Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author蔡瑞恩zh_TW
dc.contributor.authorRui-En Caien
dc.date.accessioned2024-02-26T16:31:43Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Yu, J.; Corma, A.; Li, Y., Functional Porous Materials Chemistry. Advanced Materials 2020, 32 (44), 2006277.
2. Côté Adrien, P.; Benin Annabelle, I.; Ockwig Nathan, W.; O'Keeffe, M.; Matzger Adam, J.; Yaghi Omar, M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166-1170.
3. Shi, X.; Li, N.; Wu, D.; Hu, N.; Sun, J.; Zhou, X.; Suo, Y.; Li, G.; Wu, Y., Magnetic covalent organic framework material: synthesis and application as a sorbent for polycyclic aromatic hydrocarbons. Analytical Methods 2018, 10 (41), 5014-5024.
4. Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R., Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chemical Communications 2016, 52 (18), 3690-3693.
5. Li, X.; Yang, C.; Sun, B.; Cai, S.; Chen, Z.; Lv, Y.; Zhang, J.; Liu, Y., Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A 2020, 8 (32), 16045-16060.
6. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
7. Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445.
8. Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X. L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nature nanotechnology 2020, 15 (3), 224-230.
9. Wang, S.-H.; Yin, Y.-X.; Zuo, T.-T.; Dong, W.; Li, J.-Y.; Shi, J.-L.; Zhang, C.-H.; Li, N.-W.; Li, C.-J.; Guo, Y.-G., Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials 2017, 29 (40), 1703729.
10. Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P.; Li, H.; Geng, L.; Chen, J.; Ye, H.; Wang, Z.; Li, Y.; Sun, H.; Li, X.; Dai, Q.; Tang, Y.; Peng, Q.; Shen, T.; Zhang, S.; Zhu, T.; Huang, J., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nature nanotechnology 2020, 15 (2), 94-98.
11. Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D., Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. Journal of the American Chemical Society 2019, 141 (21), 8441-8449.
12. Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; Cui, Y.; Wang, C.; Xiao, J.; Liu, J.; Xu, W.; Zhang, J.-G., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy 2019, 4 (9), 796-805.
13. Ko, J.; Yoon, Y. S., Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries? Ceramics International 2019, 45 (1), 30-49.
14. Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G., Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2019, 58 (33), 11364-11368.
15. Liu, H.; Cheng, X.-B.; Xu, R.; Zhang, X.-Q.; Yan, C.; Huang, J.-Q.; Zhang, Q., Plating/Stripping Behavior of Actual Lithium Metal Anode. Advanced Energy Materials 2019, 9 (44), 1902254.
16. He, Y.; Ren, X.; Xu, Y.; Engelhard, M. H.; Li, X.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W.; Wang, C., Origin of lithium whisker formation and growth under stress. Nature nanotechnology 2019, 14 (11), 1042-1047.
17. Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagacé, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K., In Situ Scanning Electron Microscopy Detection of Carbide Nature of Dendrites in Li–Polymer Batteries. Nano Letters 2018, 18 (12), 7583-7589.
18. Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X.; Chen, L.; Li, H., In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019, 63, 103895.
19. von Lüders, C.; Keil, J.; Webersberger, M.; Jossen, A., Modeling of lithium plating and lithium stripping in lithium-ion batteries. Journal of Power Sources 2019, 414, 41-47.
20. Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017, 32, 271-279.
21. Yan, C.; Yao, Y.-X.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Huang, J.-Q.; Zhang, Q., Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. Angewandte Chemie International Edition 2018, 57 (43), 14055-14059.
22. Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J.-G.; Xu, W., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy 2017, 2 (3), 17012.
23. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature Communications 2015, 6 (1), 6362.
24. Zhang, X.-Q.; Chen, X.; Cheng, X.-B.; Li, B.-Q.; Shen, X.; Yan, C.; Huang, J.-Q.; Zhang, Q., Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie International Edition 2018, 57 (19), 5301-5305.
25. Garcia, B.; Lavallée, S.; Perron, G.; Michot, C.; Armand, M., Room temperature molten salts as lithium battery electrolyte. Electrochimica Acta 2004, 49 (26), 4583-4588.
26. Tong, J.; Wu, S.; von Solms, N.; Liang, X.; Huo, F.; Zhou, Q.; He, H.; Zhang, S., The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes. Frontiers in Chemistry 2020, 7.
27. Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J.-G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X.-L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z., Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nature nanotechnology 2020, 15 (3), 224-230.
28. Li, T.; Zhang, X.-Q.; Shi, P.; Zhang, Q., Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule 2019, 3 (11), 2647-2661.
29. Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei, F.; Zhang, Q., Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials 2016, 28 (11), 2155-2162.
30. Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Zhang, W.; Wen, Y.; Ming, H.; Zhu, X.; Guan, Y.; Xiang, Y.; Li, M.; Cao, G.; Yang, Y.; Peng, H.; Zhang, H.; Huang, Y., Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Materials 2019, 16, 419-425.
31. Sun, Z.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L.-J., Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes. Advanced Materials 2018, 30 (32), 1800884.
32. Ye, L.; Liao, M.; Sun, H.; Yang, Y.; Tang, C.; Zhao, Y.; Wang, L.; Xu, Y.; Zhang, L.; Wang, B.; Xu, F.; Sun, X.; Zhang, Y.; Dai, H.; Bruce, P. G.; Peng, H., Stabilizing Lithium into Cross-Stacked Nanotube Sheets with an Ultra-High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie International Edition 2019, 58 (8), 2437-2442.
33. Xiang, J.; Zhao, Y.; Yuan, L.; Chen, C.; Shen, Y.; Hu, F.; Hao, Z.; Liu, J.; Xu, B.; Huang, Y., A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy 2017, 42, 262-268.
34. Liu, L.; Yin, Y.-X.; Li, J.-Y.; Li, N.-W.; Zeng, X.-X.; Ye, H.; Guo, Y.-G.; Wan, L.-J., Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule 2017, 1 (3), 563-575.
35. Zhang, Y.; Zuo, T.-T.; Popovic, J.; Lim, K.; Yin, Y.-X.; Maier, J.; Guo, Y.-G., Towards better Li metal anodes: Challenges and strategies. Materials Today 2020, 33, 56-74.
36. Yan, X.; Lin, L.; Chen, Q.; Xie, Q.; Qu, B.; Wang, L.; Peng, D.-L., Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 2021, 3 (2), 303-329.
37. Huan, Y.; Fan, Y.; Li, Y.; Yin, B.; Hu, X.; Dong, D.; Wei, T., Factors influencing Li+ migration in garnet-type ceramic electrolytes. Journal of Materiomics 2019, 5 (2), 214-220.
38. Zheng, F.; Kotobuki, M.; Song, S.; Lai, M. O.; Lu, L., Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources 2018, 389, 198-213.
39. Johansson, P., First principles modelling of amorphous polymer electrolytes: Li+–PEO, Li+–PEI, and Li+–PES complexes. Polymer 2001, 42 (9), 4367-4373.
40. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
41. Mehta, M. A.; Fujinami, T.; Inoue, T., Boroxine ring containing polymer electrolytes. Journal of Power Sources 1999, 81-82, 724-728.
42. Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14 (11), 589.
43. Kumar, Y.; Hashmi, S. A.; Pandey, G. P., Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 2011, 201 (1), 73-80.
44. Rohan, R.; Pareek, K.; Chen, Z.; Cai, W.; Zhang, Y.; Xu, G.; Gao, Z.; Cheng, H., A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries. Journal of Materials Chemistry A 2015, 3 (40), 20267-20276.
45. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363-386.
46. Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z., Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie International Edition 2016, 55 (7), 2521-2525.
47. Liang, J.; Luo, J.; Sun, Q.; Yang, X.; Li, R.; Sun, X., Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Materials 2019, 21, 308-334.
48. Bandara, L. R. A. K.; Dissanayake, M. A. K. L.; Mellander, B. E., Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes. Electrochimica Acta 1998, 43 (10), 1447-1451.
49. Vignarooban, K.; Dissanayake, M. A. K. L.; Albinsson, I.; Mellander, B. E., Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25-28.
50. Fergus, J. W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569.
51. Wen, Z.; Itoh, T.; Ichikawa, Y.; Kubo, M.; Yamamoto, O., Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups. Solid State Ionics 2000, 134 (3), 281-289.
52. Murata, K.; Izuchi, S.; Yoshihisa, Y., An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta 2000, 45 (8), 1501-1508.
53. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114 (23), 11503-11618.
54. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
55. Takeda, Y.; Imanishi, N.; Yamamoto, O., Developments of the Advanced All-Solid-State Polymer Electrolyte Lithium Secondary Battery. Electrochemistry 2009, 77 (9), 784-797.
56. Kenessova, A. K.; Seilkhanova, G. A.; Kurmanbayeva, T. S.; Ussipbekova, E. Z.; Kurbatov, A. P., Solid polymer electrolytes for energy storage systems. Materials Today: Proceedings 2020, 31, 588-591.
57. Li, Z.; Huang, H.-M.; Zhu, J.-K.; Wu, J.-F.; Yang, H.; Wei, L.; Guo, X., Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Applied Materials & Interfaces 2019, 11 (1), 784-791.
58. Zheng, J.; Hu, Y.-Y., New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (4), 4113-4120.
59. Chen, L.; Ding, K.; Li, K.; Li, Z.; Zhang, X.; Zheng, Q.; Cai, Y.-P.; Lan, Y.-Q., Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem 2022, 4 (3), 100073.
60. Mehta, M. A.; Fujinami, T., Li+ Transference Number Enhancement in Polymer Electrolytes by Incorporation of Anion Trapping Boroxine Rings into the Polymer Host. Chemistry Letters 1997, 26 (9), 915-916.
61. Dong, D.; Zhang, H.; Zhou, B.; Sun, Y.; Zhang, H.; Cao, M.; Li, J.; Zhou, H.; Qian, H.; Lin, Z.; Chen, H., Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chemical Communications 2019, 55 (10), 1458-1461.
62. Cheng, D.; Sun, C.; Lang, Z.; Zhang, J.; Hu, A.; Duan, J.; Chen, X.; Zang, H.-Y.; Chen, J.; Zheng, M.; Dong, Q., Hybrid covalent organic-framework-based electrolytes for optimizing interface resistance in solid-state lithium-ion batteries. Cell Reports Physical Science 2022, 3 (3), 100731.
63. Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B., Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. Angewandte Chemie International Edition 2016, 55 (48), 15120-15124.
64. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
65. Chen, X.; Chen, X.-R.; Hou, T.-Z.; Li, B.-Q.; Cheng, X.-B.; Zhang, R.; Zhang, Q., Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Science Advances 5 (2), eaau7728.
66. Song, Y.-W.; Shi, P.; Li, B.-Q.; Chen, X.; Zhao, C.-X.; Chen, W.-J.; Zhang, X.-Q.; Chen, X.; Zhang, Q., Covalent Organic Frameworks Construct Precise Lithiophilic Sites for Uniform Lithium Deposition. Matter 2021, 4 (1), 253-264.
67. Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy 2016, 1 (3), 16010.
68. Lei, M.; Wang, J.-G.; Ren, L.; Nan, D.; Shen, C.; Xie, K.; Liu, X., Highly Lithiophilic Cobalt Nitride Nanobrush as a Stable Host for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces 2019, 11 (34), 30992-30998.
69. Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B., Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society 2017, 139 (12), 4258-4261.
70. Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y., Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications 2018, 9 (1), 576.
71. Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D., Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Scientific Reports 2015, 5 (1), 8225.
72. Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H., Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (47), 18621-18627.
73. Zhang, S. S.; Xu, K.; Jow, T. R., EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta 2006, 51 (8), 1636-1640.
74. Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R., Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. Journal of the American Chemical Society 2017, 139 (14), 4999-5002.
75. Patla, S. K.; Ray, R.; Asokan, K.; Karmakar, S., Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. Journal of Applied Physics 2018, 123 (12), 125102.
76. Watanabe, M.; Togo, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z., Ionic conductivity of polymer complexes formed by poly (β-propiolactone) and lithium perchlorate. Macromolecules 1984, 17 (12), 2908-2912.
77. Vasudevan, S.; Fullerton-Shirey, S. K., Effect of Nanoparticle Shape on the Electrical and Thermal Properties of Solid Polymer Electrolytes. The Journal of Physical Chemistry C 2019, 123 (17), 10720-10726.
 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91935-
dc.description.abstract共價有機框架 (COFs) 是具有高度有序和多孔結構的有機聚合物材料,其功能可以通過預先設計單體和在合成過程中改變反應參數調整,COFs通常表現出高結晶度、良好的水熱穩定性且不溶於有機溶劑,具有合適的官能團和立體結構,已被證明具有廣泛的應用性,包括催化劑、偵測器、氣體存儲和分離以及鋰電池。
我們設計並合成了一種包含亞胺和環硼氧烷鍵的雙功能COF,以捕獲鋰鹽中的陰離子,從而改善鋰離子的傳導,可以通過一鍋法合成,我們系統地研究了溶劑、進料比和催化劑對所得 COF 結構的影響,並通過 FTIR 和粉末 X 射線衍射鑑定,從 SEM、TEM 和 HR-TEM 中鑑定其形貌變化,孔隙率由 BET 測量計算。後將COF作為添加劑用於製備以PEO為基材的複合固體高分子電解質,具有不同的COF負載量,觀察到添加少於 2 wt%的COF可以顯著提高室溫下的離子電導率1~2個數量級,有趣的是,複合 SPEs 的離子電導率高於純PEO組成的SPE,即使在高於SPE熔點的溫度下也具有較低的活化能,這表明COF本身可能具有鋰離子傳導能力。
我們還通過一鍋法製備COF改性天然石墨 (COF@G) 作為負極活性材料。PXRD和HRTEM證實結晶COF可以在NG表面生長。與原始NG相比,當半電池以10 C的速率運行時,COF@G的充電容量增加了25 %,表示COF可以幫助提高負極的rate performance,並且穩定的庫倫效率接近到100 %。SEM 圖像顯示,NG 上的 COF 可以顯著抑制高充電速率下不希望的SEI 增厚,提高快速充電期間的循環穩定性和安全性。
zh_TW
dc.description.abstractCovalent organic frameworks (COFs) are organic polymeric materials having highly ordered porous structures, which could be tailored by pre-designed monomers and by changing the reaction parameters during syntheses. COFs generally exhibit high crystallinity, good hydrothermal stability, and insolubility in organic solvents. With suitable functional groups and stereoscopic structures, COFs have been demonstrated to be useful in a wide range of applications, including catalysts, sensors, gas storage and separation, as well as lithium batteries.
In this work, we design and synthesize a bifunctional COF containing imine and boroxine bondings to entrap the anions in lithium salts and thus to improve lithium ion transport. The COFs could be feasibly synthesized via one pot chemistry. We systematically study the effect of solvents, feed ratios and catalysts on the structure of the resulting COFs, which are identified by FTIR and powder X-ray diffraction. The morphological information is retrieved from SEM, TEM and HR-TEM. The porosity is calculated from BET measurement. The COF is employed as an additive to prepare composite solid polymer electrolyte based on Poly(ethylene oxide) with various COF loadings. It is observed that less than 2 wt% COF addition could significantly improve the ion conductivity at room temperature by 1~2 order of magnitude. Interestingly, the ion conductivity of the composite SPEs is higher than the pristine PEO SPE with lowered activation energy even at temperatures above the melting point of the SPE, suggesting COF itself might have lithium ion conducting capability.
We also prepare COF modified nature graphite (COF@G) via one pot chemistry to serve as anode active materials. It is confirmed that crystalline COF could grow on the surface of NG by PXRD and HRTEM. The COF could help the rate performance of the anode as a 25% increase in the charging capacity for COF@G is observed in comparison with the pristine NG when the half cell is operated in a rate of 10C, alone with a steady Columbic efficiency close to 100. The SEM images show the COF on NG could significantly inhibit the undesired SEI thickening at high C rate, enhancing the cycling stability and safety during fast charging.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:31:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:31:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 2
第二章 文獻回顧 4
2.1 奈米孔洞材料 4
2.1.1 有機共價骨架 5
2.2 鋰金屬電池 8
2.2.1 高分子固態電解質(Solid Polymer Electrolyte, SPE) 11
2.3 PEO/有機共價骨架(COF)複合固態電解質 14
2.3.1 含硼官能基的COF在固態複合電解質中的應用 16
2.3.2 含氮官能基的COF在固態複合電解質中的應用 18
2.4 COF在負極中的應用 21
2.4.1 含硼官能基的COF在負極材料中的應用 23
2.4.2 含氮官能基的COF在負極材料中的優勢 26
第三章 實驗步驟與原理 30
3.1 化學藥品 30
3.2 實驗儀器 33
3.3 材料製備 35
3.3.1 mCOF之合成 35
3.3.2 aCOF之合成 36
3.3.3 ScCOF之合成 37
3.3.4 COF@G之合成 38
3.3.5 Li@COF之製備 38
3.3.6 PEO/Li@COF複合膜製備 39
3.3.7 NG與Li@COF電極製備 41
3.3.8 CR2032鈕扣型電池組裝 42
3.4 材料分析 43
3.4.1 材料結構分析 43
3.4.2 熱重分析 44
3.4.3 熱分析 44
3.4.4機械強度分析 45
3.4.5 氮氣吸脫附分析儀(BET) 45
3.4.6 離子傳導度測量 46
3.4.7 鋰離子遷移係數測量 46
3.4.8 恆電流充放電循環測試(Galvanostatic cycling test) 47
3.4.9 鋰金屬表面分析 47
3.4.10 電化學阻抗頻譜 48
3.4.11 電池循環充放電測試 49
第四章 結果與討論 50
4.1 COF/Li@COF的合成與鑑定 50
4.2 PEO/Li@COF複合固態電解質膜材的製備與特性分析 56
4.2.1 熱性質分析 59
4.2.2 機械性質 61
4.2.3 離子傳導度 62
4.2.4 鋰離子遷移係數 66
4.3 COF@G的製備與特性分析 69
4.3.1 Formation測試 71
4.3.2 循環穩定性測試(Cycling stability) 72
4.3.3 快速充電性能測試 74
第五章 結論 77
第六章 未來展望 78
參考文獻 79
附錄 89
-
dc.language.isozh_TW-
dc.title含有亞胺及環硼氧烷的共價有機骨架:合成與在鋰二次電池的應用zh_TW
dc.titleCovalent Organic Frameworks Containing Imine and Boroxine: Syntheses and Applications in Secondary Lithium Batteriesen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳乃立;蔡協致zh_TW
dc.contributor.oralexamcommitteeNae-Lih Wu;Hsieh-Chih Tsaien
dc.subject.keyword共價有機骨架、鋰電池、環硼氧烷、亞胺、固體高分子電解質、快充負極,zh_TW
dc.subject.keywordCovalent organic frameworks,lithium batteries,boroxine,imine,solid polymer electrolyte,fast charing anode,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202204066-
dc.rights.note未授權-
dc.date.accepted2022-09-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
8.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved