請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | zh_TW |
| dc.contributor.advisor | Tung-Han Chuang | en |
| dc.contributor.author | 張哲元 | zh_TW |
| dc.contributor.author | Che-Yuan Chang | en |
| dc.date.accessioned | 2024-03-21T16:25:24Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | [1] Sharpe, W. N. (Ed.). (2008). Springer handbook of experimental solid mechanics. Springer Science & Business Media.
[2] F.S. Santosh Kumar, Vaibhav Trivedi, Status of Advanced Packaging Industry Report, Yole Development, 2020. [3] Arden, W., Brillouët, M., Cogez, P., Graef, M., Huizing, B., & Mahnkopf, R. (2010). More-than-Moore white paper. Version, 2, 14. [4] S. W. Yoon, J. H. Ku, N. Suthiwongsunthorn, P. C. Marimuthu and F. Carson, "Fabrication and packaging of microbump interconnections for 3D TSV," 2009 IEEE International Conference on 3D System Integration, San Francisco, CA, USA, 2009, pp. 1-5, doi: 10.1109/3DIC.2009.5306554 [5] DINA MEDHAT, “2.5/3D IC Reliability Verification Has Come A Long Way” AUGUST1ST, 2022.Available:https://semiengineering.com/2-5-3d-ic-reliability-verification-has-come-a-long-way/ [6] 黃智方、張庭輔,氮化鎵功率元件簡介,電子資訊20(1), 2014, 30-40 [7] Baliga, B. J. (1989). Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Letters, 10(10), 455-457. [8] Rahmanpour, P., Sælid, S., & Hovd, M. (2017). Run-To-Run control of the Czochralski process. Computers & Chemical Engineering, 104, 353-365. [9] Ueda, D. (2017). Power GaN Devices. Power Electronics and Power Systems. [10] Gerhardt, R. (Ed.). (2011). Properties and applications of silicon carbide. BoD–Books on Demand.M.R. Ana Villamor, Status of the Power Electronics Industry, Yole Development, 2020. [11] Takahashi, K., Yoshikawa, A., & Sandhu, A. (2007). Wide bandgap semiconductors. Verlag Berlin Heidelberg. [12] Lee, H., Smet, V., & Tummala, R. (2019). A review of SiC power module packaging technologies: Challenges, advances, and emerging issues. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1), 239-255. [13] Ott, R. T., Geng, J., Besser, M. F., Kramer, M. J., Wang, Y. M., Park, E. S., ... & King, A. H. (2015). Optimization of strength and ductility in nanotwinned ultra-fine grained Ag: Twin density and grain orientations. Acta Materialia, 96, 378-389. [14] EuropeanUnion.Available :https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en [15] Rosenberg, R., Edelstein, D. C., Hu, C. K., & Rodbell, K. P. (2000). Copper metallization for high performance silicon technology. Annual review of materials science, 30(1), 229-262. [16] Xu, D., Sriram, V., Ozolins, V., Yang, J. M., Tu, K. N., Stafford, G. R., ... & Zschech, E. (2008). Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 85(10), 2155-2158. [17] Rath, B. B., Imam, M. A., & Pande, C. S. (2000). Nucleation and growth of twin interfaces in fcc metals and alloys. Mater. Phys. Mech, 1(0). [18] Liversidge, A. (1897). CV.—The crystalline structure of gold and platinum nuggets and gold ingots. Journal of the Chemical Society, Transactions, 71, 1125-1131. [19] Beyerlein, I. J., Zhang, X., & Misra, A. (2014). Growth twins and deformation twins in metals. Annual Review of Materials Research, 44, 329-363. [20] Marro, J. (2016). Tunable copper microstructures in blanket films and trenches using pulsed electrodeposition (Doctoral dissertation, Clemson University). [21] Murr, L. E. (1975). Interfacial phenomena in metals and alloys. [22] Takata, N., Mizuguchi, T., Ikeda, K. I., & Nakashima, H. (2004). Atomic and Electronic Structure of‹ 110› Symmetric Tilt Boundaries in Palladium. Materials transactions, 45(7), 2099-2105. [23] Cahn, R. W., & Haasen, P. (Eds.). (1996). Physical metallurgy (Vol. 1). Elsevier. [24] Ouyang, F. Y., Yang, K. H., & Chang, L. P. (2018). Effect of film thickness and Ti interlayer on structure and properties of Nanotwinned Cu thin films. Surface and Coatings Technology, 350, 848-856. [25] Lin, P., Aust, K. T., Palumbo, G., & Erb, U. (1995). Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metallurgica et materialia, 33(9). [26] Westbrook, J. H., & Aust, K. T. (1963). Solute hardening at interfaces in high-purity lead—I Grain and twin boundaries. Acta Metallurgica, 11(10), 1151-1163. [27] Hasson, G. C., & Goux, C. (1971). Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination. Scripta metallurgica, 5(10), 889-894. [28] Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304(5669), 422-426. [29] Lu, L., Chen, X., Huang, X., & Lu, K. (2009). Revealing the maximum strength in nanotwinned copper. Science, 323(5914), 607-610. [30] Randle, V. (2004). Twinning-related grain boundary engineering. Acta materialia, 52(14), 4067-4081. [31] Bufford, D., Wang, H., & Zhang, X. (2011). High strength, epitaxial nanotwinned Ag films. Acta Materialia, 59(1), 93-101. [32] Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J., & Tu, K. N. (2008). Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 321(5892), 1066-1069. [33] Chan, K. Y., & Teo, B. S. (2005). Sputtering power and deposition pressure effects on the electrical and structural properties of copper thin films. Journal of materials science, 40, 5971-5981. [34] Lai, Y. C., Wu, P. C., & Chuang, T. H. (2021). Thermal stability of grain structure for Ag nanotwinned films sputtered with substrate bias. Materialia, 20, 101215. [35] Agrawal, P. M., Rice, B. M., & Thompson, D. L. (2002). Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 515(1), 21-35. [36] Liu, T. C., Liu, C. M., Hsiao, H. Y., Lu, J. L., Huang, Y. S., & Chen, C. (2012). Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition. Crystal Growth & Design, 12(10), 5012-5016. [37] Liu, C. M., Lin, H. W., Huang, Y. S., Chu, Y. C., Chen, C., Lyu, D. R., ... & Tu, K. N. (2015). Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 5(1), 1-11. [38] Chang, L. P., Wang, J. J., Hung, T. H., Chen, K. N., & Ouyang, F. Y. (2022). Direct metal bonding using nanotwinned Ag films with (1 1 1) surface orientation under air atmosphere for heterogeneous integration. Applied Surface Science, 576, 151845. [39] Lai, Y. C., Wu, P. C., & Chuang, T. H. (2021). Characterization of interfacial structure for low-temperature direct bonding of Si substrates sputtered with Ag nanotwinned films. Materials Characterization, 175, 111060. [40] Lai, Y. C., Yang, Z. H., Chen, Y. H., Chen, Y. T., Lin, A. Y., & Chuang, T. H. (2023). Low Temperature Diffusion Bonding of Si Chips Sputtered with High Density (111)-Ag Nanotwinned Films. Journal of Materials Engineering and Performance, 1-13. [41] Zhang, X., Misra, A., Wang, H., Shen, T. D., Nastasi, M., Mitchell, T. E., ... & Embury, J. D. (2004). Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 52(4), 995-1002. [42] Wu, P. C., Lai, Y. C., & Chuang, T. H. (2021). Enhancing effect of substrate bias on nanotwin formation of sputtered Ag thin films. Journal of Materials Science: Materials in Electronics, 32(17), 21966-21973. [43] Wu, P. C., & Chuang, T. H. (2021). Evaporation of Ag nanotwinned films on Si substrates with ion beam assistance. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(12), 2222-2228. [44] Wang, Y., Dai, X., Liu, G., Wu, Y., Li, D., & Jones, S. (2015, August). Status and trend of SiC power semiconductor packaging. In 2015 16th International Conference on Electronic Packaging Technology (ICEPT) (pp. 396-402). IEEE. [45] W. D. MacDonald and T. W. Eagar.” TRANSIENT LIQUID PHASE BONDING”. Annu. Rev. Mater. Sci. 1992.22:23-46 [46] M. DOLLAR, and T. B. MASSALSKI.” A Study of the Transient Liquid Phase Bonding Process Applied to a Ag/Cu/Ag Sandwich Joint”. METALLURGICAL TRANSACTIONS A VOLUME 19A, MARCH 1988 675 [47] LuD, Wong CP. Materials for advanced packaging[M]. Boston: Springer, 2009 [48] Sun, L., Chen, M. H., Zhang, L., He, P., & Xie, L. S. (2020). Recent progress in SLID bonding in novel 3D-IC technologies. Journal of Alloys and Compounds, 818, 152825. [49] Cao, Y., Ning, W., & Luo, L. (2009). Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device. IEEE Transactions on electronics packaging manufacturing, 32(3), 125-132. [50] Guo, X. J., Li, Z. L., Song, X. G., Tian, H., Dong, H. J., & Zhao, H. Y. (2019). Influence of Ni particle addition on grain refinement of Cu-Sn intermetallic compound joints bonded at various temperatures. Journal of Alloys and Compounds, 774, 721-726. [51] Yang, T. L., Yu, J. J., Shih, W. L., Hsueh, C. H., & Kao, C. R. (2014). Effects of silver addition on Cu–Sn microjoints for chip-stacking applications. Journal of alloys and compounds, 605, 193-198. [52] Li, J. F., Agyakwa, P. A., & Johnson, C. M. (2010). Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Materialia, 58(9), 3429-3443. [53] Lis, A., & Leinenbach, C. (2015). Effect of process and service conditions on TLP-bonded components with (Ag, Ni–) Sn interlayer combinations. Journal of Electronic Materials, 44, 4576-4588. [54] Shao, H., Wu, A., Bao, Y., & Zhao, Y. (2017). Elimination of pores in Ag–Sn TLP bonds by the introduction of dissimilar intermetallic phases. Journal of Materials Science, 52, 3508-3519. [55] Lu, D., & Wong, C. P. (Eds.). (2009). Materials for advanced packaging (Vol. 181). New York: Springer. [56] Sutharsini, U., Thanihaichelvan, M., & Singh, R. (2018). Two-step sintering of ceramics. Sintering of functional materials, 3-22. [57] Dutt, Gyan, Mike Marczi, and Oscar Khaselev. "Silver sintering die attach–myths & physics." 2019 IEEE International Workshop on Integrated Power Packaging (IWIPP). IEEE, 2019. [58] Ji, H., Wang, S., Li, M., & Kim, J. (2014). Deep crystallization induced high thermal conductivity of low-temperature sintered Ag nanoparticles. Materials Letters, 116, 219-222. [59] Wu, Y., Zhao, Y., Wang, Y., Jones, S., Dai, X., & Liu, G. (2014, August). Applications of low temperature sintering technology as die attach for high temperature power modules. In 2014 15th International Conference on Electronic Packaging Technology (pp. 452-457). IEEE. [60] Ogura, H., Maruyama, M., Matsubayashi, R., Ogawa, T., Nakamura, S., Komatsu, T., ... & Isoda, S. (2010). Carboxylate-passivated silver nanoparticles and their application to sintered interconnection: a replacement for high temperature lead-rich solders. Journal of electronic materials, 39, 1233-1240. [61] Schmitt, W., & Heraeus, W. C. (2010, September). New silver contact pastes from high pressure sintering to low pressure sintering. In 3rd Electronics System Integration Technology Conference ESTC (pp. 1-6). IEEE. [62] Xiao, K., Calata, J. N., Zheng, H., Ngo, K. D., & Lu, G. Q. (2013). Simplification of the nanosilver sintering process for large-area semiconductor chip bonding: reduction of hot-pressing temperature below 200/spl deg/C. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(8), 1271-1278. [63] Wang, S., Ji, H., Li, M., & Wang, C. (2012). Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles. Materials Letters, 85, 61-63. [64] Liu, Y., Zhang, H., Wang, L., Fan, X., Zhang, G., & Sun, F. (2018). Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding. IEEE Transactions on Device and Materials Reliability, 18(2), 240-246. [65] Roh, M. H., Nishikawa, H., Tsutsumi, S., Nishiwaki, N., Ito, K., Ishikawa, K., ... & Saito, M. (2018). Low temperature bonding with high shear strength using micro-sized Ag particle paste for power electronic packaging. Journal of Materials Science: Materials in Electronics, 29, 3800-3807. [66] Kini, M. K., Dehm, G., & Kirchlechner, C. (2020). Size dependent strength, slip transfer and slip compatibility in nanotwinned silver. Acta Materialia, 184, 120-131. [67] Wuhrer, R., & Yeung, W. Y. (2002). A study on the microstructure and property development of dc magnetron cosputtered ternary titanium aluminium nitride coatings Part III effect of substrate bias voltage and temperature. Journal of materials science, 37, 1993-2004. [68] Lin, J., Moore, J. J., Sproul, W. D., Lee, S. L., & Wang, J. (2010). Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering. IEEE transactions on plasma science, 38(11), 3071-3078. [69] Mouche, P. A., Evans, A., Zhong, W., Koyanagi, T., & Katoh, Y. (2021). Effects of sample bias on adhesion of magnetron sputtered Cr coatings on SiC. Journal of Nuclear Materials, 556, 153251. [70] TWI711670B凱. 史. 特璐伯爾, 馬. 帕特卡, 坂井徳幸, and 尼. 克拉斯克, "高性能、熱傳導性之表面安裝(晶粒附接)黏著劑High performance, thermally conductive surface mount (die attach) adhesives," Taiwan, 2016. [71] CN104160490A小林誠 and 佐佐木幸司, "银微粒烧结体 Ag as the principal constituent," (in Chinese, English), China, 02.26, 2013. [72] Tollefsen, T. A., Larsson, A., Løvvik, O. M., & Aasmundtveit, K. (2012). Au-Sn SLID bonding—properties and possibilities. Metallurgical and materials transactions B, 43, 397-405. [73] Aasmundtveit, K. E., Luu, T. T., Vardøy, A. S. B., Tollefsen, T. A., Wang, K., & Hoivik, N. (2014, September). High-temperature shear strength of solid-liquid interdiffusion (SLID) bonding: Cu-Sn, Au-Sn and Au-In. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC) (pp. 1-6). IEEE. [74] Luu, T. T., Hoivik, N., Wang, K., Aasmundtveit, K. E., & Vardøy, A. S. B. (2015). High-temperature mechanical integrity of Cu-Sn SLID wafer-level bonds. Metallurgical and Materials Transactions A, 46, 5266-5274. [75] Kim, S., Kim, K. S., Kim, S. S., Suganuma, K., & Izuta, G. (2009). Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier. Journal of electronic materials, 38, 2668-2675 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92282 | - |
| dc.description.abstract | 半導體技術在二十世紀中葉開始萌芽後,隨著人工智能(AI)、5G 通訊、電動車及物聯網等發展,對功率半導體提出更嚴苛的要求,不但要求輕薄短小外,也要求要有高功率、良導熱及高可靠性等特性;現今以寬能隙的第三代半導體為主,其中以碳化矽最為矚目,因其高強度的機械性質、寬能隙可承受高功率、高電壓的工作環境及良好的光學性質等,使得被廣泛的應用在先進的半導體中,因此本研究將以碳化矽做為基板做為研究,並為了滿足其高工作溫度的環境,後續選擇銀燒結接合,實現低溫接合高溫應用。
另外,可以透過晶背研磨晶背金屬化(Backside Grinding Backside Metallization, BGBM)的技術來改善基板的電性及機械性質,其中奈米孿晶(nanotwin)擁有非常好的熱穩定性及機械性質,並且在強化的同時亦不失去延展性,因此本研究在濺鍍晶背金屬化層時,透過在基板施加150V的偏壓,能夠得到最優的奈米孿晶銀(nanotwin Ag, nt-Ag)結構。由於施加偏壓的關係,原子將呈現最密堆積,加上金屬銀是面心立方(FCC)結構,因此表面的平面族{111}多寡則被視為奈米孿晶結構的指標,本研究透過聚焦離子束顯微鏡(FIB),直接以離子束影像觀察其橫截面微結構;利用X射線繞射分析儀(XRD)及電子背向式散射繞射技術(EBSD)來觀察銀薄膜的晶格取向,在偏壓為150V時的表面(111)比例為95.2%。 由於銀奈米孿晶表面高比例的{111}平面族,使表面原子在擇優取向<111>擴散速率快,進而可增加接合時的速率,同時降低接合溫度,而本研究將BGBM後的碳化矽晶面與DBC基板做銀燒結接合,一組樣品是傳統鍍層(Cr/Ni/Ag)結構;另一組是銀奈米孿晶(Cr/nt-Ag)結構,比較兩者在銀燒結接合時的差別,先是利用掃描式電子顯微鏡(SEM)觀察其接合的橫截面;同時透過推力測試來評估其接合附著力,最終發現在相同接合條件下,銀奈米孿晶的樣品相較於傳統鍍層的樣品,皆有較好的接合強度;在納美仕銀膏實驗中,輔助壓力為10MPa、燒結溫度150°C、真空接合10min下與DBC基板銀燒結接合後的最大推力強度為33.1MPa,遠大於傳統鍍層樣品在同樣參數下的11.9MPa。昇貿銀膏中,其FIB及EBSD的分析結果進一步證實了銀奈米孿晶表面的高擴散性。綜合以上研究,銀奈米孿晶結構的晶背金屬化層,在銀燒接合上較傳統鍍層更有優勢。 | zh_TW |
| dc.description.abstract | The emergence of semiconductor technology in the mid-20th century has encountered escalating demands on power semiconductors due to advancements in artificial intelligence (AI), 5G communication, electric vehicles, and the Internet of Things (IoT). These demands surpass conventional compact size requirements, now encompassing high power, efficient heat conduction, and high reliability. Presently, wide bandgap third-generation semiconductors, especially silicon carbide (SiC), have gained prominence owing to their exceptional mechanical properties, wide bandgap for high-power tolerance, and excellent optical characteristics. This study centers on SiC as a substrate, emphasizing its application in advanced semiconductors. To cater to high operating temperatures, silver sintering bonding is chosen as a low-temperature bonding method.
Furthermore, the utilization of Backside Grinding Backside Metallization (BGBM) employing nanotwinned structures enhances the electrical and mechanical properties of the substrate. Nanotwins exhibit outstanding thermal stability and mechanical properties while preserving ductility. When a bias voltage of 150V is applied during the sputtering of the backside metallization layer, superior silver nanotwinned (nt-Ag) structures are observed, characterized by the most densely packed arrangement due to the applied bias voltage, as observed using focused ion beam microscopy (FIB). X-ray diffraction analysis (XRD) and electron backscatter diffraction (EBSD) techniques are utilized to examine the orientation of the thin film silver, revealing a surface (111) proportion of 95.2% under a bias voltage of 150V. The prevalence of {111} planes on the nanotwin silver surface facilitates rapid diffusion of surface atoms in the preferred <111> direction, thereby potentially increasing bonding rates or reducing bonding temperatures. The study compares traditional coatings (Cr/Ni/Ag) with nanotwin silver coatings (Cr/nt-Ag) in silver sintering bonding between SiC crystal faces and direct bond copper (DBC) substrates. Scanning electron microscopy (SEM) is employed to observe bond cross-sections, while push tests evaluate bonding adhesion. Results indicate that, under identical bonding conditions, nanotwin silver samples exhibit superior bonding strength compared to traditional layered samples. In experiments with Sumitomo Electric Industries (SEI) silver paste, the maximum push strength after silver sintering bonding with a DBC substrate at 10MPa auxiliary pressure, 150°C sintering temperature, and 10 minutes of vacuum bonding is 33.1MPa, significantly higher than the 11.9MPa achieved by traditional coatings under the same parameters. FIB and EBSD analyses further corroborate the high diffusivity of nanotwin silver surfaces. In conclusion, the backside metallization layer with nanotwin silver structures demonstrates advantages in silver sintering bonding over traditional coatings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:25:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:25:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目次 V 圖次 VIII 表次 XIII 第一章 前言 1 1.1 研究背景 1 1.1.1 電子構裝簡介 1 1.1.2 先進封裝演進 3 1.1.3 2D、2D+、2.5D到3D先進封裝 3 1.1.4 半導體材料 4 1.2 研究動機與目的 8 第二章 文獻回顧 9 2.1 奈米孿晶結構與特性 9 2.1.1 孿晶(Twins)與孿晶界(Twin Boundary) 9 2.1.2 共位晶界(Coincidence Site Lattice, CSL Grain Boundary) 10 2.1.3 奈米孿晶特性 12 2.1.4 奈米孿晶形成機制 15 2.2 固晶接合(Die bonding) 17 2.2.1 暫相液態接合法(Transient Phase Liquid Bonding, TPLB) 17 2.2.2 固液接合(Solid-Liquid Inter-Diffusion Bonding, SLID) 21 2.2.3 銀燒結接合(Silver sintering) 23 第三章 實驗方法與步驟 30 3.1 實驗流程圖 30 3.1.1 濺鍍晶背金屬化層 30 3.1.2 銀燒結接合 31 3.2 材料種類及其預處理 32 3.2.1 碳化矽基板與清潔 32 3.2.2 覆銅陶瓷基板與清洗 32 3.2.3 鍍膜材料 33 3.2.4 濺鍍氣體 33 3.2.5 奈米銀燒結銀膏 33 3.3 濺鍍設備與製程 33 3.3.1 四槍磁控事件度系統 33 3.3.2 濺鍍製程 34 3.4 銀燒結接合設備與實驗步驟 35 3.4.1 真空管狀加熱爐 35 3.4.2 真空熱壓機 36 3.5 材料性質分析與設備 37 3.5.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 37 3.5.2 聚焦離子束顯微鏡(Focus Ion Beam, FIB) 38 3.5.3 電子背向散射繞射技術(Electron Backscatter Diffraction, EBSD) 38 3.5.4 X-射線繞射分析(X-Ray Diffraction, XRD) 39 3.5.5 剪力強度測試 39 3.6 研磨拋光 40 第四章 結果與討論 41 4.1 碳化矽晶片濺鍍晶背金屬化層薄膜的實驗分析 41 4.1.1 不同偏壓對銀奈米孿晶的影響 41 4.1.2 薄膜厚度對奈米孿晶銀結構的影響 47 4.1.3 濺鍍與蒸鍍對奈米孿晶銀結構的影響 49 4.1.4 推力試驗的分析 52 4.2 銀燒結接合實驗分析(納美仕銀膏-真空燒結) 54 4.2.1 輔助壓力對銀燒結影響 55 4.2.2 接合溫度對銀燒結的影響 58 4.2.3 奈米孿晶對銀燒結的影響 63 4.3 銀燒結接合實驗分析(昇貿銀膏大氣燒結) 68 4.3.1 輔助壓力與接合溫度對銀燒結的影響 68 4.3.2 銀奈米孿晶對銀燒結接合的影響 79 第五章 結論 89 5.1 濺鍍晶背金屬化層結論 89 5.2 銀燒結接合結論 89 REFERENCE 92 附錄一 銀燒結接合強度一覽表 99 附錄二 銀燒結接合孔隙率一覽表 101 附錄三 昇貿銀膏銀燒結接合二次電子影像原圖 103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 寬能隙半導體 | zh_TW |
| dc.subject | 晶背金屬化 | zh_TW |
| dc.subject | 銀奈米孿晶 | zh_TW |
| dc.subject | 基板偏壓濺鍍 | zh_TW |
| dc.subject | 銀燒結接合 | zh_TW |
| dc.subject | substrate bias sputtering | en |
| dc.subject | wide bandgap semiconductor | en |
| dc.subject | backside metallization | en |
| dc.subject | nanotwinned Ag | en |
| dc.subject | silver sintering | en |
| dc.title | 碳化矽晶背Cr/Ni/Ag與Cr/Ag奈米孿晶薄膜分析 及其與DBC陶瓷基板固晶接合 | zh_TW |
| dc.title | Analyses of Backside Metallized Cr/Ni/Ag and Cr/Ag Nanotwinned Thin Films on SiC Chips and Die Bonding with DBC Ceramic Substrates | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林招松 | zh_TW |
| dc.contributor.coadvisor | Chao-Sung Lin | en |
| dc.contributor.oralexamcommittee | 周眾信;邱冠諭;王彰盟 | zh_TW |
| dc.contributor.oralexamcommittee | Chong-Xin Chou;Guan-Yu Qiu;Zhang-Meng Wang | en |
| dc.subject.keyword | 寬能隙半導體,晶背金屬化,銀奈米孿晶,基板偏壓濺鍍,銀燒結接合, | zh_TW |
| dc.subject.keyword | wide bandgap semiconductor,backside metallization,nanotwinned Ag,substrate bias sputtering,silver sintering, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202400364 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2029-01-30 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2029-01-30 | 16.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
