Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷zh_TW
dc.contributor.advisorChuan-Kai Hoen
dc.contributor.author張明陽zh_TW
dc.contributor.authorMing-Yang Changen
dc.date.accessioned2024-02-26T16:20:32Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAbou-Shaara, H.F. (2014). The foraging behaviour of honey bees, Apis mellifera: a review. Vet. Med. (Praha)., 59, 1–10.
Abou-Shaara, H.F., Owayss, A.A., Ibrahim, Y.Y. & Basuny, N.K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux 2017 644, 64, 455–463.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Amdam, G.V. & Omholt, S.W. (2002). The regulatory anatomy of honeybee lifespan. J. Theor. Biol., 216, 209–228.
Bartomeus, I., Ascher, J.S., Wagner, D., Danforth, B.N., Colla, S., Kornbluth, S., et al. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. U. S. A., 108, 20645–20649.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 1–48.
Budumajji, U., Jacob, A. & Raju, S. (2018). Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania, 63, 89–100.
Calderone, N.W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One, 7, e37235.
Clarke, D. & Robert, D. (2018). Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49, 386–396.
Crailsheim, K. (1990). The protein balance of the honey bee worker. Apidologie, 21, 417–429.
Cushing, D.H. (1969). The fluctuation of year-classes and the regulation of fisheries. FiskDir. Skr. Ser. HavUjzders., 15, 368–379.
Cushing, D.H. (1990). Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol., 26, 249–293.
Donkersley, P., Rhodes, G., Pickup, R.W., Jones, K.C., Power, E.F., Wright, G.A., et al. (2017). Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 185, 749–761.
Filipiak, M., Kuszewska, K., Asselman, M., Denisow, B., Stawiarz, E., Woyciechowski, M., et al. (2017). Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS One, 12, e0183236.
Ford, C.S., Ayres, K.L., Toomey, N., Haider, N., Van Alphen Stahl, J., Kelly, L.J., et al. (2009). Selection of candidate coding DNA barcoding regions for use on land plants. Bot. J. Linn. Soc., 159, 1–11.
Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. (2020). Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci., 4, 77–86.
Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M., et al. (2017). Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res., 57, 147–199.
Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.L. & Totland, Ø. (2009). How does climate warming affect plant-pollinator interactions? Ecol. Lett., 12, 184–195.
Hendriksma, H.P., Härtel, S. & Steffan-Dewenter, I. (2011). Honey bee risk assessment: new approaches for in vitro larvae rearing and data analyses. Methods Ecol. Evol., 2, 509–517.
Herbert, E.W.J. (1992). Honey bee nutrition. In: The Hive and the Honey Bee (ed. Graham, J.M.). Dadant and Sons, Hamilton, IL, pp. 197–233.
Hristov, P., Neov, B., Shumkova, R. & Palova, N. (2020). Significance of Apoidea as main pollinators. Ecological and economic impact and implications for human nutrition. Diversity, 12, 280.
Hsu, P.-S., Wu, T.-H., Huang, M.-Y., Wang, D.-Y., Wu, M.-C., Huang, M.-Y.;, et al. (2021). Nutritive value of 11 bee pollen samples from major floral sources in Taiwan. Foods, 10, 2229.
Hung, K.L.J., Kingston, J.M., Albrecht, M., Holway, D.A. & Kohn, J.R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci., 285, 20172140.
Jagadish, S.V.K., Craufurd, P.Q. & Wheeler, T.R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot., 58, 1627–1635.
Kearns, C.A., Inouye, D.W. & Waser, N.M. (1998). Endangered mutualisms: The conservation of plant-pollinator interactions. Ann. Rev. Ecol. Syst., 29, 83–112.
Kešnerová, L., Mars, R.A.T., Ellegaard, K.M., Troilo, M., Sauer, U. & Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol., 15, e2003467.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., et al. (2006). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci., 274, 303–313.
Kress, W.J. & Erickson, D.L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One, 2, e508.
Kudo, G. (2014). Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecol. Res., 29, 571–581.
