Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91945
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽zh_TW
dc.contributor.advisorFeng-Yu Tsaien
dc.contributor.author鄭景云zh_TW
dc.contributor.authorChing-Yun Chengen
dc.date.accessioned2024-02-26T16:34:29Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] M. Rull-Bravo; A. Moure; J. F. Fernández; M. Martín-González. Skutterudites as thermoelectric materials: revisited. RSC Advances 2015, 5 (52), 41653-41667. DOI: 10.1039/c5ra03942h.
[2] M. Cutler; N. F. Mott. Observation of Anderson localization in an electron gas. Physical Review 1969, 181 (3), 1336.
[3] J. Choi; J. Y. Lee; S. S. Lee; C. R. Park; H. Kim. High‐performance thermoelectric paper based on double carrier‐filtering processes at nanowire heterojunctions. Advanced Energy Materials 2016, 6 (9), 1502181.
[4] A. I. Hochbaum; R. Chen; R. D. Delgado; W. Liang; E. C. Garnett; M. Najarian; A. Majumdar; P. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451 (7175), 163-167.
[5] L. Liang; G. Chen; C.-Y. Guo. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Composites Science and Technology 2016, 129, 130-136.
[6] G. Zhang; B. Kirk; L. A. Jauregui; H. Yang; X. Xu; Y. P. Chen; Y. Wu. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano letters 2012, 12 (1), 56-60.
[7] M. Esposito; K. Lindenberg; C. Van den Broeck. Thermoelectric efficiency at maximum power in a quantum dot. EPL (Europhysics Letters) 2009, 85 (6), 60010.
[8] T. Harman; P. Taylor; D. Spears; M. Walsh. Thermoelectric quantum-dot superlattices with high ZT. Journal of Electronic Materials 2000, 29 (1), L1-L2.
[9] B. Sothmann; R. Sánchez; A. N. Jordan. Thermoelectric energy harvesting with quantum dots. Nanotechnology 2014, 26 (3), 032001.
[10] R. Y. Wang; J. P. Feser; J.-S. Lee; D. V. Talapin; R. Segalman; A. Majumdar. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano letters 2008, 8 (8), 2283-2288.
[11] H. Ohta; S. Kim; Y. Mune; T. Mizoguchi; K. Nomura; S. Ohta; T. Nomura; Y. Nakanishi; Y. Ikuhara; M. Hirano. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature materials 2007, 6 (2), 129-134.
[12] R. Venkatasubramanian; E. Siivola; T. Colpitts; B. O'quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413 (6856), 597-602.
[13] I. Chowdhury; R. Prasher; K. Lofgreen; G. Chrysler; S. Narasimhan; R. Mahajan; D. Koester; R. Alley; R. Venkatasubramanian. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature nanotechnology 2009, 4 (4), 235-238.
[14] C. Wan; X. Gu; F. Dang; T. Itoh; Y. Wang; H. Sasaki; M. Kondo; K. Koga; K. Yabuki; G. J. Snyder. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature materials 2015, 14 (6), 622-627.
[15] J.-H. Bahk; Z. Bian; A. Shakouri. Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Physical Review B 2013, 87 (7), 075204.
[16] D.-K. Ko; Y. Kang; C. B. Murray. Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites. Nano letters 2011, 11 (7), 2841-2844.
[17] J. Martin; L. Wang; L. Chen; G. Nolas. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Physical review B 2009, 79 (11), 115311.
[18] Y. N. Y. Nishio; T. H. T. Hirano. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Japanese journal of applied physics 1997, 36 (1R), 170.
[19] A. Soni; Y. Shen; M. Yin; Y. Zhao; L. Yu; X. Hu; Z. Dong; K. A. Khor; M. S. Dresselhaus; Q. Xiong. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2. 7Se0. 3 nanoplatelet composites. Nano letters 2012, 12 (8), 4305-4310.
[20] N. Adamczyk; A. Dameron; S. George. Molecular layer deposition of poly (p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. Langmuir 2008, 24 (5), 2081-2089.
[21] Y. Du; S. George. Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy. The Journal of Physical Chemistry C 2007, 111 (24), 8509-8517.
[22] T. V. Ivanova; P. S. Maydannik; D. C. Cameron. Molecular layer deposition of polyethylene terephthalate thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012, 30 (1), 01A121.
[23] F. Fug; A. Petry; H. Jost; A. Ahmed; M. Zamanzade; W. Possart. Molecular layer deposition of polyurethane—Polymerisation at the very contact to native aluminium and copper. Applied Surface Science 2017, 426, 133-147.
[24] Y. Lee; B. Yoon; A. S. Cavanagh; S. M. George. Molecular layer deposition of aluminum alkoxide polymer films using trimethylaluminum and glycidol. Langmuir 2011, 27 (24), 15155-15164.
[25] A. Dameron; D. Seghete; B. Burton; S. Davidson; A. Cavanagh; J. Bertrand; S. George. Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chemistry of Materials 2008, 20 (10), 3315-3326.
[26] K. Van de Kerckhove; F. Mattelaer; D. Deduytsche; P. M. Vereecken; J. Dendooven; C. Detavernier. Molecular layer deposition of “titanicone”, a titanium-based hybrid material, as an electrode for lithium-ion batteries. Dalton Transactions 2016, 45 (3), 1176-1184.
[27] B. Yoon; B. H. Lee; S. M. George. Highly conductive and transparent hybrid organic–inorganic zincone thin films using atomic and molecular layer deposition. The Journal of Physical Chemistry C 2012, 116 (46), 24784-24791.
[28] A. A. Volk; J.-S. Kim; J. Jamir; E. C. Dickey; G. N. Parsons. Oxidative molecular layer deposition of PEDOT using volatile antimony(V) chloride oxidant. Journal of Vacuum Science & Technology A 2021, 39 (3). DOI: 10.1116/6.0000791.
[29] W. Xiao; D. Y. Hui; C. Zheng; D. Yu; Y. Y. Qiang; C. Ping; C. L. Xiang; Z. Yi. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers. Nanoscale research letters 2015, 10 (1), 1-7.
[30] B. H. Lee; B. Yoon; V. R. Anderson; S. M. George. Alucone alloys with tunable properties using alucone molecular layer deposition and Al2O3 atomic layer deposition. The Journal of Physical Chemistry C 2012, 116 (5), 3250-3257.
[31] X. Liang; A. W. Weimer. An overview of highly porous oxide films with tunable thickness prepared by molecular layer deposition. Current Opinion in Solid State and Materials Science 2015, 19 (2), 115-125.
[32] J. Liu; B. Yoon; E. Kuhlmann; M. Tian; J. Zhu; S. M. George; Y.-C. Lee; R. Yang. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic–inorganic zincone thin films. Nano letters 2013, 13 (11), 5594-5599.
[33] Y.-Y. Lin; C.-C. Hsu; M.-H. Tseng; J.-J. Shyue; F.-Y. Tsai. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS applied materials & interfaces 2015, 7 (40), 22610-22617.
[34] S. Lim; J.-M. Kim; D. Kim; S. Kwon; J.-S. Park; H. Kim. Atomic layer deposition ZnO: N thin film transistor: The effects of N concentration on the device properties. Journal of The Electrochemical Society 2009, 157 (2), H214.
[35] C. T. Chou; P. W. Yu; M. H. Tseng; C. C. Hsu; J. J. Shyue; C. C. Wang; F. Y. Tsai. Transparent Conductive Gas‐Permeation Barriers on Plastics by Atomic Layer Deposition. Advanced Materials 2013, 25 (12), 1750-1754.
[36] B. Macco; H. C. Knoops; M. A. Verheijen; W. Beyer; M. Creatore; W. M. Kessels. Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. Solar Energy Materials and Solar Cells 2017, 173, 111-119.
[37] Z.-L. Tseng; C.-H. Chiang; C.-G. Wu. Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Scientific reports 2015, 5 (1), 1-10.
[38] A. Hultqvist; K. Aitola; K. r. Sveinbjörnsson; Z. Saki; F. Larsson; T. Törndahl; E. Johansson; G. Boschloo; M. Edoff. Atomic layer deposition of electron selective SnO x and ZnO films on mixed halide perovskite: compatibility and performance. ACS applied materials & interfaces 2017, 9 (35), 29707-29716.
[39] S. I. Boyadjiev; V. Georgieva; R. Yordanov; Z. Raicheva; I. M. Szilágyi. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors. Applied Surface Science 2016, 387, 1230-1235.
[40] P. Lin; X. Chen; K. Zhang; H. Baumgart. Improved gas sensing performance of ALD AZO 3-D coated ZnO nanorods. ECS Journal of Solid State Science and Technology 2018, 7 (12), Q246.
[41] S.-H. Lee; J.-H. Lee; S.-J. Choi; J.-S. Park. Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO. Ceramics International 2017, 43 (10), 7784-7788.
[42] T. Tynell; H. Yamauchi; M. Karppinen. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2014, 32 (1), 01A105.
[43] J.-H. Lee; T.-H. Park; S.-H. Lee; N.-W. Park; W.-Y. Lee; J.-H. Lim; S.-K. Lee; J.-S. Park. Enhancing the thermoelectric properties of super-lattice Al2O3/ZnO atomic film via interface confinement. Ceramics International 2016, 42 (13), 14411-14415.
[44] T. Tynell; I. Terasaki; H. Yamauchi; M. Karppinen. Thermoelectric characteristics of (Zn, Al) O/hydroquinone superlattices. Journal of Materials Chemistry A 2013, 1 (43), 13619-13624.
[45] R. Ghiyasi; M. Milich; J. Tomko; P. E. Hopkins; M. Karppinen. Organic-component dependent thermal conductivity reduction in ALD/MLD grown ZnO: organic superlattice thin films. Applied Physics Letters 2021, 118 (21), 211903.
[46] D. G. Cahill. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of scientific instruments 2004, 75 (12), 5119-5122.
[47] S. E. Atanasov; M. D. Losego; B. Gong; E. Sachet; J.-P. Maria; P. S. Williams; G. N. Parsons. Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition. Chemistry of Materials 2014, 26 (11), 3471-3478. DOI: 10.1021/cm500825b.
[48] G. Drewelow; H. Wook Song; Z.-T. Jiang; S. Lee. Factors controlling conductivity of PEDOT deposited using oxidative chemical vapor deposition. Applied Surface Science 2020, 501. DOI: 10.1016/j.apsusc.2019.144105.
[49] M. R. A. Alves; H. D. R. Calado; C. L. Donnici; T. Matencio. Synthesis and characterization of new 3-substituted thiophene copolymers. Journal of the Brazilian Chemical Society 2011, 22 (2), 248-256. DOI: 10.1590/s0103-50532011000200009.
[50] H. Goktas; X. Wang; N. D. Boscher; S. Torosian; K. K. Gleason. Functionalizable and electrically conductive thin films formed by oxidative chemical vapor deposition (oCVD) from mixtures of 3-thiopheneethanol (3TE) and ethylene dioxythiophene (EDOT). Journal of Materials Chemistry C 2016, 4 (16), 3403-3414. DOI: 10.1039/c6tc00567e.
[51] K. Baba; G. Bengasi; D. El Assad; P. Grysan; E. Lentzen; K. Heinze; G. Frache; N. D. Boscher. Conductive Directly Fused Poly(Porphyrin) Coatings by Oxidative Chemical Vapour Deposition - From Single- to Triple-Fused. European Journal of Organic Chemistry 2019, 2019 (13), 2368-2375. DOI: 10.1002/ejoc.201900045.
[52] N. Jayarambabu; B. S. Kumari; K. V. Rao; Y. Prabhu. Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol 2014, 4 (5), 3411-3416.
[53] T. Tynell; M. Karppinen. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition. Thin Solid Films 2014, 551, 23-26. DOI: 10.1016/j.tsf.2013.11.067.
[54] A. León; P. Reuquen; C. Garín; R. Segura; P. Vargas; P. Zapata; P. Orihuela. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Applied Sciences 2017, 7 (1). DOI: 10.3390/app7010049.
[55] S. Mukhtar; M. Liu; J. Han; W. Gao. Removal of rhodamine B from aqueous solutions using vanadium pentoxide/titanium butyl oxide hybrid xerogels. Chinese Physics B 2017, 26 (5). DOI: 10.1088/1674-1056/26/5/058202.
[56] K. Kunimatsu; T. Yoda; D. A. Tryk; H. Uchida; M. Watanabe. In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 2010, 12 (3), 621-629. DOI: 10.1039/b917306d From NLM Medline.
[57] S. Islam; H. I. Akyildiz. Immobilization of ZnO thin films onto fibrous glass substrates via atomic layer deposition and investigation of photocatalytic activity. Journal of Materials Science: Materials in Electronics 2021, 32 (22), 27027-27043. DOI: 10.1007/s10854-021-07075-y.
[58] A. Seweryn; R. Pietruszka; B. S. Witkowski; A. Wierzbicka; R. Jakiela; P. Sybilski; M. Godlewski. Structural and Electrical Parameters of ZnO Thin Films Grown by ALD with either Water or Ozone as Oxygen Precursors. Crystals 2019, 9 (11). DOI: 10.3390/cryst9110554.
[59] K. Ellmer. Resistivity of polycrystalline zinc oxide films: current status and physical limit. Journal of Physics D: Applied Physics 2001, 34 (21), 3097.
[60] B.-W. Shih. Thermoelectricity and gas permeability of metal oxide and metal oxide/polymer superlattice composites by atomic layer deposition. Unpublished doctoral dissertation, Department of Materials Science and Engineering, National Taiwan University, Taipei 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91945-
dc.description.abstract本研究利用分子層沉積技術成長出聚(3,4-乙烯基二氧噻吩)與聚(3-噻吩乙醇)兩種高分子薄膜,且這是首次以分子層沉積技術合成出聚(3-噻吩乙醇),我們將聚(3,4-乙烯基二氧噻吩)與聚(3-噻吩乙醇)薄膜應用於發展以原子層/分子層沉積技術製備氧化鋅/聚(3,4-乙烯基二氧噻吩)與氧化鋅/聚(3-噻吩乙醇)超晶格薄膜,並且分析這些不同結構之超晶格薄膜的熱電性質。藉由分子層沉積技術成長之聚(3,4-乙烯基二氧噻吩)與聚(3-噻吩乙醇)薄膜,其成長機制是在基板溫度150 °C的條件下,以五氯化銻作為氧化劑,分別利用表面介導氧化聚合3,4-乙烯基二氧噻吩與3-噻吩乙醇單體所聚合出之均勻且具有穩定成長速率的高分子薄膜。將分子層沉積技術成長之聚(3,4-乙烯基二氧噻吩)與聚(3-噻吩乙醇)高分子薄膜週期性地插入以原子層沉積技術成長出之氧化鋅薄膜中所構成的超晶格薄膜,會因為高分子薄膜中殘留的五氯化銻接觸到氧化鋅層而有n型摻雜效應,使得超晶格薄膜會擁有比氧化鋅薄膜還高的導電度與電子濃度,而且高分子層在超晶格中還能夠提供能量過濾效應以及使聲子散射,因此可以提升塞貝克係數以及降低熱導率。此外,由於具有羥基的聚(3-噻吩乙醇)能夠與氧化鋅薄膜形成Zn-O的鍵結,使得在超晶格薄膜中聚(3-噻吩乙醇)相較於聚(3,4-乙烯基二氧噻吩)能夠與氧化鋅層形成更完整的介面,而有更強的能量過濾效應以及聲子散射效應,因此氧化鋅/聚(3-噻吩乙醇)超晶格薄膜具有比氧化鋅/聚(3,4-乙烯基二氧噻吩)超晶格薄膜更優異的ZT值,且最佳的室溫ZT值可達0.0062,是氧化鋅的5倍。zh_TW
dc.description.abstractThis study investigated the molecular layer deposition (MLD) characteristics of poly(3,4-ethylenedioxythiophene) (PEDOT) and a novel poly(3-thiopheneethanol) (P3TE) thin films, developed integrated atomic layer deposition (ALD)/MLD methods for depositing ZnO/PEDOT and ZnO/P3TE superlattice thin films, and characterized the thermoelectric properties of the superlattice films with varied superlattice architectures. Uniform MLD PEDOT and P3TE thin films with steady growth rates per cycle was achieved through surface-mediated oxidation polymerization of 3,4-ethylenedioxythiophene (EDOT) and 3-thiopheneethanol (3TE), respectively, at a substrate temperature of 150 °C using SbCl5 as an oxidant. Incorporating the PEDOT or P3TE films with ALD ZnO films into superlattice films resulted in higher electrical conductivities and electron concentrations than those of the ZnO films, owing to the n-type doping effects that the SbCl5 contents used in the MLD processes imposed on the ZnO layers of the superlattice films. Additionally, the polymer layers served as energy-filtering and phonon-scattering barriers in the superlattice films, leading to higher Seebeck coefficients and lower thermal conductivities of the superlattice films compared with those of the ZnO films. The phonon-scattering and energy-filtering effects were stronger with P3TE than with PEDOT, because the hydroxyl side group of P3TE enabled formation of Zn-O bonds between the P3TE and ZnO layers, improving the quality of the P3TE-ZnO interfaces in the superlattice films. Examination of various superlattice architectures found that a ZnO/P3TE superlattice prepared by alternating 5 MLD cycles of P3TE (depositing 0.055 nm thickness) with 100 ALD cycles of ZnO (19.96 nm) yielded an optimal room-temperature ZT value of 0.0062, a ~5-fold increase over that of the ZnO film.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:34:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:34:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
原創性分析聲明書 ii
誌謝 iv
中文摘要 v
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xiii
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Concept of thermoelectric effect 1
1.1.1 Thermoelectricity 1
1.1.2 Creation of electromotive force in thermoelectric effect 4
1.1.3 Trade-off among the parameters in ZT 9
1.2 Thermoelectricity in superlattice thin films 13
1.2.1 Enhance ZT by shrinking the size of materials 13
1.2.2 The merits of thin film thermoelectric materials 15
1.2.3 Superlattice (Nanolaminates) thermoelectric materials 16
1.3 Fundamental concept of atomic layer deposition and molecular layer deposition 17
1.3.1 Atomic layer deposition (ALD) 17
1.3.2 Molecular layer deposition (MLD) 19
1.3.3 Advantages of thermoelectric thin film deposited by ALD/MLD 22
1.4 Literature review of thermoelectric thin films deposited by ALD/MLD 23
1.5 Motivation and objectives statements 25
Chapter 2 Experimental Methods 27
2.1 ALD and MLD deposition equipment and experiment parameters 27
2.1.1 ALD and MLD deposition equipment 27
2.1.2 Experimental parameters 27
2.2 Characterization 33
2.2.1 Measurement of thickness 33
2.2.2 Atomic force microscopy (AFM) 33
2.2.3 Fourier transform infrared (FTIR) spectroscopy 33
2.2.4 Quartz crystal microbalance (QCM) 34
2.2.5 X-ray photoelectron spectroscopy (XPS) 34
2.2.6 Measurements of electrical properties 34
2.2.7 Measurements of Seebeck coefficient 35
2.2.8 Measurements of thermal conductivity 36
2.2.9 X-ray diffraction (XRD) 39
Chapter 3 Results and discussions 40
3.1 Characteristic of MLD PEDOT and P3TE 41
3.2 Characterization of the films deposited using SbCl5 and H2O 46
3.3 Characterization of growth of the ZnO/PEDOT and ZnO/P3TE superlattice films 49
3.3.1 QCM analysis of ZnO/PEDOT and ZnO/P3TE superlattice films 49
3.3.2 FTIR analysis of the ZnO/PEDOT and ZnO/P3TE superlattice films 53
3.3.3 XRD analysis of the ZnO/PEDOT and ZnO/P3TE superlattice films 56
3.4 Thermoelectric properties of the ZnO/PEDOT and ZnO/P3TE superlattice films 57
3.4.1 Doping effects of PEDOT and P3TE dopant layers 57
3.4.2 Energy barrier effects and interface scattering effects of PEDOT and P3TE dopant layers 60
3.4.3 σ, S and PF of the ZnO/PEDOT and ZnO/P3TE superlattice films 62
3.4.4 κ of the ZnO/PEDOT and ZnO/P3TE superlattice films 66
3.4.5 ZT of the ZnO/PEDOT and ZnO/P3TE superlattice films 67
3.5 Effect of insertion of Sb2O5 in ZnO 71
3.5.1 Characterization of growth of the ZnO/Sb2O5 superlattice films 72
3.5.2 XRD analysis of growth of the ZnO/Sb2O5 superlattice films 73
3.5.3 ne, μe and σ of the ZnO/Sb2O5 superlattice films 74
3.5.4 S and PF of the ZnO/Sb2O5 superlattice films 76
3.5.5 κ and ZT of the ZnO/Sb2O5 superlattice films 78
Chapter 4 Conclusions 81
REFERENCE 83
-
dc.language.isoen-
dc.subject聚(3-噻吩乙醇)zh_TW
dc.subject超晶格薄膜zh_TW
dc.subject薄膜熱電材料zh_TW
dc.subject氧化鋅zh_TW
dc.subject分子層沉積技術zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject聚(3zh_TW
dc.subject4-乙烯基二氧噻吩)zh_TW
dc.subjectMolecular layer deposition (MLD)en
dc.subjectAtomic layer deposition (ALD)en
dc.subjectThermoelectric thin filmsen
dc.subjectSuperlattice filmsen
dc.subjectZinc oxideen
dc.subjectPoly(3-thiopheneethanol) (P3TE)en
dc.subject4-ethylenedioxythiophene) (PEDOT)en
dc.subjectPoly(3en
dc.title以原子/分子層沉積之氧化鋅/高分子超晶格薄膜熱電性質研究zh_TW
dc.titleThermoelectric properties of ZnO/polymer superlattice films by atomic/molecular layer depositionen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳敏璋;趙基揚zh_TW
dc.contributor.oralexamcommitteeMiin-Jang Chen;Chi-Yang Chaoen
dc.subject.keyword聚(3,4-乙烯基二氧噻吩),聚(3-噻吩乙醇),氧化鋅,超晶格薄膜,薄膜熱電材料,原子層沉積技術,分子層沉積技術,zh_TW
dc.subject.keywordPoly(3,4-ethylenedioxythiophene) (PEDOT),Poly(3-thiopheneethanol) (P3TE),Zinc oxide,Superlattice films,Thermoelectric thin films,Atomic layer deposition (ALD),Molecular layer deposition (MLD),en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202203863-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved