

Fig. 1.2 Fuzzy set: description of temperature

The temperature can belong' “cold” I:;and “warm” simultaneously in a
segment and the membership function of both set in the segment is less than
1 to represent the ambiguity and uncertainty.

Based on the fuzzy set concept, the intersection and union operations,
t-norm and t-conorm, is established. Then with the fuzzy set theory and
operations, fuzzy relation and inference can be developed. The fuzzy
inference in the form of conditional statement is widely applied in the
information fusion problem in sensor network and will be discussed in
detail in the succeeding section and chapter 4.

1.1.2 Estimation

®  Maximum Likelihood (ML) and Maximum a posterior (MAP) estimation:



Estimation methods based on likelihood are suitable when the parameter being
estimated is nonrandom. With the likelihood function

L(x) = p(z|x) (1.3)
where z is the observation vector and x is the parameter we want to estimate.

Then the ML estimation is done by maximizing the likelihood function:

X = argmaxp(z|x) (1.4)
X

The MAP estimation aims at estimating a random variable with known
probability p(x). Based on Bayesian theory, we can convert the likelihood
function p(z|x) to the a posterior probability p(x|z) with p(x). Then we have

the MAP estimation:

X = argmaxp(x|z) - (1.5)
p .

Kalman Filter: \

Kalman Filter is a well-known thec;'f;.?abplied in_ various area including control
system, tracking system and Sensor -r;-etwork. Kalman filter is first appeared in
R.E. Kalman’s famous paper. in- 1960 [44], in which describes a recursive
solution to the discrete data linear filtering problem. The Kalman filter addresses
the general problem of trying to estimate the state of a discrete-time controlled
process that is governed by the linear stochastic difference equation:

x(n+1) = Ax(n) + Bu(n) + w(n) (1.6.1)
y(n) = Hx(n) + v(n) (1.6.2)
The random vector w(n) and wv(n) and represent the process and
measurement noise respectively. In fact, the Kalman filter is a set of
mathematical equations that provides an efficient computational (recursive)
means to estimate the state of a process, in a way that minimizes the mean of the

squared error [45].



The Kalman filter estimates a process by using a form of feedback control: the
filter estimates the process state at some time and then obtains feedback in the
form of (noisy) measurements. As such, the equations for the Kalman filter fall

into two groups: time update equations and measurement update equations.

Prediction Phase

¥(n-)=A4x(n-1) + Bu(n—1)

P(n-)=AP(n—-1AT+Q

Estimation Phase

K(n) =P(n—)H"(HP(n —)HT + R)™!

#(n) = 2(n#) + K(n) @)= HX(n-))

P(n) — @'~ K PM—)

Table 1.1 Kalman filter equations
[}
| |

i | | 'I 4

1.2 Sensor Network Based Intelligent System

?J : i
||

Originally, sensor network has been applied in various areas including
environment monitoring, forest fire detection, military, drug administration...etc
[46-48]. Recent technology advances have lead to the emergence of application of
sensor network in various areas including robotic automation system [7,8], intelligent
vehicle and transportation system [29,30], and even body area network for biomedical
applications [24,49,50]. Most of these systems are operated by deploying the sensor
network in the operation environment, such as roadside, buildings, or even inside
human body, to monitor the environment and cooperate with intelligent devices, such

as a robot or intelligent vehicle, which actively or passively collecting observations

6



from sensor network to perform their tasks. We call these systems Sensor Network
Based Intelligent System (SNBIS) in this paper. In SNBISs, the intelligent devices
rely on sensor network deployed in the environment to observe the physical world. By
collecting the sensor observations, the intelligent device can perceive the environment
and perform control actions to execute tasks. Consequently, in order to make correct
inference from observations to execute the tasks accurately and efficiently, an
intelligent decision framework, which is capable of effectively unified modeling the
process from observations of the physical world to the executions of the tasks by the
intelligent device, plays an extremely important role in this kind of systems.

There have been many researches on SNBISs already, especially the robot and
vehicle being the intelligent devices [7,8,-_11], while the research on medical
applications is emerging [24]. Comuion application scenarios are obstacle avoidance
navigation for the robot [10], localiz;ti'(x)_gz-hc_):f_'r.obot by. cooperative schemes [12], or
crash avoidance for intelligent Vehi.cle.::'_'%.[-S.O] . The; research topics include data
collection from network perspébfive: [13], mﬁltiple access control [14], robot task
allocation [15], and information fusion (or. daté fusion) to link the observation to the
robot’s missions, which is the most essential part of the SNBIS. In works regarding
this realm, information fusion algorithms [16] such as Kalman filter [20], occupancy
grid [21], Baysian inference [19], fuzzy logic [18] are applied to deal with different
problems. Many information fusion algorithms can be extended to apply in making
decision on multiple kinds of sensor observation. There are also some researches
devote in this kind of SNBIS. Most of them focus on heterogeneous sensors with
different sensing quality [22,23,28] or fusing observations of different physical
quantities by fuzzy logic instead of statistical inference [17].

Although tremendous research effort have devoted in subjects of information

fusion or data aggregation in SNBIS, they all focus on specific part of the problem

7



instead of seeking for a general unified theoretical framework from sensor
observation to task execution. Application specific works like the algorithms for robot
navigation problem [11] is only suitable for small range of applications. The control
approaches such as artificial potential field ignore the signal processing while
concentrate on control actions corresponding to the environment like obstacle on the
road [10,31]. The unified frameworks like Ubiquitous Robotic Space mostly deal with
the cooperation among devices and availability of sensor network data to the
intelligent devices [25,26]. Problems regarding sensor network monitoring tasks,
intruder detection as example, focus on the signal processing but are lack of control
action consideration corresponding to the detection event [27]. However, as the
development of the intelligent device technc_)logy, more and more applications of
complex missions in various enVironments utilizing SNBISs are emerging.
Consequently, an unified general the.(.rre‘_tic;?i__ 't;ramewo.rk from sensor observation to
task execution, which is ablete serv'eias..g._-f-oundation to develop the algorithms and
action mechanisms for various ai)plic:ation sceﬂarios of SNBIS, is necessary to realize
the implementation of SNBIS in various .en\;ironments. Moreover, this framework
must enable the intelligent device to cooperate with various sensors observing

different physical phenomenon in the same sensor network to execute the task more

efficiently.

1.3 Organization

This paper is organized as follows. We establish the system model of SNBIS
intelligent decision framework in Chapter 2. Chapter 3 follows to derive the solution

of the application example, firefighting robot navigation problem, by the intelligent



decision framework. In Chapter 4, we extend the framework to multiple observation
case. Many information fusion schemes including optimal fusion, Observation
Selection, Ratio Combining, and Fuzzy Logic. The application example, firefighting
robot, follows in Chapter 5. Chapter 6 presents the numerical and simulation results of
the application examples of proposed approaches. The application of the intelligent
decision framework in Cognitive Radio Spectrum Sensing is presented in Chapter 7.

Finally, the conclusion and future work is presented in Chapter 8.
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Chapter 2

Intelligent Decision Framework

In this chapter, we give an overview of the mtelligent decision framework we
proposed to solve the information/usion problemin-SNBIS. Then the system model

of this framework is established in the suéf_é‘éeding section.

Physical
Event [ > UnknownSystem Quantity
(State)
A
“ Observation
: Noise
System A
Decision & [ Identification [ Sensor ‘
Action | N | Observation
&Interference
Cancellation

Fig. 2.1 Intelligent decision making mechanism for sensor network based intelligent

systems.

2.1 Framework Overview

In this paper, we develop a novel framework called intelligent decision framework.

10



We derive intelligent decision framework by exploring the relationship between
sensor observation and task execution to merge the processes, signal processing,
decision, and control action, into a single framework. In SNBISs, the event related to
the intelligent devices’ tasks induces the physical quantity variations in the
environment and sensors are able to transfer the observations of these physical
quantities to the intelligent devices to make decision and execute tasks (Fig. 2.1).
Thus we can model the sensor observation by two mappings, one from event (event
parameter space) to physical quantity (state space) and one from physical quantity
(state space) to observation (observation space). Then the intelligent device can make
decision to execute tasks (action space) based on the above two mappings according
to a cost function, which is the function o_f event and action. Unlike traditional
approaches, these mappings in the framewotk. cover the processes from sensor
observation to control action and are app%cable in Vafious application scenarios. An
example of sensor network navigatiqn ..f:_(s._r-ﬁreﬁghting robot problem (firefighting
robot navigation problem in Bfief): follows .to_ illustrate the application of this
framework. The example also shows that thé traditional decision scheme is just a
degenerated case of our framework under special conditions. Then we extend this
framework to intelligent decision framework for observations from multiple kinds of
physical quantities. In multiple observation intelligent decision framework, the two
mappings, event space to state space and state space to observation space, are
extended to account for the variations of different physical quantities induced by the
event and observation processes of different sensors. Consequently, we are able to
simultaneously model the uncertainty and correlation among different physical
quantities and different sensor observation precisions beyond traditional approaches.
Optimal decision scheme for multiple observations is developed as well as

Observation Selection scheme, which ignores the complex correlation structure

11



among different physical quantities to make decision by limited knowledge of the
nature. The condition for equivalence between Observation Selection and optimal
decision is zero mutual information between the event and the observations other than
selected one. To reduce the computation complexity, Observation Selection by
Cramer-Rao bound is developed under specific conditions. In many multiple
observation decision applications, fuzzy inference base on fuzzy conditional statement
[2], a widely used fuzzy logic control approach, is applied to make decision with less
strict-sense mathematic structures. We show that by Observation Selection, we can
degenerate the decision scheme to the fuzzy logic controller under the strict
mathematical structure of our intelligent decision framework. The example for
multiple observation decision also follows_l_lp to. illustrate the application of the

framework and the fuzzy logic formulation.

=W

2.2 System Model

In this section, we construct the sys.tem. model of intelligent decision for the
sensor network based intelligent system. In intelligent decision framework, we
formally define and formulate the mathematical relationship between the essential
elements involving in the decision process: event parameter, physical quantity related
to the event (physical quantity in brief), sensor observation and the control action of
the intelligent device. Traditional estimation problem in decision theory directly maps
event to sensor observation. However, in order to derive a general framework
unifying sensor observation aggregation, decision fusion and control action that is
applicable to various environment, we reconstruct two mappings to account the
uncertainty involve in the process. The process involves the uncertainty (or

incomplete information) of the relationship between event parameter and physical

12



Event Parameter Space
3 State Space

O 4

Fig. 2.2 Mathematical structure of intelligent decision making mechanism for

Action Space

Observation Space

—

sensor network based intelligent systems.

quantities and the uncertainty introduced during observation of the physical quantities
(observation noise). According to this concept, we construct the framework of the

intelligent decision as follows. .' ke ..'-'.-:'

i

Definition 2-1.1: (Event Spacé) ""Ev.enl acq': 0 is clzo'Tnposed of the event parameter,

=1 =
m?{lzf'&/\ Jacts or events that are necessary for

denoted by 0, representing the environ

% : | ;
the intelligent system to make-thq"dectsfion. ]Il 7 s

Definition 2-1.2: (Observation Space) Observation Space 0 is composed of the
quantity of observations, denoted by 'y, from sensors.
Remark: The observations are the physical quantity plus noise and interference

induced during sensor observation.

Definition 2-1.3: (State Space) State space S is composed of the observable physical

quantity induced by the events. We call them state and denoted by s.

Definition 2-1.4: (Action space) Action space A is composed of the decision of

actions of the intelligent device, denoted by a.

Definition 2-1.5: (Utility function) The utility function is the reward of the system
receiving by making a decision on its action, denoted by u = u(a, 9)

13



Remark: The utility function must reach its maximum value when the action matches
the event parameter, and decrease when the action is more inconsistent with the event
parameter. If the system should be panelized by each incorrect decision, we use cost

function instead.

Definition 2-2: (Optimal decision mapping) The optimal decision mapping is the

mapping 11: 0 = A that maximize the utility function u = u(a, 8)

We use an example, sensor network navigation for firefighting robot (Fig.2.3), to
illustrate the above definitions. The necessary information for firefighting robot’s task,
reaching the place on fire, is the direction of the place on fire. Hence it is defined to
be the event parameter. The fire induces abnormal temperature distribution (or smoke
density) in the environment. Consequently, .tl.le temperature (smoke) is the physical
quantity the sensors should observe."t[’_llie temperature (smoke density) read on the
sensor’s thermometer (smoke detecﬁof{jfé the observation aggregated by the
firefighting robot. Finally, the. control e-l:c-tion 18 ‘the robot’s movement direction
decided by the sensor observations. Traditional éstimation only estimates the exact
value of the observed physical quantity considering the observation noise. Hence it
can not directly determine the control action. However, our intelligent decision
considers the relationship between event and the induced physical quantity and is able
to determine the control action according to the utility function under the unified
framework. We illustrate the decision mechanism by the mappings between the spaces

as follows.

Proposition 2-3: The optimal decision mapping, 11: 0 — A, is determined from the
mapping from event space to state space, ©:S — 0, and the mapping from state

space to observation space, ¥: @ — S, to maximize the utility function u = u(a, 9)
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Fig. 2.3 Sensor network navigation for firefighti
GO ey,

ng robot under intelligent decision

framework 4% v B
A5 = - i,
F £
. A AP = .
Remark: From above d1scus§;q1t;.a )y the state is induced by the
event parameter 6 by the ii'lapp g W ' i an&: interference are introduced

Lo IS
0

1g @:5 — 0. Consequently, we

b
& L : .. .
Qgt_ru%ﬁ*_-‘the optimal decision mapping
el >
IT: 0 - A to maximize the utility functfoﬁ' U= u(a, 9).

(¢10)

Generally speaking, ®:S§ — O involves noise and interference introduced
during observation. It can be represented by conditional probability p(y|s) as
traditional sensor estimation problem. For the mapping ¥:® — §, we have the

following proposition:

Proposition 2-4: The mapping ¥:0 — § can be represented by the conditional
probability p(s|9)

Remark: The uncertainty of ¥:® — § comes from the uncertainty or incomplete

15



information of the relationship between the physical quantities we observe and the
desired event. We call this “system model uncertainty,” or “model uncertainty” in
brief. Unlike the mapping ®: S — O which depends on noise statistics, this mapping

depends on the knowledge of the nature and is usually complex.

If this relationship is deterministic and completely known or state and event
parameter is the same physical quantity, the mapping degenerates to deterministic or
identical mapping. For example, when tracking a fighter, the relationship between the
observable physical quantity (radar signal) and the event parameter (fighter’s position)
is known, the mapping is deterministic. Besides this, with appropriate conditions, we
can degenerate ¥ to the deterministic or. -_identical mapping. For example, for
firefighting robot navigation probiem, the mapping from the direction towards fire
(event parameter) to the direction of '-‘jt@ar}é_e';ature g.radient (state) is an identical
mapping if the pattern of the potenti'al: ﬁ;fﬂ-modeling- the temperature distribution is
radiative. This example will be dfi'scués.ed in deflaiL:in.next section. For the mapping ¥

to be an identical mapping, we have the foliowing corollary:
Corollary 2-5: ¥ is an identical mapping if and only if p(s = 0|0) = 1

From above propositions, the mappings, ¥:® — § and ®:S§ — O, are represented by
conditional probabilities. Hence we can interpret the optimal decision in Definition

II-2 by the following proposition:

Proposition 2-6: (Optimal decision mapping) The optimal decision mapping,
I1: 0 - A, following Definition 2-2, is the mapping that maximize the a posterior

expected utility function E(u(a,8)|y).
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Remark: The optimal decision on the action is the action @ that maximize the a

posterior expected utility:
a = argmaxE(u(a, 8)|y) = arg maxf u(a,@)p(B|y)deo (2.1)
a a
Baysian Inference

By applying Baysian theory, the a posterior probability p(8|y) becomes

_p(y16)p(6)

p(6ly) )

(2.2)

p(0) is the a prior distribution of the event. By Proposition 2-4 and the mapping

®: S — 0, we can represent p(y|0) by the two conditional probabilities
p(¥10) = [ p(yIs)p(s|0) ds (2.3)
And we apply (2.2) and (2.3) tey(241), we have..

J pGis)p(s18ydsIp (@) -

a=arg maxf u(a, 0) =—— 1008 (2.4)
a Jg ) -
= argm‘?xff Bu(a, 0)p(y|s)p(s|0)p(0)dsd:0 (2.5)

(2.4) and (2.5) is equal because p(y) is constant for every a. The two conditional
probabilities, p(y|s) and p(s|@), stands for the two mappings, ®:S - O and
¥Y:0 — S, that involves in the decision mapping I[1: 0 - A. Consequently, the
decision involves system identification for the modeling uncertainty p(s|@) as well
as noise and interference cancellation for p(y|s), as depicted in Fig. 2.1. We
formulate insightful example of the firefighting robot navigation problem under the

intelligent decision framework to demonstrate its application in next chapter.
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Chapter 3

Sensor Network Navigation
System for Firefighting Robot

In this chapter, we present the sensoxr_;:r'l.etvs./ork navigation system for firefighting
robot problem, an application.example of SNBIS, to.show the effectiveness of the
intelligent decision framework: "This example-has. been investigated in [5]. But we
reinvestigate it with the new frameworkiproposed in this paper.

There is a firefighting robot making its way to the place on fire guided by the

Fig. 3.1 Scenario of Sensor Network Navigation System for Firefighting Robot
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sensor network deployed in the environment. The sensors are the thermometers
measuring the temperature. The robot collects sensor information (temperature) in this
way: it collects the observations from nearby sensor around it and makes decision on
movement direction by the observation from sensors and itself. Then the robot walks
along the direction until it encounters another group of sensors around it and repeats
this action until it reaches the place on fire. The firefighting robot is not equipped with
the positioning system. Hence it does not know the precise information of location

and direction of reference coordinate system.

3.1 Intelligent Decision Framework for Firefighting

Robot

We formulate the decision problem. '_:f&f--_navigation system for firefighting robot

under the intelligent decision frame\;&/orIg." We! model /the temperature distribution
induced by the fire as a potentia.l freldf (%, t): To simplify the problem, we consider
the static potential field f(x), that is, ignoring the time variance. In such kind of
problems, the intelligent devices are usually lack the information about the nature
system f(x).

Following Definition 2-1.1~1.5 and the remarks, we define the event parameter as
the direction of the fire, the observations as the temperatures observed by sensors and
the action as the robot’s movement direction. The physical quantities (states) are
defined to be the direction of highest temperature, namely, the gradient of the
potential field, to represent the temperature distribution. The correspondence of
spaces in the intelligent decision framework and sensor network navigation for

firefighting robot is summarized in Table.3.1. Note that the robot does not know the
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direction of reference coordinate system. Consequently, the above definitions are
using the robot’s own coordinate system. Because the robot’s goal is to reach the
place on fire, we define the utility function to represent how the robot is approaching
the place on fire by each decision. Then the utility function is:

u(a, 0) = cos(Arg(a) — Arg(9)) (3.1)
Arg(a) is the angle with x axis of vector @, a is the robot’s movement direction
(action), and @ is the direction of the place on fire (event parameter). We assume the
length of robot movement between two successive sensor observation collections is
unit length. Hence the utility function is proportional to the variance of the distance
between the robot and the fire. Putting (3.1) into (2.5), the optimal decision of action

a becomes:

a=arg mfxf f cos(Arg(a5 —Arg(@))_p(yls)p(sle)p(e)ds de (3.2)

.

Intelligent Decision Framework '?ff‘:.l-{.obot Navigation

Event parameter 2 | I Dir.éction.bf the fire
Physical quantity : : Gra({i:ent of temperature
Observation 2 Temperature measurement
Action Robot’s movement direction

Table 3.1 Correspondence of Intelligent decision framework and robot

navigation problem

3.2 Sensor Observation Model

We next establish the mapping ®@:S — O by constructing the observation model.
We begin by defining the observation more precisely. The observation is defined to be
the difference between the observed temperature from the sensors around the robot
and from the robot itself. The sensor is able to observe f(xs) plus noise, x is the
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location of the sensor, and robot itself can observe f(x.,) plus noise in its location
X0, thus the potential difference, f(xs) — f(x.o), plus noise is also observable.
Hence the relationship between the observations and states can be established
approximately by the aid of Taylor Expansion. The Taylor Expansion of the potential

field f(x;) of asensorin xg is:

f(xs) = f(a)

o]

o™ 0" f(Xro1,- s Xrod) (

Ax T axt ny!..ng!
nitny+-+ng=1 1 d 1 d

+

Xs1 — xrol)n1 (xsd - xrod)nd

(3.3)

where

Xs = [xsl Xs2 ---xsd]a Xro = [xrol Xro2 ---xrod':_l

and the potential difference betweendthe robot and.the sensor is

f(xs) - f(xro)

o0 ) 'E
™ 0™ f(krol';"--fxi'od) I
= Z 9x™ Sl 'In el (xsl F xrol)n1 (xsd - xrod)nd
ni+ny+4ng=1 1 d N

(3.4)
Assume the dimension d=2. If we approximate the potential difference by the linear

term, and note that the relationship between the gradient and the differentiation of the

field is
. B af af o=
f@)l, = a—xldx1 + a—xdez =z -Vf(x) (3.5)
where
z = [dx; dx;]

With Taylor expansion (3.4), when the difference between two location vectors, xg

and x,, is sufficiently small, we are able to approximate the potential field difference
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Fig. 3.2 Sensor observation model

by the first order term:

f(xs) - f(xro)
af

af .
= a_xl(xsl - xrol) + E(-ixsz . xI‘OZ)'_: (xS — er)T . Vf(xro) (36)

Then we can establish the sensor observation/model'related to the gradient (state):

f@Olet-x)| M —;ﬁf i
tn=1 1 eas 1P VF@) tn (3.7)
3 (xi:;— xro)T |/«

n is the difference of observation noise of the sensors and the robot. The robot can

y = '
f O (e ,)

infer the gradient (state) by this observation model. By this approximation model and
the distribution of m, we can derive the conditional distribution p(y|s) where
s= Vf (x). Then if we can specify the mapping ¥: @ — S, we can derive the optimal
decision mapping IT: 0 — A. Generally speaking, this mapping is usually hard to
derive directly due to the insufficient information of the unknown system. However, if
¥:0 — § is an identical mapping, this problem will reduce to traditional estimation
problem in the form of state space model. We derive the degenerate form of state

space model in the following.
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3.3 Degenerate Problem: State space model

Now we investigate the conditions for the intelligent decision problem of the
firefighting robot to degenerate to the traditional state space estimation problem.
When the mapping ¥: @ — § is an identical mapping, we are able to estimate the
event parameter by estimating the state through (3.7), which will be proved in the
following. And we can formulate the state space model based on observation model
(3.7). Consequently, to degenerate this problem to the traditional form, we must find
out the condition for ¥ to be an identical mapping.

We start by investigating f(x), which generates the mapping ¥. When we have
precise knowledge of f(x) and robot’s locéﬁon X, the relationship between state s
(gradient of the potential field) and"?y:eft ‘parameter @ should be a deterministic
function: :f =

0 = h(s,x) 2 || 5| (3.8)
h(s,x) can be determined by f(x). However, ..we assume f(x) unknown and no
available location information. Consequently, we model their relationship by
conditional probability p(s|@) according to Proposition 2-4. However, the mapping
reduces to an identical mapping under appropriate conditions. If we know f(x)
satisfies the following condition,

VF(x) = c(xq — %),

for all x, and c is an arbitrary scalar function of x (3.9
we have

p(Arg(s) = Arg(8)|6) = 1 (3.10)
(3-10) is equivalent to p(s = 8|08) = 1 when we consider the expected a posterior

utility E(cos(Arg(a) — Arg(0))|y). There are many kinds of potential field
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satisfying this condition, including electrostatic field and diffusion in free space [6].
As long as the temperature distribution could be modeled by these kinds of potential
fields, this condition holds. Then following the concept of Corollary 2-5, we can
formally prove that the optimal decision mapping can be constructed by estimating

state under condition (3.9).

Corollary 3-1: Estimating state (gradient of potential field) is equivalent to estimating
event parameter in the sense of utility function (3.1) if (3.9) (or equivalent, (3.10))
holds.

Proof:

We need to prove that under the condition (3.1-Q), we have

arg max E(cos(Arg(s’) — Arg(s)).|y) = arg max E(cos(Arg(a) — Arg(0)) |y)

As mentioned above, p(s =0]0) =1 :_Eris:-_.e.quivalent to (3.10) when calculating
E(cos(Arg(a) — Arg(0)) | y). 'Hencel. \I)ve use p_(s 0.|0) =1 instead.

The estimation of gradient is | . :

§ = argmax E(cos(Arg(s") — Arg(s)) |y)
S

= arg maxf cos(Arg(s) — Arg(s)) p(y|s)p(s)ds (3.11)
S
The maximum expectation of utility function is

max E(u(a,0))

= max E(cos(Arg(a) — Arg(0)) |y) (3.12)
= m‘?xf f cos(Arg(a) — Arg(0)) p(y|s)p(s|0)p(0)ds do (3.13)
= m‘?xf cos(Arg(a) — Arg(s)) p(y|s)p(s)ds (3.14)

The equality of (3.13) and (3.14) holds because p(s = 8|0) = 1 and thus
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p(s # 6]6) = 0

Hence

a=arg maxf cos(Arg(a) — Arg(0)) p(y|s)p(s)d@ =5 (3.15)
a

according to (3.11). Then the Corollary is proved. Q.ED

Corollary 3.1 shows that under the condition (3.9) on the potential field, the
observed physical quantity is identical to the event parameter for the utility function
(3.1). Consequently, we are able to use the linear approximation observation model
(3.7) to estimate the physical quantity (state) to make action decision without
considering event parameter.

In addition to the observation model, we proceed to derive the state transition
and formulate the problem into th@ state spaiée estimation problem. We observe that
the gradient is always point tox 4 whegevef the rebot stands on. Hence it is always

the same when the robot makes right :Q‘#éction decisions, and would not change

I

[ ]

significantly even when it makes wrong d_ifectioﬁ decisions due to the small
displacement between two obsel;vati(;n coll_ecti_oné assumed in the observation model.
Recall that the state is defined to be the direction of the destination in robot’s own
coordinate system and this relative coordinate would rotate when the robot turns its
direction, or say makes wrong decision. Hence change of the gradient’s direction
comes mostly from the relative coordinate rotation instead of the gradient’s direction
rotation in absolute coordination system when the robot makes wrong decision. We
can conclude from above observations that the direction of gradient in the robot’s own
coordinate system is the difference between in the direction of estimated gradient and

the true gradient. Then the state transition is:

—_

vf vf
s, =—=—x-1)—=—_))+tu=5s,,—-5,;1+u 3.16
n |Vf| n—1 |Vf| n-—1 n-1 n—1 n ( )
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u is a random variable accounts for the direction deviation of the robot’s movement
due to obstacles, mechanical errors or other non-ideal effects. Here we use normalized
gradient to represent its direction. x,, is the position vector of # 'th observation.

The similar navigation problem has been investigated in [5] in a simplified
version. We generalized the discrete direction selection solved by Maximum a
posterior (MAP) hypothesis testing to the continuous vector form (3.17) and relieve
the unrealistic assumptions on the observation model to derive the linear approximate
observation model (3.7). Then the firefighting robot navigation problem can be
formulated by modified state-space model with the estimation of previous state in
state transition:

Sy, =Sn_1—Sn_1 + U, (3.17.a)
Y = Hpsp + 1, ' (3.17.b)

T

i

al Ly
where H,, = |Vf (xn)| . |, & is|alse'measured in the robot’s own coordinate
& L

dy y

o=}

system.

Then we can adapt the widely used MMSE method, Kalman filter, to solve it. In
order to apply Kalman filter, we should make a further assumption to limit the error is
in a small range in which the approximation

cos(arg(a) — arg(0)) ~1 — |a — 0|? (3.18)
holds. The assumption assures Kalman filter to fit the optimal decision mapping to
maximize the utility function because it makes MMSE decision. However, (3.17.a)
and (3.17.b) is different from traditional state-space model of Kalman filter problem
due to the additional term, estimation of previous state, in (3.17.a). In fact, in many
papers, for example [32], the estimation of previous state has been applied in the
prediction problem. In [5], we solve this problem by directly applying MAP

hypothesis testing due to the discrete direction form. But when we generalize it to
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continuous direction, we should solve it by modifying solution of Kalman filter.
However, it turns out that the estimation of previous state can be regard as outside
input in solving Kalman filter. We prove this in the Lemma Al in Appendix 3. Then
with this lemma, we can solve the state space model by Kalman filter approach. The

solution is:

Prediction Phase

xr_l = En_l - ’x\n_l == O (3.19)

Py =Py 1+ Qny (3.20)

Estimation Phase

K, = P,H}(H,P;H: + R,)™! = P;HR;' (3.21)

Xn = Knyn y (3.22)
Py =(- Kan)Pﬁ "\ (3.23)
Table. 3.2 Kalman filter _ “:: 1<) .a
o

where ; : |
Q. = E(unu'rrl)J R, = E(nnanl)
We can use above equations to recursively solve our state space model estimation

problem.

Appendix 3.A State-space Model with Estimation of

Previous State

In Section 3.3, we derive the state space model of the firefighting robot
navigation problem. The state space model (3.17.a), (3.17.b) is different from state

space model of Kalman filter due to that it includes the estimation of previous state in
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state transition equation. However, in this section we show that the estimation of
previous state in state transition equation can be regarded as outside input in Kalman
filter when deriving the LMMSE state estimation.

Lemma 3.Al: The estimation of previous state in state transition equation of
State-space model is the same as outside input in the state transition equation of
Kalman filter when solving the LMMSE state estimation problem.

Proof:

The state-space model including the estimation of previous state can be formulated as:

x(n) = ®(n,n— Dx(n — 1) + ¥(n,n — D(n — 1) + u(n) (3.24)
y(n) = H()x(n) + w(n) (3.25)
Eu(n)u(s)) = Q)3 (3.26)
E(W(mw(s)) = R()3s | (3.27)

where X(n — 1) is the estimation of prevhy‘gus 's:tate x(ﬁ —-1).

Based on the innovation process 'fc'onc:ept in [1],. we:can derive the LMMSE of x(n)’s
as follows: .

Define the innovation process:

v(n) = y(n) — H(M)X(njn —1) (3.28)
And the covariance of estimation of H(n)x(n)

P,(n) = Es([z(n) — Z(n|n — D][(z(n) — Z(n|n - 1)]") (3.29)
z(n) = H(n)x(n) (3.30)

We use Eg(X) to denote the ensemble average. And we require

v(s) Lx(n) —X(n) for s<n (3.31)

By projection theory

R = ) B/ ()(P, () +R(9) v (3:32)
k=1

28



- Z Es(x(n)v' () (P,(K) + R(K)) "v(K)
k=1

+E (x(n)u'(n)) (P,(0) + R(n) v (n) (3.33)

n—-1

- K(m)v(n) + z E,([®(n,n — Dx(n — 1) + ¥(n,n — DR(n — 1)
k=1

+um)v' &) (P,K) + RK) vk (3.34)

= Kn)v(n) + ®(n,n—1X(n—-1) +

n—-1
Wn,n—1) Z Es(®(n — 1)v'(K) (P,(K) + R(K) v (k) (3.35)
k=1

In (3.34), we define

K(n) = Ex(n)v'(n))(P,(n) 4 R(h))—l

and in (3.35), we use that fact that ( ;

brt N .. | . ;
®(n,n— DX(n — 1) = &(n,n — 1) Z Eo(x(0 =1’ () (P,(K) + R(K)) v(k)
k=1

(3.36)
The first two terms in RHS is the same as derivation in [1]. Then we deal with the last

term:

Z Eq(®(n — 1)v'(K)(P, () + R(K) v (k) (3.37)
k=1

= D Ey(Ix(n = D = (x(n — 1) = X0 — DI W) (P,(R) +R(D) "v(0) (338)
k=1

Because x(n — 1) —&(n — 1) is orthogonal to v'(k) according to (3.31), we have

n—-1
Z Es(®(n — 1)v'(K) (P, (&) + R(K) v (k) (3.39)
k=1
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- z Eq(®&(n — 1)v'(K)(P, (%) + R(K) "v(K) (3.40)
k=1

=R%(n—-1) (3.41)

Put (3.41) into (3.35), we have
R() = ) Ex(9V'10) (P00 +R(D) "0(R)
k=1

=Kmv(n)+®(n,n—1DXM—-1)+¥P(,n—1)X(n—1) (3.42)
The original solution of Kalman filter based on innovation process is

X(n) = K(n)v(n) + ®(n,n — 1)X(n|n — 1) (3.43)
From (3.42), we can observe that ¥(n,n — 1)X(n — 1) can be directly added,
without alternating the terms in_the original -_forrn (3.43), to the estimation like an
outside deterministic input to the staté transitiof system: Consequently, we know that
the estimation of previous state (can ge'-%;gééyaed as oﬁtside input to the system and
ordinary algorithm solving state-space 'mou-&el .of Kalman filter is able to solve the state
space model with estimation of ﬁréviéus state Without any modification.

QED
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Chapter 4

Intelligent Decision Framework-
Multiple Obseryvation

In previous sections, the intelligenﬁéeciéion framework fuses observations of
single kind of physical quantity. Howevei, .in many ;application scenarios of sensor
network based intelligent systerflé, multipléskinds-of physical quantities may change
in response to the occurrence of anrevent. For example, fire can induce high
temperature and heavy smoke intensity, or even the number of broken sensors can be

taken as observations. Intuitively, efficiently taking the observations of more kinds of

Observation Noise

Unknown —— Physical — Sensor
System [ Quantity Observation
Event ..
(Input Decision
Signal) Observation Noise (Action)
Unknown —— Physical — Sensor
System [ Quantity Observation

Fig. 4.1 Intelligent decision making mechanism with multi-observation for sensor

network based intelligent systems (detail of decision block omitted).
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physical quantities into consideration in decision process may improve the system
performance. Traditional estimation schemes, which directly map event to observation,
are only able to solve the fusion problem of observations of the same physical
quantity from sensors with different precisions [23,28]. However, our intelligent
decision framework separates the mappings and are able to simultaneously model the
uncertain and correlation of different physical quantities and uncertain introduced by
different sensor precisions. We formulate the multi-observation intelligent decision by

extending the framework in Chapter 2 in the following.

Event sapce State space sy Event space State space D
Space Space

Physical \ Observation) Observation|

| quantity 1 . 1 ‘ 1
Event | Physical \ Observation| Event \ | Phyaical \ Observation

| | quantity 2 . 2 { quantity 1 ‘ 2
Physical \ Observation| | Observation,

| quantity 3 3 { 3

(a) \ ~ & (b)

Fig. 4.2 Comparison of (a) multiple observation infelligent decision framework and (b)

traditional multiple observation model

4.1 Optimal Multi-Observation Decision System

Model

Extending the framework established in section II, we have the following
definitions:
Definition 4-1.1: (Observation space) Observation space is defined to be the
Cartesian product of the observation spaces of each kind of observations.

Remark: Different sensors collect different kinds of observations simultaneously.
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Consequently, the observation space is the Cartesian product of the observation spaces
corresponding to each kind of sensors. According to the definition, the observation
space of multi-observation decision problem becomes 0¥ = 0; X 0, X .....X Oy, K
is the number of kinds of observations. We call OX the observation space and 0;

the sub-observation spaces.

Definition 4-1.2: (State space) State space is defined to be the Cartesian product of
the state spaces corresponding to each kind of physical quantities.
Remark: Different kinds of observations are raised from different physical quantities.

Consequently, S¥ =§; X §, X .....X Sg.

The definition of event space and.action space.are the same as single observation

decision, and also denoted by O and- A Then we can define the optimal

.-'""

multi-observation decision. - 1] A

We again use the firefighting robotwnavigation scenario of Chapter 3 with

multiple kinds of observations to elucidate the above definitions. The fire can induce

Fig. 4.3 Intelligent Decision framework : multiple observation
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heavy smoke and high temperature in the environment. If there are two kinds of
sensors, thermometer and the smoke detector, in the environment, the firefighting
robot is able to collect two kinds of observations, temperature and smoke density.
Then observation space 0, is consist of temperature observations, observation
space 0, is consist of smoke density observations, and the observation space for
decision is 0% = 0, X 0,. Similarly, §; is temperature and S, is smoke density.
The event parameter and action is the same as single observation case. Based on

above definitions, we have the definition of optimal multi-observation decision:

Definition 4-2: (Optimal multi-observation decision) The optimal multi-observation

decision mapping is the mapping Il: 0%, — A.thatmaximize the a posterior expected

utility function E(u(a, 0)|y1,¥2, iYx)

l

We expand the a posterior expected utility

function
E(u(a' 0) |y1' Y25 s yK)

- f (@, 8)p(Bly1, Y30 ) y)d6

:fo u(a, 0) (J; P

...fp(yl,yz,...,yKlsl,sz,...,sK)p(sl,sz, .., Sg|@)ds, ...dsK>p(0)d9

K

(4.1)

And the decision mapping is decided by maximizing (4.1)

maaX E(U,(a, 0)|y1; }’2; ---ryK)

= maxf u(a, 8) (f

a 0 $1,52,-4SK
= max f u(a, 9) f

a 0 51,82,

...fp(yl,yz, v, Yk|S1, 82, o, SK)P(S1, S2, o, Sk |0)ds, ... dsk )p(e)de

K
o[ T Tpoidsopisuisa . scl6dds, ..dsi )p(e)de
i=1

SK

(4.2)
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In (4.2), we assume

PV, Y2 - ViIS1, 82, 0, SK)

K K
=[ [pilss sz s =] [p0idso (43)
i=1 i=1

which means that given the states, the observation of each state is independent, and
the observations are independent with other states excepted the corresponding state.
Hence the mapping @®:S¥ — 0¥ can be separated in to independent mappings
®;:S; - 0;. This is quite reasonable because each sensor observes each physical
quantity (state) independently and would not be affected by other states. However,
although it is reasonable to assume the independence of the conditional probability
p(y;ils;)’s, the independence among physica_l quantities given the event parameter
does not hold in general. For exémple, in thésscene of fire, the place with high
temperature will have high smoke derll.si-ixz-l\f\_f:i_tl.l high p.robability. Generally speaking,
the physical quantities changed' by 'the w§ame ievent are highly correlated and the
correlation is too complex to d'éfiveé directly. .Hence, we develop the “Observation
Selection”, a decision mapping to optimaliy sélect one observation to make decision

without considering the correlations among the physical quantities.

4.2 Observation Selection

In order to avoid dealing with the correlations among the different physical
quantities, Observation Selection scheme selects the best observation according to the
utility function and makes decision by this selected observation. In Observation
Selection, we reduce the general optimal decision of multi-observation problem into

selection of a best observation among all kinds of observations to make decision.
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(Fig.4.4) We first define the sub-decision mapping:

Definition 4-3: (Sub-decision mapping) The sub-decision mappings are defined to be
the mapping from each sub-observation space 0; to action space A that maximize
the a posterior expected utility function E;(u(a, 0)|y;).

We denote the sub-decision mapping by

[1,:0, - A

Then the expected a posterior utility E; for sub-decision mapping II; is

(@ 0)1y) = | [ u(@ 0)pilsdp(si0p(©)ds; o (4.4)
And the mapping II; is decided by

@ = maxE; (u(a, 0)y) \ % (4.5)

(4.4) is the same as the single obsengt:iqn-f_ expected-a posterior utility except the
observation indices. The mapping cotllsi;d,;_féh here is_ S; > 0; and © - S; instead
of ¥ > 0¥ and @ — SX. | -

Sub-decision mapping divides:the obsewatioﬁ space into individual observations
and makes decision by those sub-observation spaces separately. Observation Selection
is the decision scheme to select the best sub-decision mappings. Following the
definition of sub-decision mapping, we formally define Observation Selection as

follows:

Definition 4-4: (Observation Selection) Observation Selection is the decision mapping
that has the largest a posterior expected utility function among all 11;,i =1, ..., K

Then the optimal decision mapping Il of Observation Selection is:
i* = arg max (max E;(u(a,9) |yl-))
l a

IT= Hl’* (4’6)
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Expanding the maximum expected a posterior utility, we have

max max E; (u(a, 0)|y;)
L a

= maxmax [ [ u(a 0)pGilsp(si6)p(@)ds; 40 (47)

When applying Observation Selection, instead of combing all observations and fusing
them to make decision, we select the “best” observation to make decision due to lack
of the information regarding correlations among states. For example, the firefighting
robot using Observation Selection first chooses among the observations from

thermometer and smoke detector then makes decision by the selected observations.

Optimal Decision Mapping

Observation 1
<

Observation 2
<

Observation 3
<

Fig. 4.4 Comparison of optimal decision and Observation Selection

We next investigate under what conditions the Observation Selection being
equivalent to the optimal decision mapping. Denote the index of the sub-decision
mapping that has the largest maximum expected a posterior utility by i*. Intuitively,
if the observations other than the selected one do not provide information when
making the decision, the Observation Selection is optimal. In other words, the

conditional mutual information of event parameter and the observations other than the
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selected  one given  the state of  the selected  observation,
(Y1, 0, Yir—1, Yit41 - Yk 0]8i+) , is zero. In order to prove that conditional mutual
information being zero is the sufficient and necessary condition for optimality of
Observation Selection, we prove the following lemma first:

Lemma 4-5. 1Yy, w0 Yire1, Yits1 - Vi 018;+) =0 is equivalent  to
PV, s Yir—1, Vit 41 -, Yk |0, 8;+) being const with respect to @ and s;-.

Proof:

Y1, s Vim0, Yite1 -0 Vi 0154+)

_ Z p(y Vior Vi Vi, 0 S-*)10g< P s Vi1, Yira1 0 Vi 015%) )
L AR T e T T PV s Vi1, Yirs1 - Yi|S-)P(O]5+)
YiYiF—1YiF 41-9YK 0,8
=0 (4.8)
Hence

p(yll""yi*—lfyi*+1 ""nyelsi*)._ !
PV s Y1, Virer - Y ISi)p(O1si). ) [~

-
g—

= p(y1' v Yir-1 Yir+1 ""yKIBJSi*) o e

POV1, o Vi1 Virsr - WS | | 8|\ s 9
Then =
PV ) Vi1, Yitt1 -, Vi |6, 5i+)
=PV1 s Yirm, Yirwr -0 Y|Siv) (4.10)
=p(Vy s Y1, Yirt1 ) Vi) (4.11)

(4.10) is due to (4.9). (4.11) holds because the observations depend only on its
corresponding state and is independent of other states. p(¥q, ..., ¥i*—1, Vi 41 - Vk)
is a constant with respectto 8 and s;=.
QED
We proceed to prove that I(yq,..,¥i*—1,Yi*+1 - YVk; 015;+) =0 is the
sufficient and necessary condition for optimality of Observation Selection in the
following theorem:

Theorem 4-6 Observation Selection is equivalent to optimal decision mapping if and
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OI’lly lf 1(}'1, o Y- Yire1 - YK elsi*) =0
Proof:

From Lemma 4-5, we know that if 1(y, ..., ¥i*—1, ¥i*+1 -, Yk, 015;+) = 0, then

PYV1s s Yirm1, Virs1 o, Y16, 8%) =

j f 1_[ p(yilsi) - p(S1, o) Si* 21, Si7 41 -, Sk 10, 52)dsy . dsp_1dspy g .. dsg

i=1,i#i*

(4.12)
is a constant with respect to 8 and s;+. We first prove the “if” part and then the “only
if” part.

1. “if” part
The a posterior utility of optimal decision mapping is

maaX E(U,(a, 0)|y1; }’2; ---ryK)

o

= maxf u(a, 9) (f fnp yllsl) p(Sy, 85, .., Sk|0)ds, ...dsg >p(0)d0
a Jo 51,52,

(4.13)

K
j f np(yl-lsi) p(s1, S5, ..., Sk|0)ds; ...dsg
§1,52,.58 i=1

K

p(s1, 82, ..., Sk|0)
= [ poelsipts: |e><f f POl ST sy sy - dsy | dse
Si* i*

i=1,i#i*

(4.14)

p(s1, 83, ..., 5¢10)
lp(i. |0)K = p(sli ey S 1, Si* 41 ---,SK|0, Si*) (415)
l*

Hence if

j f 1_[ p(yils)) - p(S1, s Si+ 21, Si7 41 -, Sk 10, 52)dsy . dsy_1dspy g .. dsg

i= 1l-‘.tl
is a constant, denoted by ¢, with respect to @ and s;+, then put (4.15) into (4.14),
we have
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K
j f np()'i|5i) p(s1, 82, ..., S5k|0)ds; ...dsk
51,52,-SK i=1

= [ prls il as (4.16)

Si*

and by put (4.16) into (4.13), the a posterior utility of optimal decision mapping

becomes

max [ u(@,0) [ pOvelsi (s 10)c - ds; ) p(8)o

= maxc j j u(a, 0)p(ye-si)p(s;-10)ds,p(6)de (4.17)
six,0
= max f f u(a, 0)p(ye-ls;)p(s;-18)ds,p(6)de (4.18)
six0

(4.18) is identical to the maximumyia posterior. probability of Observation Selection in
(4.7). Hence we have proved that the Wq_decision mappings are equal.

2. “only if” part

E(u(a, 0)|y1,y2 ) ¥k)

=maxf u(a, 9) j
a Jg 51,852,008

= max j j u(a, 0)p(ye-si)p(s,-10)ds,p(6)de (4.19)

si*,G

K

'K :
f I—Ip(yilsi) D(S1, S5, ) Sk |0)dsy ... sy )p(@)d@
i=1

Because the equation is true for any utility function u(a, @)

‘fSl,Sz,...,S

K
e f H p(yllsl) p(Sp SZ; ey SKle)dsl - dSK
i=1

K

—c | pOelsIp(sr16)- ds (4:20)
Si*
Differentiate with respect to s;+, we have

c-p(yilsi)p(si+|0) =
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b lsipCsielo) | . | ﬁ pOils)

i=1,i%i*
- p(S1, e, Si*—1,Si*41 -, Sk|0,8;+)dS; ...ds;«_1dS;+ 1 ...dSk
(4.21)
c is constant with respect to s;+ because the terms in (4.20) except ¢ are function of
y;’s. Consequently, c is not a function of ;.
Hence
K
ff l_[ p(y;ls;) - p(sy, .., Si*—1, Si*4q -, SK10, S;+)ds; ...ds;«_,ds;« 4 ...dsg
i=1,i#i*

is constant. QE.D

Theorem 4-6 is an intuitive! result/®f the concept of mutual information. Mutual
information I(X;Y) is the reduction in.‘.che‘:_:;uér}_:c__e.rtainty c;f X due to the knowledge of Y
(or uncertainty reduction of ¥ dug to kr?ox;fé(-ige 'of X).. Hence Observation Selection is
optimal when the knowledge of ‘the <:)bservatioﬁs except the selected one are not able
to reduce the uncertainty of the event p.arar.neter given the state of the selected
observation. Zero mutual information also implies the independence of the two
random variables. Hence we also know the optimality condition of Observation
Selection can also be stated as the event parameter conditioned on the selected state is

independent of the other observations.

4.3 Cramer-Rao bound

Although we can avoid dealing with the complex correlation structure between the

states by Observation Selection scheme, the selection rule (4.6) is still tedious. We
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know that Cramer-Rao bound is the performance bound of a estimation problem in
the sense of MMSE. Hence we can select observation by comparing the Cramer-Rao
bound of each observation instead of directly calculating the expected a posterior
utility. The most important advantage gained from calculating Cramer-Rao bound is
that the calculation complexity is significantly reduced.

We denote the index of selected observation i*, the same as (4.6). We first
investigate scalar case. Deciding i* from (4.6) is equivalent to select the observation
with the lowest Cramer-Rao bound if the following conditions hold:

(1) Utility function u(a, 8) is second order. That is,

u(a,0) =k —c(a — 6)? (4.22)
where k is a constant. This condition is necessary because Cramer-Rao bound is the
bound for the square error.

(2) The estimator is unbiased. This isl;.ftﬁg‘;?;:_céssary c.ondition to apply Cramer-Rao
bound. : |

(3) The efficient estimation exists for the.observation with lowest Cramer-Rao bound.

Observation Selection by Cramer-Rao bouﬁd can be formulated as follows:

_1 B
i* = argmin| E 9Inpyi6(¥i,6) 2 = argmin | E 0% Inpy,0(yi,6) 1
1" =arg p 0 90 = arg ) 0 502

=1, (4.23)

We can calculate py, (y;,6) by (2.3), that is

Pyu0 00) = PO1IB(®) = [ pilsp(silOIp(O)ds: (4:24)

Instead of directly calculating the a posterior expectation of utility function and
taking its maximum, Observation Selection by Cramer-Rao bound calculates the
expectation of the logarithm of the probability, which may simplify the calculation

procedure.
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Then we generalize it to vector case. Cramer-Rao bound for vector parameter is

2\ —1
2=/ = (Ee {6 In pyg(;(}’i' 9)} )

92Inp, (¥, 0))\
=<E9{ npg‘é”z(y )}> (4.25)

where X; is the covariance matrix of the estimators for @ by observation y;, J;(0)

is the Fisher information matrix [4]. And the Observation Selection by Cramer-Rao

bound becomes

i* = argminJ;(0)™"
l

1=, (4.26)

In order to apply Fisher information matrix; we need to generalize above conditions

for Cramer-Rao bound to vector-parameter .c.ase. Hence we formally formulate the

conditions for generalized case‘into follqyyjpg_ lemma:=

Lemma 4-7: Observation Selectiondone bimF -z:'sher info_rmation matrix (Cramer-Rao

bound), (4.27) is equivalent to Observdtio;;-Selection if the following conditions hold:

(1) u(a,0) = k — x"TxT, x is arbitrary vector: k.is arbitrary const
r=(@-6)"a-0) (4.27)

(2) The estimator is unbiased.

(3) The efficient estimation exists _for the observation with lowest Cramer-Rao bound.

Proof:

We state (2) without proof because it is the conditions to apply Cramer-Rao bound

and achieve it. We proof (1) here. Denote the expected utility function for

sub-decision mapping I1; in Definition 4-3 by Eu.

The inequality in (4.25) means that the difference of the two matrix is positive

semi-definite. Consequently, for arbitrary vector x, if (3) is satisfied, we have

Eju=E;(k —x"Tx) =k —x"Z:xT =k —x7]+(0)x (4.28)
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Then for other ;,
Eu=k—xTZxT <k —x7J;(8) 1xT
<k-x"J+(0)"x = Epu (4.29)
This condition is equivalent to Observation Selection (4.6).
Q.E.D

By computing the Cramer-Rao bound to implement Observation Selection, the
intelligent systems are able to make decision on multiple observations more efficiently.
Although multiple observations are able to improve decision performance by
providing more information, to optimally fuse those observations, the complexity and
necessary knowledge for decision process may be significantly increased. Comparing
to optimal decision and ordinary Observati_o_n Selection, Observation Selection by
Cramer-Rao bound significantly redue the complexity of decision process. However,
this scheme reduces the computatiorll.al-xiggr_;}ﬁlexity ét the cost of more restrictive

2 x

. . .. . I
application conditions as mentioned above!!

4.4 Optimal Ratio Combini.ng

Observation Selection utilizes multiple observations to improve performance
from single observation by selecting the best observation to make decision on this
observation independently of other observations. In fact, data fusion schemes to
combine observations from different sensors to enhance the estimation performance
are investigated in many works on distributed estimation [35]. Diversity schemes
applied in communication systems to resist fading effect by receiving multiple signals
to detect the transmitted signal [37]. In most of those works, the different observations

are independent and restricted to specific forms, such as scaling the signal and adding
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noise, to derive the optimal combining coefficient. However, in the scenario
considered in this paper, observations are different physical quantities. It is not
reasonable to directly combining the observations. Consequently, under the intelligent
decision framework, we propose the Ratio Combining scheme to combine the
decisions in each sub-decision mapping (4.5) instead of directly combing the
observations like traditional weighted combining (Fig.4.5). Unlike Observation
Selection selects the best decision among all sub-decision mappings, the decision of
Ratio Combing is the linear combination of the decision of each sub-decision

mapping. Ratio Combining can be formulated as follows:

K
a= ) frargmaxE(u(a, 0)]yy (4:30)
i=1 ' oF B

Observation Selection is a specialdease of Ratio Cbmbining achieved by setting

o

/" I-"h "\ s Nl
Bi» = 1 forthe i* satisfying (4.6) andfbﬁ_]g_eﬁiﬁi'i’s zero.
' I - | |
Observation 1 Weighted Combining
) ” (N
Observation2 Combining - Action
<€ > Space
Observation 3
< >
_. : . Ratio Combining
Observation 1 { \ ~ Action
< > Space (1)

Observation 2 / \ Action Combining
<€ > ' Space(2)

Observation 3 { \

<€

v

Fig. 4.5 Comparison of Ratio Combining and Observation Selection

The Ratio Combining is optimal when the action a decided by the set of £;’s is

equal to the action a decided by the optimal decision mapping. To simplify the
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formula, we assume the prior probability is uniform and the utility function is delta
function:
u(a,0) =5(a—0) (4.31)

Then the coefficients f; of Optimal Ratio Combining can be derived by:

K
0= arg max <f f np(yilsi) p(54, 83, ..., 5k|0)ds; ...dsg )
51,82,-..8K i=1

K K
= Bi-8i= ) fi-argmax [ pOilsop(silods, (432)
i=1 '

Si

i=1

If we further assume the distribution

fs ST p(ilsi) p(s1, 52, ..., 5¢|0)ds; ... ds, and fsi p(yilsi)p(s;0;)ds;’s are

1,52,0SK

convex, like multi-variant normal'distribution, we can.derived B;’s by solving the

following integral equations:

d 88—

(| pOulsOpCsi10)ds: ) 1geg, | 0 (433)

dei S / | l': { 3

d K gk y | i

10 f ...fl_[p(yilsi) p(Sy; S5, -, Skl0)dsy ...dsg |]g=p =0 (4.34)
S$1,52,SK i=1 .
K

0= Z 8,8, (4.35)
i=1

Theoretically, knowing the distributions, we can solve f;’s by above integral
equations. However, since current methods can not derive a general close form
solution and dealing with specific distribution is not the goal of this paper, we leave

the solution of Optimal Ratio Combining to the future work.

4.5 Fuzzy Logic
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Fuzzy logic is widely applied in control problems based on sensor observation
[17,18]. Fuzzy controller to decide control action on sensor data can use the fuzzy
inference rule call generalized modus ponens, which is constructed by fuzzy
conditional statement [2], follows by the defuzzification procedure. The fuzzy

inference is in the form:

Fuzzy conditional statement IF (x is A), THEN (y is B)

Fact xis A’

Conclusion yisB’

Table 4.1 Fuzzy conditional statement inference
where x and y is a variable from set X:and Y;and 4;4°,B and B’ are the fuzzy sets on

X and Y, respectively.

p— m
!

To compute the fuzzy sets, we can fonnutg_;crghe fuzzy conditional statement by the
fuzzy logic relation [33]: | | T

R(xy) = I(AG), B)) ., & el (4.36)
where A(x) and B(y) is the member functi(.)n of fuzzy set 4 and B, and I is the fuzzy

implication function. And the member function of B’(y) is
B'(y) = sup min(A’(x),R(x,)) (4.37)
x€X

Then the defuzzification procedure is performed on fuzzy set B to decide the control
action of the controller.

The fuzzy logic relations applied in fuzzy logic controllers are often constructed
in the experience based argument with less strict-sense mathematical structure in most
applications. However, following this structure with some modifications, we can
degenerate Observation Selection to a fuzzy logic controller based on concrete

mathematical structure. The fuzzy conditional statement for our problem is
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IF (x is A), THEN (y is B)
Where x is the variable observation space and y is the variable from action space. 4
represents the value in observation space, and B represents the value in action space.
Note that 4 is an ordinary singleton set instead of fuzzy set. B is the fuzzy set with
one element, and the element is decided by (4.5). Then we define the fuzzy relation to

be the function of Cramer-Rao bound:

1
0y (x;,0))°
E o0
R(x;,y) = - 1 (4.38)
=1 2
] . Jln px]_,g(xj, 9)
00

K
J=1 {alnpx ,,e(xj,e)
E J

> 1S the normalized term to restrict the summation of Cramer-Rao
i

bound factor to 1, which is necessar)./ toiile derivatioﬁ of the center of area (COA)
deffizification procedure in the follonin;.'_'%._K- 1§ the number of kinds of observations.
Note that the dependence of the ﬁizz;f relation bn.y is eliminated because Cramer-Rao
bound does not depends on which action .the.system decided. By this definition of
fuzzy relation, the degeneration is equivalent to Observation Selection when
conditions for Cramer-Rao bound stated previously hold. And each observation from
a particular sub-observation space is one fact:

x;is 4;, i=1,...,K
A; is also a singleton set. Hence we have the member function corresponding to each
conclusion

B;(¥) = supy,eo, min (A;(x;), R(x;,¥)) = R(xy;,y) (4.39)
The last equality is due to the fact that 4; is an ordinary singleton set. x,; denotes the
value of the element in 4;. Then the defuzzification procedure can decide the control

action by choosing y with the largest value of member function B;(y)’s in all fuzzy
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set B,’s.

To summarize, the fuzzy rule degenerated from Observation Selection operates
by establishing fuzzy conditional statement by the sub-decision mapping (4.6) and
defining its fuzzy relation by Cramer-Rao bound. Then the defuzzification is done by
choosing the element with largest value of member function. Note that in the
degenerated case, the conditions stated previous for applying Cramer-Rao bound must
be satisfied. Moreover, if the condition (4.8) is also satisfied, the fuzzy logic
controller is also equivalent to optimal decision (4.2).

On the other hand, we can construct another commonly used defuzzification
procedure, center of area (COA), based on Ratio Combining. Similar defuzzification
procedures have discussed in many werks _[-_33,34]. The COA method defuzzify a

fuzzy set A whose member functionds A(x) by the tollowing formula:

N N
Hence we can decides the control alcltion'z:‘by _cbmputing v, from member functions
B;(y)’s:

K
B' = U B;,hance B'(y) = max B;(y) (4.41)

=1

_ 2,y B'() _ 1y Bi()
ETYB (M) 2K, BO)

y; 1is the only element with nonzero member function in set B;. In fact, if we put (4.39)

(4.42)

and (4.38) into (4.42), the defuzzification procedure is equivalent to Ratio Combining
with the coefficients determined by Cramer-Rao bounds. Hence we have the

following proposition:

Proposition 4-7: The fuzzy logic control with COA defuzzification procedure can be

derived from Ratio Combining with coefficients being inverse proportional to
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Cramer-Rao bound of each observation.
Proof:
The construction of fuzzy logic control follows the above derivation. We focus on the

proof of the equivalency to Ratio Combining.

K
Jo = Y v Bin) _ Yy ROg, v) _ Zy' _ R(x4:, 1)
: LB Y RO v2) = l Zﬁ-{ﬂ R(xAj: }’i)

Vi + RCeai vi) (4.43)

I
.M”

i=1
(4.43) has exactly the same form as Ratio Combining (4.30), where notation of the
decision of each observation is replaced y;. By (4.38), the coefficient of Ratio
Combining is inverse proportional to Crame_r-Rao bound. Consequently, the fuzzy
logic control with COA défuzzifidation procedure ecan be derived from Ratio

Combining.

=W

Q.E.D

To sum up, many fuzzy logic C(;ntrollers fnake decision on multiple observation
by selection or establishing a series .of .rules (fuzzy conditional statement)
corresponding to possible combinations of observation outcomes. Those ideas in
essence are almost the same as the fuzzy logic controller with two different
defuzzification procedure presented above. In those fuzzy logic controllers, the
mapping between multi-dimensional observation space to action is reduced to finite
possible combinations mapping or the selected one dimensional mapping. The
selection or combination rules are usually derived by the arguments based on
experience or experimental results. However, in the derivation above we have shown
that the fuzzy inference based on fuzzy conditional statement is able to be established
with concrete mathematical structure on the basis of our intelligent decision

framework. Moreover, this also implies that much of the fuzzy controllers based on
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the fuzzy conditional statement are the special cases degenerated from the general
decision in our intelligent framework. For example, the fuzzy logic controller derived

above is a degenerated case by the condition of Cramer Rao bound mentioned above.

4.6 Performance Comparison of Observation

Selection and Ratio Combining

Now we try to compare the performance of the above two defuzzification
procedures, which are indeed the Observation Selection and Ratio Combining with
Cramer-Rao bound coefficient (Ratio/Combining in brief). In fact, this Ratio
Combining is a special case which-igneres the.cottelation among observations while
takes the quality indicated by Crami?r_.a:R.ao bound ‘into consideration. We do not
include correlation information winto| R;;Elo Combin_ing because we compare its
performance with Observation _Selection,-:-which 18 assumed to be operated in the
circumstances of no correlation " information. T(I) be consist with the Observation
Selection and Ratio Combining section, here we use the original notation, observation
0;’s and action decision a, to substitute the notations, x4; and y,. To enable us to
apply Cramer-Rao bound, we assume the conditions in Lemma 4-6 are satisfied. Then

the condition (4.27) implies that the conditional mean minimizes the expected utility

function [9]. Consequently, the decision of the Observation Selection becomes:
aos = E(010:) = [ 6p(010;) o (4:44)

And the decision of the Ratio Combining becomes
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1
dInpg,¢(0;,0) 2 1
L E(0|0;)) X ————
E{ 90 K E@I0) X e —0)
Arc :Z = 1

K 1 K

E(08]0;) x

T ampe(0,0)) T TVag(6-0)
30
K
_ Z E610) _ (4.45)
=14k Vari(B - 0)

J=Li# Var (B — 8)
Varj(O 0)
To simplify the problem, we make the assumption that the efficient estimator exists

for all observations and derive the second equality in (4.45). The optimal decision is
a,pe = E(0]104,0,...,0y) = f 0p(6|0,,0,,..,0,)dO (4.46)
We compare the difference of mean Squarc - error (MSE) to optimal decision,
E(aOS — aopt)2 and E(arc & aopt.)z,._to infer“which of Observation Selection and
Ratio Combining makes better decisic;ﬁ %&in.more utility. In fact, the difference of
mean square error is proportional to Iexpé:'i:ted'utility. function which contains only
square terms and constant. Hénce we, apply it to performance comparison. We
investigate the comparison by a simple example of two observations with Gaussian

distribution. Assume the distributions of observations conditioned on parameter are

normal distributions and bivariate normal distribution:

P(0,]0) = ! (— M) (4.47)
1 = Voro, exp 207 )
P(0,0) = — (0, — 0)° 4.48
(0] )_\/ﬁazexp<_T‘22> (4.48)
P(0,,0,|0) = ! —exp <— (0~ 9)”;_1(0 — 9)> (4.49)

21|A|2

|A| is the determinant of A. And

Where o=[0; 0], A =[ o1 Vglgzp],
)

V0102pP

assume the prior distribution of 6 is
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1 02
0) = exp| —=— 4.50
p(O) = = p( 2%2> (4:50)
Then we have the a posterior distributions
11
\ \ 0, —6)> 6?2
P(0|0,) = 210y Zﬂagexp _( 1 2) -
p(Ol) 20-1 20-9
2
1 o5
= k(0,)exp [— 20%1 IB - o . oll } (4.51)
11
\ V 0, —0)2 02
P(0]0,) = 2To, 21‘[0‘9exp _( 2 2) -
p(OZ) 20—1 2(79
o5 2
= k(0,)exp{— 20%2 IH - o2+ 7 . ozl (4.52)
11 _
1
_2m|Alz V2T (e i 62
P(0|0,,0,) = p(01.03) expl(’= 2‘(o . Q) A (o 0) 207
‘al = iy 2
1 (?1 J 01 + 02 02 2
= k(04,0,)exps — 201 = 02)012)12 [9 T (;‘15 = 0-10'—2/p + 0_—22 Op12 (4.53)
Where

, (1,1 1 L i
op1=|=S+=)] ,o5=|=+—=]| ,
N\ef oy P \ef op

-1
, (1 2 N 1 N 1

e T\e? @y o (1= p?)

Observing that (4.51)~(4.53) are all in the form of normal distribution, we can derive

the conditional mean of each distribution:

%%

E(®|0, = =——. 4.54
( | 1 01) 0% + 0_12 01 ( )
1 1\7*'
Var(G)lOl) =\—== + - (455)
01 Oy
E(0]0, = 0,) = % (4.56)
2=02)= 05 + 07 02 '
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1 1\"!

2 0

0, 0i+0, o0,
E(0]0,,0,) = [ % -2 772, 72 ;2 (4.58)
b2 (012 Uﬂz/p 022) piz

-1
1 2 1 1
Var(0|0,,0,) =(1—-p)ot =1 -p)|5—55—+—=+— 4.59
ar( I 1 2) ( p)o-p ( p)<0_12 0—10—2/p+0'22+0'92> ( )

Then we can derive the s, Gre, and agpe (Assume that of < 05):

2
Op
aos = E(0]0; = 0) = o2+ o2 01 (4.60)
g T 01
2 2
Oo Oo
2 . .
Y- Z E(6]0;) o5 +0af o1 o5 + 05 02
J=LI*Var; (6 — @) Var, (6 — 9) Vary (6 — 0)
0% . —0-5 ) : .'—0% 0 —O-g +0
ot +ag2 ! o + 02 2 oi4 o2 ! ot+0?2 ?

=N e\ * 1 1
S LANYR <—z+—z> <_2+_2>
o7 | od e 93 % SRS

. CP W UEC =) e . VAR TR S i VA

) 1 2

0

2
1 —T
1,1 SR @2 (5+2)
oy 0f o - 092: Vs, & 92 9
o (A TS Por (1 1
of +of\of of ' of +o7\oy 0f
1 1 1 1\ 7T 1 1 1) 2
<2+ 2>+<2+ 2) <2+ 2>+<2+ 2)
1 2 2 Og 0, 0 1 2
(4.61)
01 01+0, 05\,
_ (0, 01t0; 02 4.62
aopt (O_lz o'lo'z/p 0_22> 0-p12 ( )

The difference of mean square error, E(aOS—H)Z—E(aopt—B)Z and

2 . . . .
E(a,. — 0)? — E(aopt — 9) , with respect to variations of observation variance and

correlation are shown in Fig.4.2. In Fig.4.2(a)(b), we set the variance of observation 1,
o2, fixed to 1 and change the variance of observation 2, g2, while the correlation

coefficient p is fixed. In 4.2(c)(d), we set the variance of observation 1 fixed to 1 and
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change the correlation coefficient while the variance of observation 2 is fixed. Note
that the smaller distance implies better performance. The figures show that when both
observations have similar variances and nearly independent, Ratio Combining notably
outperforms selection scheme (Fig.4.2(c) and part of (a)(b)). If the difference between
the variances of two observations is not significant, Ratio Combining is still better
than Observation Selection when the observations are nearly independent (Fig.4.2(a)).
On the other hand, if the observations are highly correlated or the difference between
variances is large enough, the performance of Observation Selection can achieve or
even exceed the performance of Ratio Combining (Fig.4.2(b)(c)(e)). Then we have

the following remark.

Remark 5-1: The numerical resulf of above, performance comparison in low

correlation region shows that . = | |

1) Diversity gain dominates—the pe.rfo.l-"_';}_mnce comparison when the correlation
among observations is low and th:e variancés of observations are close.

2) The inferior observation diminishes thé di\.)ersily gain when the variances among
observations are significantly different.

These characteristics coincide with the intuitions which are able to establish
common experience-based decision rules for multiple observation. However, under
intelligent decision framework, we mathematically demonstrate the validity of those
intuitive rules and relate the observations from the numerical results to widely-used
multiple observation decision schemes such as diversity or selection.

Besides the above discussion of performance comparison in ordinary region, the
abnormal behaviors in extreme region also can be well interpreted. In intelligent

decision framework, optimal decision takes correlation among observations into

consideration while Ratio Combining and Observation Selection ignoring it. This
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results in two abnormal and opposite behaviors of performance comparison for the
extreme cases in which the observations are highly correlated. Ratio Combining and
Observation Selection both approach the optimal performance when two observations
have the same variance and highly correlated (Fig. IV-2(c)). In fact, when correlation
coefficient approaches 1, the two schemes are almost equivalent. However, when the
observations are highly correlated and variances are different, the estimation error of
optimal decision approaches zero and the mean square differences to optimal decision
of both Ratio Combining and Observation Combining jump sharply (Fig. IV-2(d)).
This is due to the correlation gain, which utilize the correlation to enhance estimation

performance in contrast to the diversity gain by independent observations. In fact, the

< ALY

56



Difference of MSE to Optimal Decision
(Correlation Efficeint=0.2)
= = = (Observation Selection Ratio Combining
018
0.16 N
014 +—N
b
0.12 <
“
0.1 -
.
0.08 e -
T
0.06 ]
- —
0.04 e p—
0.02 T T e =
0 -
1 14 1.8 22 26 3 34 38 412 4.6
Variance of Observation 2
(a)
Difference of MSE to Optimal Decision
(Correlation Efficeint=0.5)
= = = Observation Selection Ratio Combining
012
\
0.1
\
0.08 x
\
0.06 n
A
0.04 > e
b /
ﬂ-oz w
= -
0 'mm
1 14 1.8 22 26 3 34 38 42 46
Variance of Observation 2

(b)

Fig. 4.2 Difference of MSE to Optimal Decision (a),(b) the correlation coefficient
fixed.
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Fig. 4.2 Difference of MSE to Optimal Decision (c),(d) the variance of
observation 2 fixed.
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correlation gain enables optimal decision to achieve perfect estimation as the

correlation approaches 1. Then we have the following remark:

Remark 2: For the highly-correlated observations

1) When the variances of observations are the same, the performance of Observation
Selection and Ratio Combining both converges to optimal decision as the
correlation approaches 1

2) When the variances of observation are different, the error of optimal decision

converges to zero as the correlation approaches 1 due to correlation gain.

Difference of MSE to Optimal Decision

(Variance of Observation 2 =3)

= = = Ohservation Selection Eatio Combining

0.08
0.07 H~—r
- .
0.06 -
L
S
005 —— L

-
T
0.04 =
.
\_
0.03

0.02 =

0.01 =

0 -
I s B e e |

0 01 02 03 04 03

Correlation Coefficient

Fig. 4.2 Difference of MSE to Optimal Decision (e) The segment from (d),
coefficient range 0~0.6 is highlighted.

We can intuitively explain the performance enhancement by correlation gain stated in
Remark 2-2. Consider the extreme case, correlation coefficient is 1 and variance of
observation 2 is 3. The noise added on observation 2 is exactly three times of noise
added on observation 1. Then the difference between two observations is exactly two

times of noise added on observation 1 and we can derive that noise and the event
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parameter, 8. Consequently, the optimal decision taking the correlation coefficient
into consideration is able to estimate exact value of the parameter 8 while both Ratio
Combining and Observation Selection are unable to do so due to ignoring the
correlation among observations. This explains the jump in Fig. IV-2(d). To sum up,
the performance comparison analysis under intelligent decision framework broaden
the scope of multiple observation diversity and correlation gain and explain them

more precisely.

< ALY
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Chapter 5

Multi-Observation Sensor
Network Navigation System for
Firefighting Robot

We extend the application example of firefighting robot navigation problem
presented in chapter 3 to multi-observation case by the framework in chapter 4. Now
there are more than one kind of sensor observations, such as temperature and smoke,

can be collected by the firefighting robot. We formulate the problem as follows.

5.1 Multi-Observation Intelligent Decision System

Model

Under similar definitions as chapter 4, we can formulate the optimal decision by
(4.2):
a=arg max E(cos(Arg(a) — Arg(0)) |y, Y2, > ¥Yx) (5.1)
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= arg max f cos(Arg(a)
a
0

— Arg(0)) <,L 82,008

K
f [ [oils) piss sz .. scl0)ds, -.dsi ) p(8)d6
i=1

K
(5.2)

There are K kind of observations, y4,¥s, ..., Yk, collected by the decision system and

those observations corresponding to different states, sy, S, ..., Sk.

Similarly, Observation Selection becomes

i* =arg max (mjlx E;(cos(Arg(a) — Arg(0)) |yl-))

=1l (5.3)
For the optimal decision, the firefighting robot fuses all observation, including

smoke, temperature, etc, by the joint distribution p(sy, S5, ..., Sk|0). On the other

hand, Observation Selection is done by s_.e:lfctio'n of the-individual best observation for

-
——

each direction decision.

5.2 Degenerate Problem: Fuzzy'l.ogic Controller.

The multiple observation intelligent decision procedure can be degenerated a
fuzzy logic controller under specific conditions as mentioned above. We demonstrate
this by the firefighting robot example. For simplicity, we only present the
defuzzification procedure utilizing selection while the COA defuzzification procedure
is in almost the same formulation. Consider the observations to be temperature and
the density of the smoke. Denote observation of temperature to be system 1, and
observation of the density of the smoke to be system 2. We assume the condition to
apply Cramer-Rao bound to Observation Selection holds. In order to satisfy the

conditions, we also make the same assumption as the approximation (3.18) in chapter
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3. Follow the procedure derived in last section, the fuzzy logic controller is:

Fuzzy Controller for Firefighting Robot

Observation 1 Observation 2
Fact temperature is T smoke is S
Conclusion action corresponds to action corresponds to
temperature 1s At smoke 1s Ag
Defuzzification Choose the largest of value of member function

among At and Ag

Note that the member function of Ar and Ag are determined by (4.37). To put it
simply, this fuzzy controller operates by selection of action by its member function
derived from the fuzzy inference rule. It is similar to Observation Selection, but the
relation is defined by Cramer-Rao bound. Hence it must satisfy the conditions for

Cramer-Rao bound to be equivalerft to Observation Selection.

i1
I -
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Chapter 6

Experiments

In this chapter, we present.the numerical result of intelligent decision for sensor
network based system. By exploring the sensortobservation and decision process,

our intelligent decision framework p.réé.f_éﬁted in this work is significantly different

from previous works on introducing th';é" uncertainfy of the relationship between
event parameter and physical duantity in_additibn to the uncertainty of observation
process (interference and additive noise). This framework enables us to further
develop the optimal decision for multiple observations of different physical
quantities. For both single observation and multi-observation cases, we develop the
decision schemes and the application example in previous sections. In this section,
we simulate the scenarios based on the firefighting robot navigation problem in
chapter 3 and 5 with some simplifications, showing that intelligent decision

framework really make significant improvement.

6.1 Single Observation
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We use the system model adapted from firefighting robot navigation problem in
Chapter 3 to demonstrate the performance improvement that the intelligent decision
framework may bring. We use the electrostatic field, whose field value is proportional
to the inverse of distance to the source, to model our potential field. There are several
sources and the firefighting robot aims at finding the target source by intelligently
deciding its direction by the observation of the field value (temperature). We model
the conditional probability of the two mappings, ®:8§ - 0 and ¥:0 - S as
follows:

(1) p(s|0) is simplified to p(Arg(s)|Arg(0)) and denoted p(@g|pg). p(@sl@g) is
assumed to be a function of the intervals of the observation of the potential field’
value (it is the robot’s own observation a-pd is different from observation y;, as
mentioned in Chapter 3.) Wedetermine p(og|pg) empirically and fit it to
Gaussian distribution. We randorll.ﬂif;:l_l:p'(.)se the .points in the potential fields
belonging to different intervals of th.;'%.p-b.servation of the potential field’s value,
and derive the mean and \';airiaﬁce of the deviation from @g to @4 to derive
p(pslpe) as a Gaussian distribution, Then we apply difference p(¢g|@g)
according to the observation of the potential field’s value.

(2) p(yls) is also simplified to p(Arg(y)|Arg(s)) and denoted p(¢y|¢s). @y, is
determined by least square error solution of equation (3.7) without noise term.
And we approximate p((py|<ps) by Gaussian distribution with mean .

To simplify the computation, we assume the deviation of the angle is small and we
approximate the utility function by
cos(pq — ) ~1 = (9o — Pp)*

The estimator maximizes the utility function, or equivalently, minimizes the term

(a — ©g)?, is the conditional mean estimator [9]. That is,
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(Pq = arg max f f (1 — (@0 — 90))p(@y|0s). P(@sl9g)desdeg
= arg rgin f f (®a — 96)?P(@y|0s)-p(@s]90e)desdeg

= arg n;ianf (¢a — (pg)zp(<py|<pg)d<p9

= E(¢q|0y) (6.1)

where

p(@y|pe) = f p(@y|0s)- pl@sl@e)de; (6.2)

To simplify the calculation of p(g0y|g09), we also assume the variances of p(g0y|gos)

and p(@|@e) are the same. Then p((py|(p9) becomes

p(@y|9e)

_ (1 (py—0)7) 1 (@5 200+ 90)°
= f\/ﬁcexp <— y202 >.m.6exp (—- | = dps (6.3)

7 '-.:_J-.‘2 iy 2
1 = + g +
, (\/E% _ﬁ((p}’ B, +,(pk§;! A ((Py2 £ (?9 + (pk)z) _ (‘Py ‘Pg <Pk)

:f 2102 P T 202 dos

1 / (@2 + (po + 91)?) — (5% 90+ 1) \

2
= exp| —
\21o P k 202 )

/ (\/Zps - \/%(coy + ¢g + <pk)>2\

1 1
5 j e k— — ) d(VZgy) (6.4)
1 / (0)2 + (9o + 1)) — (o + b ) \
= exp| — (6.5)
Zcﬁ k 202 )
where
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(\/Zps — % (g + 0o + <pk)>

1
f N d i = d(vV2¢p,) =1 (6.6)

In our simulation, we define the performance to be the route length of the
firefighting robot to reach the place on fire. The more accurate the decision is, the
shorter route the robot would take. When the distance between fire and the
firefighting robot is less than 1 unit length, the robot has reached the place on fire.
The firefighting robot’s initial position is 8 unit length away from the place on fire.
We simulate the firefighting robot navigation scenario with different step length. The
step length is the distance the robot, traveled:between two decisions by observation
collection from sensors. Then we compare th.e. performance of our intelligent decision

with the decision mechanism Which €stimatgs ‘¢, the direction of gradient, to make

e i

g
= 4
[ ]

decision (gradient decision). ,
The following figure depicts the re-s:;llts- of the experiment. We compare the

performance in two aspects: .

(1) The performance (mean route length) of our intelligent decision scheme always
outperforms the traditional scheme (gradient decision) corresponding to various
step length. (Fig.6.1(a))

(2) The performance variance of gradient decision is unstable as the system parameter
(step length) varies. On the other hand, the intelligent decision is more robust to
system parameter variation. (Fig.6.1(b))

Then we investigate how intelligent decision outperforms gradient decision. Note that

the event parameter, the direction of the fire, does not always coincide with the

physical quantity, the gradient of potential field due to the inclusion of other sources.

Hence the intelligent decision performs better and more robust because it takes the
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Fig. 6.1 The simulation result of single observation decision for the proposed

intelligent decision scheme and the traditional scheme (gradient decision).
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distribution of the state ¢g conditioned on event parameter ¢g into consideration
and makes more accurate decision; on the other hand, performance of gradient
decision is inferior compared to intelligent decision because it ignores the
inconsistence of event parameter and physical quantity. The unstable performance of
gradient decision as the step length varies is due to that for some ranges of step length,
the robot has higher chance to cross the area affected by the potential field sources
other than the target one while for some range of step length, the robot’s direction
decision is misguided by those sources. The peaks in Fig.6.1(b) corresponds to the
ranges of step length in which the robot is misguided in our experiment. We can infer
that environment or system parameter variations may degrade the performance of
gradient decision significantly, while our int_elligent decision under the intelligent
decision framework is more(robusto enviroiment or system parameter variations

because the framework precisely models- the, environment and take more relevant

2 x

I
(]

information into consideration:-

6.2 Multiple Observation

We investigate the scenario which has two kinds of observations (K=2). We
model the two mappings belonging to two observations by Gaussian distribution, the
same as the single observation case. However, to demonstrate the performance
improvement by Observation Selection corresponding to various situations, the
variance of Gaussian distribution is randomly generated from a specific range. Larger
variance of p((pyil(psi) stands for less precision of sensor observation and larger
variance of p((psi|(p9) stands for weaker correlation between event and physical

quantity or less available information for nature. In this simulation scenario, we
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assume the precision of all kinds of sensors is fixed to focus on the uncertainty of the
uncertainty of relationship between physical quantities and event. Hence we release
the assumption of the same variance of the two conditional probabilities, p((pyilwsi)
and p((psi|<pg) and assume p((pyi|(psi) is the same for all observations but
p((psi|(p9) is different for different @y, ’s. To derive the decision in this case, we can
follow the way we derive the decision of single observation case: calculate the
conditional mean. We first derive p((pyi|(p9). To simplify the calculation, we assume
the mean of observation is the physical quantity and the mean of physical quantity is

the event parameter

( | ) _ -]- 1 ex . ((pyi - (psi)z 1 ox _ (‘Psl- - (pe)z d
p (pyi <p9 mcl p 20_% ..mcz p 20% (psi

1 ({14 .1 PP o
= e e’ £y R Y Bsn. R\ W
f 210, 0, ) ((6% 0%) ¥ Ll < 62 0% @si

pr—_ riﬂs 1
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= Texp

1 1\2
V21040, (o_f + ?)

/ (%)
1 1 <<pyl.2 <p92> 1\o? ' o2
_E _|_ — )

1 1(oy? @e*\ \o?
exp {__((pyé +q092 >+

= 1
V2n(o? + 0%)2 \ 2

we have (6.8) because the integration of Gaussian distribution is 1:

[ ( (4"(—*&))\

—TeXp| — e dos, =1 (6.9)
wr) [ o(GeR))
1 2 o 8z
Assume the a prior distribution of eVent.hﬁ._arameter 1s-uniform in 0 to 2 77 . Then we
can use (6.8) to calculate the coﬁditio:rlal mean éstimator as single observation case.

In our simulation scenario, the variance of each p((psl.|(p9) of each observation
collection is a uniform distributed random number in a specific range while
p((pyi|<psl.) of each observation collection is the same for all i. We compare the
performance of Observation Selection, observationl only, observation 2 only and a
scheme randomly choose the observation to make decision corresponding to different
variance range. The performance matrix is the same as single observation case.

Simulation results show that the Observation Selection scheme outperforms the
other schemes, especially when the variance increases. As the variance range
increasing, the average performances of the decisions on each of the two observations
only are decreasing, and the routes length are increasing. Random selection also

suffers similar degradation. However, Observation Selection seems more robust to the
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increase of variance range. We know that the Observation Selection scheme will
select the observation with lower randomly generated variance due to the application
of Cramer-Rao bound. Consequently, although the range of randomly generated
variance is increasing, performance of Observation Selection will significantly decline
only when both randomly generated variances are large. On the other hand, other
schemes do not aware of the quality of the observation other than their selection and
will suffer from performance degradation once the randomly generated variance of the
selected observation is large. From the simulation result, we know that Observation
Selection can significantly improve the decision performance when the quality of the

observations changes a lot and less correlated with each other.

Mean route length Corresponding to
Variance Range

- Obzervationl = = = Obzervation?

Obzervation Selection Random Selection
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Fig. 6.2 (a) The simulation results, mean route length, of multi observation decision for
Observation Selection, observation 1 only, observation 2 only, and the random selection

scheme
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Fig. 6.2 (b) The simulation results, route length variance, of multi observation
decision for Observation Selection, observation 1 only, observation 2 only, and the
random selection scheme
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Chapter 7

Cognitive Radio Spectrum
Sensing under Intelligent Decision

Although the application cxamples\in preyious ‘¢hapters are all in the realm of

=

sensor network, the intelligent decision "'_f_r-.arhework can also be applied in various
areas. In this chapter, we apply-the intelli;gént decision framework to cognitive radio
spectrum sensing to solve the hidden terminal problem. By the application example
we present in this chapter, we are able to state that the intelligent decision framework
is a general information fusion framework which can be applied in various intelligent

or cognitive systems.

7.1 Cognitive Radio Spectrum Sensing

Cognitive radio (CR) terminal based on software define radio (SDR) technology
[38] has drawn widely attention as a key technology for future wireless
communications. CR terminal is a device which can explore the available spectrum to
transmit on and can “adapt” communication to connect to various systems. In order to

explore the available spectrum to transmit, CR relies on spectrum sensing to perceive
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the radio environment and seek for spectrum opportunity to transmit its data. Like the
traditional sensing mechanism Collision Sense Multiple Access (CSMA), CR
spectrum sensing also suffers from the hidden terminal problem. In this chapter we
will investigate the hidden terminal problem in CR spectrum sensing and its solutions
including traditional scheme and the proposed scheme. In the following sections, we
call primary system transmitter PS-TX, primary system receiver PS-Rx, CR

transmitter CR-Tx and CR receiver CR-Rx.

(b)
Fig. 7.1 Hidden terminal problem (a) CR is out of transmission range of PS-Tx (b) CR

spectrum sensing is blocked by obstacles.

7.1.1 Hidden Terminal Problem and Cooperative Spectrum Sensing
The hidden terminal problem in CR spectrum sensing can be described as follows.
If the signal on sensing channel is weak due to the geographical separation but the
signal on interference channel happens to be strong, secondary transmission will
interfere with primary transmission (Fig.7.1(a)). Moreover, the sensing channel may
experience deep fading or blocked by obstacles (Fig.7.1(b)) and result in incorrect

sensing and interference to primary transmission.
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Traditionally, the hidden terminal problems in spectrum sensing are solved by
cooperative spectrum sensing among geographically separated CR nodes (Fig.7.2).
The cooperative spectrum sensing creates geographically independent sensing
channels and has higher chance to avoid hidden terminal problem. These channels

also experience independent fading. However, the cooperative spectrum sensing needs

Fig. 7.2 Cooperative Spectrum Sensing

Fig. 7.3 DTD spectrum sensing scheme
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control channel between CR nodes and results in lots of communication overhead.

7.1.2 Dual-way Time Division Spectrum Sensing

We develop a novel spectrum sensing scheme, Dual-way Time Division (DTD)
Spectrum Sensing, to take the “complete” observation and perform information fusion
to make the decision. We create a sensing channel between CR-Tx and PS-Rx by
sensing the acknowledgement message (ACK) from PS-Rx to PS-Tx (Fig.7.3). Unlike
the cooperative spectrum sensing which observes the same physical quantity (signal
from PS-Tx) from different nodes, DTD spectrum sensing observes different physical
quantity (signal from PS-Tx and ACK from PS-Rx) by the same node through
different sensing channel (Fig.7.4). Hence D_T_D spectrum sensing extend the sensing
dimension beyond cooperative sen;sing by not only create independent fading channel
but also taking observations from diffe.;'ef;gééfjéraphicai position.

We also can state that this.is thel ‘i‘co.?rr'_i;‘-;.p-lete” observation of the PS transmission
pair because it senses the existence :of the sighal both from PS-Tx and PS-Rx. The
complete observation also brings another ﬁerf(;rmance gain. Consider the situation in
Fig.7.5. The cooperative CR-Tx’s are geographically separated nodes. So the presence
of the PS transmission for one CR-Tx does not imply the presence of PS transmission
for another CR-Tx because they are in the different geographically positions. The
underlying reason for the drawback of cooperative sensing is that it tries to use the
observation from other nodes to compensate the incomplete observation while the
observation may not directly related to the desired event or parameter. For example
the observation from other CR-Tx may not necessary imply the existence of the PS
transmission in this CR-Tx’s transmission range like in Fig. 7.5. Our spectrum sensing
scheme is free from this problem because the CR-Tx take the “complete” observation

by its own.
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7.2 Spectrum Sensing Model
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Fig. 7.6 Spectrum sensing system architecture

In this paper, we consider the simplest system with one transmission pair of CR
and one of PS (Fig.7.6). The four medes; CR-Tx, CR-Rx, PS-Tx, PS-Rx, are
geographically separated. The:received signal. strength:- decreases as the geographical

separation increases. The interfcrence between|CR ‘and PS occurs when the primary

-
R

transmission and secondary transmis_siloﬁ""_;;(:i:st simultgneously. In order to avoid the
situation, CR-Tx tries to sense-the p,rima;}-/ trqﬁsmfssion via sensing channel. If the
spectrum sensing does not detect the primary 'tra;lsmission, the CR-Tx can transmit.
However, traditional spectrum sensing only senses the presence of signal from PS-Tx,
which is an “incomplete” observation of transmission between a pair of PS nodes,
PS-Tx and PS-Rx. The observation is incomplete because it is the information comes
only from PS-Tx but not PS-Rx. The incompleteness of the observation results in the
hidden terminal problem. Due to the geographical separation, the absence of signal on
sensing channel does not necessary imply the absence of signal on interference
channel. Hidden terminal problem occurs when CR-Tx fails to sense the signal on the
sensing channel and CR transmission cause interference to PS transmission through
the interference channel. We propose DTD spectrum sensing scheme to relieve the

hidden terminal problem by information fusion of the complete observation from both
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PS-Tx and PS-Rx.
We first establish the system model of PS transmission and CR spectrum

sensing.

7.2.1 Primary System (PS) transmission model
In order to sense the primary transmission from PS-Tx and PS-Rx, we assume
that the PS transmission follows the following transmission protocol. To simplify the
procedures, we assume ACK can be received and decoded by PS-Tx if PS-Rx sends it
and the propagation delay is very small thus we neglect it.
Transmission protocol:
1. PS-Tx sends data to PS-Rx. _
2. When PS-Rx successfully decodés the data packet, it replies ACK to PS-Tx for
each received packet. If the decode..'isx.gg_c_.c_e.ss, g0 stép 3. Otherwise, go step 4.
3. After PS-Tx receives ACK;repeat ste;ﬁl- .flor next transmission.
4. If the decode fails, PS-Rx remains siléfit. Then PS=Tx does not receive the ACK.
Now repeat step 1 for the same data traﬁsmission.
Note that the PS-Tx wait for one ACK packet duration and proceed to transmit (the
same packet or next packet). Under this transmission protocol, the signal in the time
domain will periodically alternate between data packet and ACK packet as shown in

Fig.7.7 (ACK packet is absent if the decode failure happens).

Data ACK Data ACK

Fig. 7.7 Primary system transmission model

The duration of the data packet is tg,¢, and the duration of ACK packet is tpck.
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7.2.2 CR sensing channel model
The received signal in CR-Tx becomes:

y(t) = h-s(t) +v(t) (7.1)
h is a Rayleigh distributed random variable to account for the multipath fading.
Assume the coherence time approximately the same as tg,iq + tack. Hence 7 is the
same in the same data packet duration and ACK packet duration. Because /4 is
Rayleigh distributed, the power of the received signal is exponential distributed with
mean denoted by op,°. 0y,* is determined by the path loss model and the distance
between the signal source and receiver, CR-Tx. To simplify the problem, we use the

simplified path-loss model here [39]:

2 do\" :
o® =Ky () . . (7.2)

K, is the path-loss constant.depending on the antenna characteristics and the average
channel attenuation, d, is a reference dié_%‘éﬂce for the antenna far field, and y is the
path-loss exponent. Due to- the geograph%c:al éeparafion of PS-Tx and PS-Rx, the

onp°’s are different for sensing signal from the two nodes. v(t) is AWGN and v(t)

in different sensing channel is independent.

7.3 Spectrum Sensing Procedure and Algorithm

If we are able to detection the alternating point of the ACK and data packet, we
can separately take the two independent observations from different position, both in
the dimension of geometry and time. The sensing also performs in different sensing
channel. The difference in geographical dimension results in different path loss factor

and the sensing channel difference results in independent fading. In fact, we can
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formulate the spectrum sensing problem under the intelligent decision framework.

The following table illustrates the formulation:

Intelligent Decision Framework Spectrum Sensing
Event Primary Transmission
Physical quantity 1 PS-Tx transmission data
Physical quantity 2 PS-Rx ACK
Observation 1 Sensing data packet
Observation 2 Sensing ACK

Table 7.1. Formulation under Intelligent decision framework

| Sampling
—
ACK
Identify Yo <) .
. o Fusion
Timing = | Center
Pattern ; | <=
Sampling
Data packet

Fig. 7.8 Spectrum Sensing Procedure

The spectrum sensing scheme follows the following procedures (Fig.7.8):
1. Identifying the timing pattern

We assume CR has the knowledge of the duration of data packet and ACK. We
also know that because the signals from PS-Tx and PS-Rx experience different
path-loss, their power level is different when they arrive in CR-Tx. In other words, the
mean power of receiving signal process is different. The Change Detection algorithms

[40,41] applied in signal segmentation or remote can be applied here to detect the
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change in the process mean at the alternating point of data packet and ACK.

With the above knowledge, the following procedures are sufficient to identify the
timing pattern of the intertwined ACK and data packet:

(1) Start monitoring at t = ¢,

(2) Keep monitoring until a change in mean happened or until ¢ = ty + tg,1,- Denote
the time of the change point t,. If the change does not happen until tqs¢a,
teh = tdata-

(3) If tg — tcn > tack, stop the monitoring. If ty — te, < tack, keep monitoring
until t = te, + tack.

Then we can construct the timing pattern by the following inference:

(1) If ty — ten > tack, at the change point ten the transmission changes from data
packet transmission to ACK ref)ly.

(2) If tyg —ten < tack and a change..* pggrlltls obseﬁed at t = toy, + tack, at the
change point t., the transmission ichz_ﬁées from data packet transmission to ACK
reply. Otherwise, at the chahge ;p.oint et I' the 1;ransmission changes from ACK
reply to data packet transmission. .

The performance of Change Detection algorithm is better when the process
changes significantly. When the process only changes a little, the performance
degrades. However, our spectrum sensing scheme has large performance gain when
the signal power of ACK and data packet is significantly different, which will be
elaborated in the following sections. If the signal power is almost the same, our
scheme acts almost like ordinary energy detector. Hence the performance of our
spectrum sensing scheme would not be sensitive to the performance of Change
Detection because in the region which the performance of Change Detection may
degrade, the correct timing of PS transmission would not significantly affect the

performance of our spectrum sensing scheme.
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2. Derive the test statistics of ACK & data packet
The ACK and data packet detection problem falls back to detect an unknown
signal in the fading channel which is a well-studied subject [42]. As mentioned
previously, the signal takes the form:
y(@) =h-s(t) +v(t) (7.3)
The only difference in signal model between ACK and data packet is the path-loss
factor which determines the mean of channel fading factor 4.

And the test statistic Y is the integration of the square of the received signal:

1 T

Y = ;f y(t)?dt (7.4)
v Jo

T is the duration of sensing.time, &7 is ‘the standard deviation of the noise.

Conditioning on SNR 4, the distribution of ¥ is:

_ {X%u HO
)(%u(ZA) Hl

x5, is chi-square distribution: with 2u degrees’of freedom. u =TW is the

(7.5)

=W

time-bandwidth product. x2,(2A) is“chi-square distribution with 2u degrees of
freedom and a non-centrality parameter 2A. Because / follows Rayleigh distribution,

A follows the distribution:

F@) = zexp(~5) 76)
= =eX —_= .
19P\77
- 14 - Y
where A = K—‘z’(&) for test statistics of data packet and A = K—z(&) for test
oy \dTrx 0y \dRx
statistics of ACK.

3. Fusion center
Traditionally, there are several kinds of combining (fusion) scheme to deal with

the problem of detecting signal in the fading channel. The most widely used
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combining schemes are weighted combining and selective combining. Equal gain
combining is a special case of weighted combining. In fact, the weighted combining
scheme is the Ratio Combining scheme and the selective combining is Observation
Selection in the intelligent decision framework. Since primary transmission detection
is a detection problem, we slightly modified the Ratio Combining and Observation
Selection scheme for estimation problem without modifying the underlying structure.
A. Observation Selection
The fusion center selects the observation to make decision according to the
geographical separation. In other words, the fusion center selects the observation of
ACK if the distance between PS-Rx and CR-Tx is smaller. Otherwise, it selects
data packet observation. The walidity of: -_this selection rule is justified by that
according to our system modeI; the expectation of SNR is monotonic decreasing
function of distance. Then the selec;[.edx;j_s%f?j_s';atistics is compared with a threshold t

e

to decide the presence of primary tr'alnsn'_ﬁ_'ssion.

B. Ratio Combining
The fusion center combines the test statistics with the weighting coefficient
determined by the quality of the observation. The quality of observation can be
determined by the detection probability alone because the false alarm probability is
the same for the two observations. Hence the weighting coefficient is the ratio of
detection probability. Then the test statistic of Ratio Combining, Ygc, is the

weighted sum of test statistics of data packet and ACK:

_ Parx Yoo + Parx
= T R
Pyrx + Parx ~ Parx + Parx

Yac (7.7)

where Yp, 1s the test statistics of data packet, Yry 1S the test statistics of ACK

packet. Then the weighted sum of test statistics Yp¢ is compared with a threshold
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T to decide the presence of primary transmission. The detection probability of

energy detection in fading channel has been derived in [42],

T 1 /7\"
Pars = exp(=3) Oa(z) *
=
1+ )" < T > T “‘21( Ty )“
. - |- — 7.8
( Arx > ( P 2(1+ Ay) ep( 2)n=0n' 2(1 4 Ary) (7.6)
u—21 n
T T
Pars = exp (=3) Oa(z) *
=
14 2g " ( T > I\ o 1( TRy )n
( T > <eXp 2(1+ Zny) exp ( 2)n=o"! 20+1) )7

Note that the 7 in Pypy and Paryg 1s.the same ‘as the threshold 7. The detection
probability is a monotonic increasing function of the mean of SNR distribution, Aty
and Agy. And the mean of SNR distrillautigg 1s é monot.onic decreasing function of the
distance between the sensing-node anéﬁ_the signal-source. Hence the weighting

coefficient is the decreasing function of.distance, which is intuitively true.

7.4 Performance Analysis and Comparison

In this section, we analyze the performance of Observation Selection and Ratio
Combing then compare their performance with other schemes. We analyze the
detection probability only because the false alarm probability is the same for the test
statistic of data packet and ACK and fusion scheme would not affect the false alarm
probability. Hence all the distribution we analyze in this section is under H; unless
specified.

7.4.1 Observation Selection
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For the Observation Selection scheme, the distribution of test statistic conditioned

on SNR A becomes

Yos~ {X%u Hy
.21 Hy

A has the distribution

1 A 1 A
f(l)ziexp(—i)z — exp(— — )> (7.10)

max (ATX’ ARX) max (ATx; /1Rx

_ onre’ Ky /do\Y - Onne’ Ky rdo\Y
T = I :_1;(_0) Ay = IR :_g(_°> (7.11)
Oy 0y dTX Oy 0y de

Then the detection probability becomes:

C 1
Pdos—e‘Xp Y Zn_ >
n=0

) (o)) o

Where

=W

/T = max (ZTX' ZRX)

As a comparison, we also analyze the.per.formance of the Selection Combining,
which performs selection based on full channel gain information and selects the
observation with larger channel gain. By modifying the derivation of the SNR
distribution of Selection Combining in i.i.d. Rayleigh fading channel in [43], we can
derive the distribution of SNR in Selection Combining in Rayleigh fading channel

with different mean.

fase) = fan,(D) = fa, WP(N; < 1) + fp,(DP(A; <)

1 A 1 A N 1 A 1 A
=—=¢ —e e —-—e€ — e e
ATX P ATX P ARX /1Rx P ARX P /1TX
1 ( /1>+1 ( /1> <1+1> /1(1+1>
= =—€exp =—exp —|\=—T=]exXp| — -— T =
ATX ATX /1Rx ARX ATX ARX /1TX ARX
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(7.13)

Then the detection probability becomes:

Pasc = | ( | fYSC.A,Hl(y)dy>fASC(A)dA= [ QOZivofi i (.14
2 T 2

where Q,(a,b) is the generalized Marcum Q-function.

7.4.2 Ratio Combining

In ratio combining, the test statistics becomes weighted sum of the test statistics
of data packet and ACK. Their distributions under H; (signal presence) are
Yre~x3,(2A1y) and Ypy~x2,(2Agy) respectively. It is common practice in
statistics to approximate a weighted sum of npn-central chi-square random variables
by a single chi-square random varidble with different degrees of freedom and an

adequate scaling factor [44-46].

Zai)(%u(/li) ~Bxa 2 J1=N8 £ (7.15)

> Yl

l

The degree of freedom and scalingfactor should be chosen such that both sides have
the same first two moments. By the above formula, we can approximate the test
statistics of Ratio Combining scheme by the chi-square random variable (conditioning

on SNR Aty and Agy):

Pqr Par
VYt — YRX) ~BRcX e (7.16)

YRC = <—
Pde+Pde Pde+Pde

Recall that if z~y2(m), then E(z) = m + w and var(z) = 2(2m + w). We can

derive frc and wgc by the following two equations:

Bre®Wre = _ Parx (22 + 2u) + _ Parx 22y + 20) (7.17)
Pde+Pde Pde+Pde
2Brctwpe = 2 (—P drx )2 4y + 20) + 2 (—P dRx )2 (g + 210)
Pde+Pde Pde+Pde

(7.18)
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Solving these two equations, we can derive:

(&)2 (2Agy + 1) + (&)2 22y + 1)

Pyt + P Pyt + P
Pre = — & d::‘)'( ] dT;TXy qRx ] (7.19)
deY + dRXY( Tx + u) + deY + dRXY( Rx + u)
P P :
2 5—9 (A +u) + 5—9B (g, +u
(I')de-l'Pde(TX ) Pde+Pde( Rx )
WRre = (720)

(5=} 2y + ) + (52— ) 2y + )
PdTX + Pde Tx PdTX + Pde Rx

Then the detection probability becomes:

PdRC = f j (f fyRC |[Arx,ATx,H1 (3’) dy) fARX (ARX)fATX (ATX)dARXd/lTX (72 1)
ATX ARX *
where
1 ARx = 1 ATy
fARx (ARX) = /T_ exp <_ —L) (- fATx (ATx) == EXp <_ —l>:

Rx ARX /1Tx

and distribution of test statistics' Yrc 'éqr_lditiqning on-Agy and Apy is approximated
by chi-square distribution with degrees 5§' freedom w and scaling factor . By the
Method of Transformations in probaBility theory, we can derive the distribution of

YRC:

_ y\| 1
Frctneinat® = Frie ()
12"
5 WRC_
_(2) (y)z 1exp( y>1

= 1@ Ve ) e

(7.22)

Then put the three distribution into the integral equation, we can derive Pypc.

We compare the Ratio Combining scheme with the traditional Equal Gain
Combining (EGC), which is widely applied in cooperative diversity due to its I1ID
Rayleigh fading channel assumption. The test statistics for EGC is:

Yece = %(YTX + Yry)

We also can approximate it by the scaled chi-square distribution:
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2
Yecc~PrccX 2wpec

Then we have
1
PrGccWEGe = 5 (2214 + 2254 + 4u)

1 1
ZﬁEGCZwEGC = Z X 2(4ATX + Zu) + Z X 2(4ARX + Zu)

Solving the two equation, we can derive fggc and wggc
Arg + Apx + 2u

T At Amg U
(Arx + Ary + 2u)?

OEGC = T A T U

EGC

Then following the above procedures, we can derive the detection probability, Pyggc,

by putting Pggc and wgge in (7.22).

7.5 Numerical Result

NI

In this section, we presentrt‘he simulation tesult‘and numerical result of above
analysis. Because we derive the analytical fesult of Ratio Combining and Equal Gain
Combining through approximation, we also present the simulation result to compare
with the theoretical approximation. We use the Complement Receiver Operation
Curve (CROC) to present the result of performance comparison of the proposed

scheme and traditional schemes.

7.5.1 Observation Selection

The Observation Selection scheme is compared with single observation and
Selective Combining. Single observation is the traditional spectrum sensing with
energy detector which senses the signal from transmitter. Selective Combining

scheme selects the Observation with larger SNR, which is an ideal situation but is
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unrealistic in most cases of spectrum sensing. Here we present the performance of
Selective Combining to serves as the performance upper-bound of Observation
Selection. We set time-bandwidth product #=2 in the numerical result.

We can observe from the numerical result (Fig.7-9(a)(b)) that as the difference of
distance from transmitter and receiver increases, the performance curve of
Observation Selection is closer to Selective Combining and away from Single
Observation. That is, the performance gain by taking observations from two sensing
channels and selecting the observation with larger mean SNR is larger when PS-Rx is
closer to CR-Tx. Although the Observation Selection in spectrum sensing cannot
achieve full diversity gain due to lake of sensing channel side information (SNR), it
indeed improves the performanceiof the traditional no diversity spectrum sensing
scheme.

==
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Performance Comparison of O3, 3C, and Single Observatior (di=50, 4=30)
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Fig. 7.9 (a) Performance Comparison of Observation, Selective Combining and
Single Observation (PS-Tx to CR-Tx =50, PS-Rx to CR-Tx distance = 30)

Performance Comparison of O3, 3C, and Single Observatior (dt=40, 4=30)
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Fig. 7.9 (b) Performance Comparison of Observation, Selective Combining and
Single Observation (PS-Tx to CR-Tx =40, PS-Rx to CR-Tx distance = 30)
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7.5.2 Ratio Combining
The Ratio Combining scheme is compared with Equal Gain Combining, and

Observation Selection. We derive the performance comparison through simulation

first, and then compare the approximation derived analytically in last section with the

simulation result to see the quality of the approximation. We set time-bandwidth
product =4 in the simulation.
Simulation results (Fig.7.10) show that

(1) In the area of extremely low miss detection probability and high false alarm
probability, the performance of Ratio Combining is very close to EGC and both
schemes are significantly better than Observation Selection.

(2) As miss detection probability becomes higher, the difference between
performance of Ratio Combiﬂing and EGC.becomes larger and the difference
between the performance of Ratiol Cog:blnlng and .Observation Selection shrinks.
We can observe the trend-more clear.ri_'i.l_- -1~;ig-.7.10(b), which is the segment in low
false alarm probability area. &

The performance gain of Ratio Coﬁlbining is due to that it utilizes the
geographical position information to infer the average path-loss of the signal and
determines the combining coefficient. It becomes larger because as the false alarm
probability decreases, the difference between false alarm probabilities of the two
observations becomes larger, thus the performance gain of Ratio Combining becomes

more significant.
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Performance Comparison of RC, EGC, and 03 (dt=30 dr=75)
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Fig. 7.10 (a) Performance Comparison of Ratio Combining, EGC, and Observation
Selection (PS-Tx to CR-Tx =30, PS-Rx to CR-Tx distance = 75)
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Peformance Comparison of RC, EGC, and 0S (#t=30,dr=50)

5 ,
o g
A0} H-ﬂ_ t*+*+¢_+_*¥ ]
-—m_“_\_” ; H + 1*”*-
51 M‘H *‘**h* *ay 8
g -
"*xﬁ_g *,
20F g *** i
in) i
< 25t \\« %*
o *
30} :
‘35 B \.14
ol 7 Ratio Combining '
T Equal Gain Combining |
== =4 -- Dbsenation Selection
45 T T i i j i
-6 5 -4 -3 -2 -1 0

Pf{dB)

Fig. 7.11 (a) Performance Comparison of Ratio Combining, EGC, and
Observation Selection (PS-Tx to CR-Tx =30, PS-Rx to CR-Tx distance = 50)

Performance Companson of RC, EGC and 03 (dt=30 dr=50)

- T T T T T T T T
-
e

=]

alt . .
'\._‘#_
Tk
Aok oy .
e
A1k . *-'-kl‘ .

. :

A2} ‘. §
.\*-\.

A3} +

i}
=
E
o
14+ §
A5k i
-6 -
—+— Ratio Combining :
A7 F Equal Gain Combining 3 -
== =4 Obgernvation Selection

=5 ® 45 4 35 3 25 2 5
P{dE)

Fig. 7.11 (b) Segment from 7.11(a)

95



On the other hand, if we run the simulation in the scenario where the difference
between the distances from CR-Tx to PS-Tx and to PS-Rx becomes smaller, the
difference between the performance of Ratio Combining and Observation Selection
becomes larger (Fig.7.11(a)), while the performance of Ratio Combining and EGC
becomes closer (Fig.7.11(a)(b)). This can also explained by that when the difference
between distances becomes smaller, the diversity gain becomes more significant due
to the improvement of the inferior observation’s quality. However, the weighting
coefficient of the two observations is closer when the inferior observation’s quality is
improved. Hence the difference between the performance of Ratio Combining and
EGC becomes smaller.

By the simulation results, we can infer that_ to haye better sensing performance:

(1) When the two signals expérience significantly: different path-loss, apply

Observation Selection to choose tﬁé bgger 'c;ne to m;elke decision
(2) When the two signals experience siﬁiﬂar path-loss, apply Ratio Combining or

EGC to make decision.

Finally we present the comparison of the analytical approximation result and the

simulation result of Ratio Combining performance analysis. Fig.7.12 shows that the

Comparison of Simualtion Result and Analytical Approximation
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Fig. 7.12 Comparison of simulation result and analytical approximation of ROC

for Ratio Combining curve.



approximation is close in the region of high detection probability area, and is

relatively poor in low detection probability area.

Chapter 8

Conclusion and Future Work

e

A general decision framewotk [for %EIS unifying the information fusion of
sensor network, decision and.:centrol -;wtion 1s'’the most crucial theory for
implementation of SNBIS in various environments to efficiently execute tasks. The
intelligent decision framework proposed in this paper lays the foundation of the
mathematical structure and techniques for the unified general decision process of
SNBIS. By further exploring the relationship of observation and task execution in
SNBIS, this framework separate the traditional event to observation mapping into two
mappings, event to physical quantity mapping and physical quantity to observation
mapping. Based on the two mappings, we derive the new decision mapping and use
the firefighting robot navigation problem to illustrate the application of intelligent
decision framework. In this example, we also investigate the special case degenerated
to traditional state space estimation problem to show the relationship between our

framework and traditional decision techniques. Then we extend the intelligent
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decision framework to accommodate observations from multiple kinds of physical
quantities. Under this framework, optimal decision and Observation Selection for
limited knowledge of correlations among physical quantities are formulated and their
equivalence condition is derived. Fuzzy logic controller, which is widely used with
less strict-sense mathematical structure, can be derived by degenerating Observation
Selection scheme. Simulation results show that the intelligent decision outperforms
traditional decision schemes and is more robust to environment or system parameter
variations in both single observation and multiple observation scenarios.

In addition to SNBIS, we also apply the framework to CR spectrum sensing to
mitigate the hidden terminal problem in a novel way. Unlike the traditional
cooperative spectrum sensing which relies on cooperation of other nodes to obtain
independent sensing data, the propbsed spectrumisensing scheme senses the PS-Rx to
create another sensing channel and obtalgjhe ;‘compléte” observation of the primary
transmission. By taking the geographipail-ﬁp-sition mformation into consideration, we
can improve the information fﬁéion: of spectfum sensing to achieve the diversity
which is traditionally applied in cooperativé spéctrum sensing.

Based on this framework, research topics, including gathering more information
of the conditional distributions by learning, blind estimation without knowing the
distribution in this framework, etc, is able to be explored. By sophisticated and
accurate decision process, SNBIS is able to be applied in more fascinating future life

scenarios like smart home, intelligent health care and medical system to realize them.
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