請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92032完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 莊承諭 | zh_TW |
| dc.contributor.author | Cheng-Yu Chuang | en |
| dc.date.accessioned | 2024-03-04T16:11:53Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-06 | - |
| dc.identifier.citation | [1] (2022). Levelized Costs of New Generation Resources in the Annual Energy Outlook 2022.
[2] Global energy investment in clean energy and in fossil fuels [Online] Available: https://www.iea.org/reports/world-energy-investment-2023/overview-and-key-findings#abstract [3] G. N. Tiwari and M. K. Ghosal, "Renewable energy resources: basic principles and applications," 2005. [4] D. Bhatnagar et al., "Nontechnical Barriers to Geothermal Development," United States, 2022-07-01 2022. [Online]. Available: https://www.osti.gov/biblio/1879758 [5] (2020). 能源轉型白皮書. [6] 地熱單一服務窗口 [Online] Available: https://rb.gy/6a86d1 [7] 能源國家型科技計畫第一期程之研究進展. [Online] Available: https://rb.gy/9511c1 [8] 能源國家型科技計畫第二期程之研究進展. [Online] Available: https://cutt.ly/PwPAaB8o [9] (2020). 前瞻基礎建設計畫-綠能建設. [10] R. DiPippo, "Geothermal power plants principles, applications, case studies and environmental impact," Geothermal power plants, 2012. [11] A. Anderson and B. Rezaie, "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, vol. 248, pp. 18-34, 2019/08/15/ 2019, doi: https://doi.org/10.1016/j.apenergy.2019.04.102. [12] L. A. Prananto, F. B. Juangsa, R. M. Iqbal, M. Aziz, and T. A. F. Soelaiman, "Dry steam cycle application for excess steam utilization: Kamojang geothermal power plant case study," Renewable Energy, vol. 117, pp. 157-165, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.renene.2017.10.029. [13] B. A. A. Yousef, A. A. Hachicha, I. Rodriguez, M. A. Abdelkareem, and A. Inyaat, "Perspective on integration of concentrated solar power plants," International Journal of Low-Carbon Technologies, vol. 16, no. 3, pp. 1098-1125, 2021, doi: 10.1093/ijlct/ctab034. [14] Z. Yusupov and M. Almaktar, "Geothermal Power Generation," 2021, pp. 1-20. [15] M. E. M. Montagud and C. R. Chamorro, "Geothermal Power Technologies," Reference Module in Earth Systems and Environmental Sciences, vol. 3, S. A. Elias Ed.: Elsevier, 2017, pp. 51-61. [16] G. Langella, V. Paoletti, R. DiPippo, A. Amoresano, K. Steinunnardóttir, and M. Milano, "Krafla geothermal system, northeastern Iceland: Performance assessment of alternative plant configurations," Geothermics, vol. 69, pp. 74-92, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.geothermics.2017.04.001. [17] M. H. Dickson and M. Fanelli, "Geothermal energy: utilization and technology," 2013. [18] Y. Zhao and J. Wang, "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied energy, vol. 179, pp. 159-170, 2016. [19] K. Erkan, G. Holdmann, W. Benoit, and D. Blackwell, "Understanding the Chena Hot Springs, Alaska, geothermal system using temperature and pressure data from exploration boreholes," Geothermics, vol. 37, no. 6, pp. 565-585, 2008. [20] I. K. Smith, R. DiPippo, "12 - Total flow and other systems involving two-phase expansion," Geothermal Power Generation, 2016, pp. 321-351. [21] G. Yu and Z. Yu, "Research on a Coupled Total-Flow and Single-Flash (TF-SF) System for Power and Freshwater Generation from Geothermal Source," Applied Sciences, vol. 10, no. 8, p. 2689, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/8/2689. [22] A. L. Austin and A. W. Lundberg, "Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept," United States, 1978-10-02 1978. [Online]. Available: https://www.osti.gov/biblio/6020273 [23] S. Venkateswaran, J. W. Lindau, R. F. Kunz, and C. L. Merkle, "Computation of multiphase mixture flows with compressibility effects," Journal of Computational Physics, vol. 180, no. 1, pp. 54-77, 2002. [24] Tzu-Yuan Lin," Novel design of total-flow geothermal power plant using turgo turbines and co-axial closed-loop heat extraction system, 國立臺灣大學機械工程學研究所, 2020. [25] R. F. Tangren, C. H. Dodge, and H. S. Seifert, "Compressibility Effects in Two‐Phase Flow," Journal of Applied Physics, vol. 20, no. 7, pp. 637-645, 2004, doi: 10.1063/1.1698449. [26] Kun-Yi Cai," Experimental and theoretical analysis of total flow geothermal power generation system and two-phase flow nozzle, 國立臺灣大學機械工程學研究所, 2021. [27] K. Akagawa, T. Fujii, J. Ohta, K. Inoue, and K. Taniguchi, "Performance Characteristics of Divergent-Convergent Nozzles for Subcooled Hot Water," JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, vol. 31, 11/15 1988, doi: 10.1299/jsmeb1988.31.4_718. [28] Chia-Hao Wang ,Experimental investigation of two-phase nozzles applying to total-flow geothermal power generation systems 國立臺灣大學機械工程學系, 2023. [29] Chia-Yu Ko.Numerical investigation on the supersonic two-phase flows in a convergent-divergent nozzle using the Lagrangian finite volume method 國立臺灣大學機械工程學研究所, 2019. Print | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92032 | - |
| dc.description.abstract | 本研究為二相流噴嘴的全流式發電實驗,於研究中完成建設全流式超音速二相流噴嘴測試及發電平台,且建設鍋爐系統來模擬地熱庫之溫度及壓力,透過收集不同溫度之下的全流式發電實驗數據來分析最佳效率之噴嘴。
本研究中所使用的渦輪機為斜衝式渦輪機,其優點為不易堆積雜質對於發電平台的維護及保養有一定的幫助,而使用的二相流噴嘴為漸縮漸擴噴嘴,其優點在於能在二相流達到音速時持續將流體加速成為超音速流體,以利實驗中能獲得較大的質量流率,而在本次實驗中觀察到隨著使用較大喉部直徑之噴嘴能獲得較大的質量流率,在獲得較大質量流率的條件下能獲得較大的發電量,但對於渦輪機機本身的動能轉換率卻並非是最大質量流率之噴嘴擁有最佳之動能轉換率,且在計算斜衝式渦輪機的理論發電量下也有相同的情形產生,因此推斷轉換效率可能會與噴嘴的噴射流體型態有關。 | zh_TW |
| dc.description.abstract | This research focuses on the development and experimentation of a two-phase flow nozzle for a total flow geothermal power generation system. The study involves the construction of a test and power generation platform for a total-flow supersonic two-phase flow nozzle. Additionally, a boiler system is established to simulate the temperature and pressure conditions of a geothermal reservoir. The experimental data collected at various temperatures will be analyzed to determine the optimal efficiency of the nozzle.
The turbine used in this study is a turgo turbine, chosen for its resistance to impurity accumulation, contributing to easier maintenance and upkeep of the power generation platform. The two-phase flow nozzle employed is a converging-diverging nozzle, selected for its ability to continuously accelerate the fluid to supersonic speeds as the two-phase flow reaches sonic velocity. This facilitates obtaining a larger mass flow rate during the experiment. Observations from the experiment indicate that nozzles with larger throat diameters result in increased mass flow rates, leading to higher power generation. However, it is noted that the nozzle with the maximum mass flow rate does not necessarily possess the optimal kinetic energy conversion rate for the turbine. This observation is consistent with the theoretical power generation calculations for the inclined impeller turbine. Consequently, it is inferred that the conversion efficiency may be related to the jet fluid pattern of the nozzle. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:11:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:11:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 圖次 V 表次 VII 符號說明 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1乾蒸汽系統(Dry steam) 4 1.2.2 閃發式發電系統(Flash steam) 5 1.2.3 雙循環式發電系統(Binary cycle) 6 1.2.4 全流式發電系統(Total flow) 7 第二章 基礎理論 12 2.1 二相流音速理論 12 2.2實驗計算理論 15 2.3 斜衝擊式渦輪機 16 第三章 實驗介紹 19 3.1實驗設備 19 3.1.1鍋爐系統 19 3.1.2 PLC系統 22 3.1.3發電系統 24 3.1.4 電力負載箱(load bank) 29 3.1.6壓力感測器及溫度感測器 32 3.2實驗架構 33 3.3實驗流程 35 第四章 實驗結果與討論 37 4.1 全流式發電系統二相流噴嘴噴射方式探討 37 4.2推力係數 38 4.3全流式發電系統效率分析 40 第五章 結論與建議 46 5.1 結論 46 5.2未來建議與展望 47 參考文獻 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全流式地熱發電 | zh_TW |
| dc.subject | 地熱發電 | zh_TW |
| dc.subject | 超音速二相流噴嘴 | zh_TW |
| dc.subject | 斜衝式渦輪機 | zh_TW |
| dc.subject | 二相流噴嘴 | zh_TW |
| dc.subject | wo phase flow nozzle | en |
| dc.subject | Turgo turbine | en |
| dc.subject | Supersonic two phase flow nozzle | en |
| dc.subject | Total flow geothermal power generation system | en |
| dc.subject | Geothermal | en |
| dc.title | 二相流噴嘴效率實驗與分析 | zh_TW |
| dc.title | Experiment and analysis on the efficiency of two-phase flow nozzles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁俊德;江沅晉;林子淵 | zh_TW |
| dc.contributor.oralexamcommittee | Jyun-De Liang;Yuan-Ching Chiang;Tzu-Yuan Lin | en |
| dc.subject.keyword | 地熱發電,全流式地熱發電,二相流噴嘴,斜衝式渦輪機,超音速二相流噴嘴, | zh_TW |
| dc.subject.keyword | Geothermal,Total flow geothermal power generation system,wo phase flow nozzle,Turgo turbine,Supersonic two phase flow nozzle, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202400516 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 3.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