Kudo, G. & Cooper, E.J. (2019). When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B, 286.
Kudo, G. & Ida, T.Y. (2013). Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 94, 2311–2320.
Kudo, G., Ida, T.Y. & Tani, T. (2008). Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. Ecology, 89, 321–331.
Kwong, W.K. & Moran, N.A. (2016). Gut microbial communities of social bees. Nat. Rev. Microbiol. 2016 146, 14, 374–384.
Lenth, R. V. (2016). Least-squares means: the R package lsmeans. J. Stat. Softw., 69, 1–33.
Lindauer, M. (1955). The water economy and temperature regulation of the honeybee colony. Bee World, 36, 81–92.
Matsui, T., Omasa, K. & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among Japonica-rice varieties. Plant Prod. Sci., 4, 90–93.
Memmott, J., Craze, P.G., Waser, N.M. & Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. Ecol. Lett., 10, 710–717.
Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aaasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Glob. Chang. Biol., 12, 1969–1976.
Ngo, T.N., Rustia, D.J.A., Yang, E.C. & Lin, T. Te. (2021). Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Comput. Electron. Agric., 187, 106239.
Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2020). vegan: Community Ecology Package.
Ollerton, J. (2017). Pollinator diversity: Distribution, ecological function, and conservation. Ann. Rev. Ecol. Syst., 48, 353–376.
Ollerton, J., Winfree, R. & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321–326.
Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., et al. (2013). Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS One, 8, e72016.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol., 25, 345–353.
R Development Core Team. (2014). R: A language and environment for statistical computing. R Found. Stat. Comput.
Reddy, P.V.R., Rashmi, T. & Verghese, A. (2015). Foraging activity of Indian honey bee Apis cerana, in relation to ambient climate variables under tropical conditions.
Rodger, J.G., Bennett, J.M., Razanajatovo, M., Knight, T.M., van Kleunen, M., Ashman, T.L., et al. (2021). Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv., 7, 3524–3537.
Roulston, T.H. & Cane, J.H. (2000). Pollen nutritional content and digestibility for animals. Pollen Pollinat., 187–209.
Sang, T., Crawford, D.J. & Stuessy, T.F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot., 84, 1120–1136.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 7, 539.
Smith, M.R., Singh, G.M., Mozaffarian, D. & Myers, S.S. (2015). Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet, 386, 1964–1972.
Southwick, E.E. & Heldmaier, G. (1987). Temperature control in honey bee colonies. Bioscience, 37, 395–399.
Tasei, J.N. & Aupinel, P. (2008). Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie, 39, 397–409.
Veloso, J.A. & Lourenço, A.P. (2014). Pollen diet for in vitro rearing of africanized honey bee larvae, Apis mellifera (Hymenoptera: Apidae). Biosci. J., 30, 288–296.
de Vere, N., Rich, T.C.G., Ford, C.R., Trinder, S.A., Long, C., Moore, C.W., et al. (2012). DNA barcoding the native flowering plants and conifers of Wales. PLoS One, 7, e37945.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
Winder, M. & Schindler, D.E. (2004). Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85, 2100–2106.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91896-
dc.description.abstract授粉者提供重要的生態系統服務,其中全世界有三分之一以上的農作物依賴動物授粉。研究顯示,暖化導致授粉者活動和植物開花時間發生物候變化,這可能會改變當前的植物-授粉者交互作用。但是,暖化在一天的尺度中對植物-授粉者交互作用的影響尚不清楚。本研究利用西洋蜂(Apis mellifera)擔任授粉者,探討暖化是否影響(1)一天中蜜蜂覓食的模式、(2)一天中植物開花的時間、(3)蜜蜂採集花粉的組成,以及後續蜜蜂幼蟲的發育情況。我們透過野外實驗加熱蜂箱,以研究暖化對蜜蜂覓食行為的影響,並利用分子鑑定確認蜜蜂花粉種類後,選擇主要的植物物種來探討暖化對一天中開花時間的影響。最後,我們利用研究室飼養實驗比較暖化下的花粉組成是否會影響蜜蜂幼蟲的發育。實驗結果顯示,暖化促進並提早一天中蜜蜂的覓食活動和Bidens pilosa的開花時間,增加B. pilosa在蜜蜂花粉中的比例,並促進了幼蟲的生長。綜合以上結果,本研究顯示暖化可以通過短期的時間尺度影響授粉者的行為和植物開花時間,進而改變授粉者與植物間的交互作用以及授粉者的發育。zh_TW
dc.description.abstractPollinators provide critical ecosystem services, such that more than one third of crops depend on animal pollination worldwide. Studies have shown that climate warming leads to phenology shifts in pollinator foraging and plant flowering at seasonal scales, which could interrupt current plant-pollinator interactions. However, warming impact on within-day patterns in plant-pollinator interactions remains unclear. Using honey bee (Apis mellifera) as a model pollinator, this study aims to examine if warming affects (1) the within-day pattern in honey bee foraging, (2) the within-day pattern of plant flowering onset (i.e., flowering time of the day), and (3) the composition of pollen collected by honey bees, which may influence honey bee larval development. To do so, we experimentally heated up beehives to investigate the effect of warming on honey bee foraging behavior. After identifying the bee pollen, we selected a key plant species (Bidens pilosa var. radiata) and examined warming impact on its onset of flowering. Furthermore, we investigated if any warming-induced changes in pollen composition affect larval development. Our results showed that warming advanced the within-day foraging activity of honey bees and flowering onset of B. pilosa, which would lead to an increase of B. pilosa in bee pollen composition and better bee larval development. Together, this study suggests important but overlooked mechanisms for climate change impact on plant-pollinator interactions: warming can affect the within-day patterns in pollinator behavior and plant flowering onsets, thus indirectly affecting pollinator performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:20:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:20:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents碩士學位論文口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
Introduction 1
Importance of pollinators and honey bee 1
Warming and seasonal phenology 2
Warming impact on pollinator foraging behavior 3
Aims 3
Materials and Methods 5
1. Field warming experiment on honey bees 5
Beehive temperature and honey bee foraging behaviors 5
Composition of pollen collected by honey bees 7
2. Laboratory warming experiment on flowering onset 8
3. Larval feeding experiment 9
Statistical analyses 12
Beehive temperature 12
Honey bee foraging behaviors 12
Composition of pollen collected by honey bees 13
Laboratory warming experiment on flowering onset 14
Larval feeding experiment 14
Results 15
1. Field warming experiment on honey bees 15
Beehive temperature 15
Number of foragers 15
Amount of pollen collected by honey bees 15
Individual foraging efficiency 16
Composition of pollen collected by honey bees 16
2. Laboratory warming experiment on flowering onset 17
3. Larval feeding experiment 17
Discussion 18
Warming impact on within-day patterns in pollinator foraging 19
Warming impact on flowering onset and bee pollen composition 20
Pollen composition and bee larval growth 21
Potential caveats 22
Conclusions 23
References 24
-
dc.language.isoen-
dc.subject授粉者及植物間交互作用zh_TW
dc.subject暖化zh_TW
dc.subject蜜蜂花粉zh_TW
dc.subject開花zh_TW
dc.subject一天內的變因zh_TW
dc.subjectwarmingen
dc.subjectdaily variationen
dc.subjectbee pollenen
dc.subjectfloweringen
dc.subjectplant–pollinator interactionen
dc.title暖化對蜜蜂授粉行為及蜜蜂幼蟲發育的影響zh_TW
dc.titleWarming-induced changes in foraging behavior and the fitness consequence on larval development in honey beesen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊恩誠;胡哲明;郭奇芊zh_TW
dc.contributor.oralexamcommitteeEn-Cheng Yang;Jer-Ming Hu;Chi-Chien Kuoen
dc.subject.keyword暖化,授粉者及植物間交互作用,一天內的變因,開花,蜜蜂花粉,zh_TW
dc.subject.keywordwarming,plant–pollinator interaction,daily variation,flowering,bee pollen,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202201563-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-26-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2024-07-26-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf2.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved