Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓zh_TW
dc.contributor.advisorJen-Yu Hanen
dc.contributor.author洪子媛zh_TW
dc.contributor.authorTzu-Yuan Hungen
dc.date.accessioned2024-02-23T16:20:16Z-
dc.date.available2024-02-24-
dc.date.copyright2024-02-23-
dc.date.issued2023-
dc.date.submitted2023-10-13-
dc.identifier.citationAhrens, C. Donald. (2007). Meteorology today : an introduction to weather, climate, and the environment. Belmont, CA :Thomson/Brooks/Cole.
Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment, 34(3), 507-516.
Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar energy, 77(2), 231-249.
Feranec, J., Kopecká, M., Szatmári, D., Holec, J., Šťastný, P., Pazúr, R., & Bobáľová, H. (2019). A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie, 124(1), 383-101.
Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and sustainable energy reviews, 25, 749-758.
Haselbach, L. (2009). Pervious concrete and mitigation of the urban heat island effect. Retrieved from Haselbach, L., Boyer, M., Kevern, J. T., & Schaefer, V. R. (2011). Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transportation Research Record, 2240(1), 107-115.
Hondula, D. M., Georgescu, M., & Balling Jr, R. C. (2014). Challenges associated with projecting urbanization-induced heat-related mortality. Science of the total environment, 490, 538-544.
Huang, K.-T., Yang, S.-R., Matzarakis, A., & Lin, T.-P. (2018). Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Science of the total environment, 626, 567-580.
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504-513. doi:10.1016/j.rse.2009.10.008
Karasawa, A., Toriiminami, K., Ezumi, N., & Kamaya, K. (2006). Evaluation of performance of water-retentive concrete block pavements. Paper presented at the 8th International conference on concrete block paving.
Kato, S., & Yamaguchi, Y. (2007). Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment, 110(1), 1-17.
Kevern, J. T., Haselbach, L., & Schaefer, V. R. (2012). Hot weather comparative heat balances in pervious concrete and impervious concrete pavement systems. Journal of Heat Island Institute International Vol, 7(2), 2012.
Matzarakis, A., & Endler, C. (2010). Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. International journal of biometeorology, 54(4), 479-483.
Mensah, C., Atayi, J., Kabo-Bah, A. T., Svik, M., Acheampong, D., Kyere-Boateng, R., . . . Marek, M. V. (2020). Impact of urban land cover change on the garden city status and land surface temperature of Kumasi. Cogent Environmental Science, 6(1). doi:10.1080/23311843.2020.1787738
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of environmental management, 197, 522-538.
Morini, E., Touchaei, A. G., Castellani, B., Rossi, F., & Cotana, F. (2016). The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model. Sustainability, 8(10), 999.
Mutani, G., Todeschi, V., & Matsuo, K. (2019). Urban Heat Island Mitigation: A GIS-based Model for Hiroshima. Instrumentation, Mesures, Métrologies, 18(4).
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, 389-399.
Rehan, R. M. (2016). Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC journal, 12(2), 191-204.
Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124.
Yavuzturk, C., Ksaibati, K., & Chiasson, A. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), 465-475.
Yilmaz, H., Toy, S., Irmak, M., Yilmaz, S., & Bulut, Y. (2008). Determination of temperature differences between asphalt concrete, soil and grass surfaces of the City of Erzurum, Turkey. Atmósfera, 21(2), 135-146.
Zhang, X., Zhong, T. Y., Feng, X. Z., & Wang, K. (2009). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30(8), 2105-2118. doi:10.1080/01431160802549252
林宗輝、黃治峯、劉家銘、陳炳麟、陳鏗元,2017。打造臺北市海綿城市-以市區道路人行道透水性鋪面之透水率及都市效能為例。鋪面工程,15卷2期,台北市。
黃亞薇,2021。利用熱紅外影像技術於密級配瀝青混凝土鋪面之孔隙率與熱行為分析。碩士論文,國立臺灣大學土木工程學系研究所,台北市。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91861-
dc.description.abstract都市熱島效應日趨嚴重,使得都市區域氣溫升高,也影響了城市的宜居性。近年來,多孔瀝青混凝土路面因減少熱島效應而受到推崇,但也有部分學者證實它會使熱島效應惡化。本研究旨在通過引入中央氣象局更全面的氣候參數並結合合理的三維為建築模型做為空間資料輔助以評估大範圍的都市熱島效應,並通過實際使用紅外線熱像儀拍攝不同道路鋪面之熱影像,採集路面的物理參數來探討都市選擇哪種路面對於都市整體熱環境更加友善。研究顯示,都市選擇舖築多孔隙瀝青混凝土面相較於傳統的密集配瀝青混凝土鋪面會使得都市環境吸收較少太陽輻射能量,約可減少 45%的太陽輻射吸收,人類對於熱環境的體感溫度平均也可以下降 0.3°C 左右,使人類有較涼爽的感受,可提供給政府作為都市未來路面選擇時的參考,進而打造宜居城市。zh_TW
dc.description.abstractUrban heat island effect has become more serious, which makes urban-area temperature increase, also affecting the city's livability. In recent years, porous asphalt concrete pavement has been praised to reduce the heat island effect, but some scholars have confirmed that it can worsen the heat island effect. This study aims to evaluate the large-scale heat island effect by introducing more comprehensive climate parameters and combining reasonable three-dimensional spatial information, and by actually collecting the physical parameters of the pavement to explore which kind of pavement the city chooses to be more friendly to the overall thermal environment of the city. Studies have shown that the city's choice of paving porous asphalt concrete pavement compared with traditional dense asphalt concrete pavement will make the urban environment absorb less solar radiation energy. It can reduce the absorption of solar radiation by about 45%, and the average temperature of human beings to the thermal environment can also drop by about 0.3°C, which can be provided to the government as a reference for urban road surface selection in the future, and then create a livable city.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:20:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-23T16:20:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
Chapter 1 前言 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究流程 3
1.4 論文架構 4
Chapter 2 文獻回顧 5
2.1 熱島效應 5
2.1.1 評估熱島效應的方法 6
2.1.2 影響熱島效應的因子 6
2.2 瀝青混凝土鋪面 8
2.2.1 密級配瀝青混凝土 8
2.2.2 多孔隙瀝青混凝土 9
2.3 熱輻射 9
2.3.1 太陽輻射 9
2.3.2 熱輻射與地球的交互作用 10
2.4 多孔隙瀝青混凝土鋪面對熱島效應的影響 12
2.4.1 多孔隙瀝青混凝土的熱行為 12
2.4.2 加劇熱島效應 12
2.4.3 減輕熱島效應 13
2.5 三維建物模型 13
2.6 熱紅外線 14
2.6.1 紅外線熱像儀 15
2.7 小結 16
Chapter 3 研究方法 17
3.1 資料蒐集 17
3.2 資料前處理 18
3.3 模型數值運算 20
3.3.1 太陽輻射運算 20
3.3.2 太陽輻射遮蔽分析 21
3.3.3 都市情境模擬 23
3.3.4 都市熱舒適性指標計算 23
3.3.5 實地蒐集鋪面資料 24
3.4 小結 26
Chapter 4 研究成果與分析 27
4.1 研究區域 27
4.2 研究資料蒐集 27
4.3 太陽輻射分析 28
4.3.1 20年的太陽輻射量比較 28
4.3.2 太陽輻射量遮蔽分析 31
4.3.3 太陽輻射量在不同季節的變化分析 32
4.4 熱舒適性指標計算分析 37
4.5 實地蒐集鋪面資料分析 39
4.6 小結 50
Chapter 5 結論與未來工作建議 51
5.1 結論 51
5.2 未來工作建議 52
參考文獻 54
-
dc.language.isozh_TW-
dc.subject3D建築模型zh_TW
dc.subject城市熱島效應zh_TW
dc.subject瀝青混凝土路面zh_TW
dc.subject孔隙率zh_TW
dc.subject大氣輻射模型zh_TW
dc.subjectPorosityen
dc.subjectAtmospheric radiation modelen
dc.subject3D building modelen
dc.subjectAsphalt concrete pavementen
dc.subjectUrban heat island effecten
dc.title整合三維空間資訊與大氣輻射模型探討瀝青混凝土鋪面孔隙率對於都市熱島效應之影響zh_TW
dc.titleIntegrating Three-dimensional Spatial Information and Atmospheric Radiation Model to Explore the Influence of Asphalt Concrete Pavement Porosity on Urban Heat Island Effecten
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊明德;石婉瑜zh_TW
dc.contributor.oralexamcommitteeMing-Der Yang;Wan-Yu Shihen
dc.subject.keyword孔隙率,瀝青混凝土路面,城市熱島效應,大氣輻射模型,3D建築模型,zh_TW
dc.subject.keywordPorosity,Asphalt concrete pavement,Urban heat island effect,Atmospheric radiation model,3D building model,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202304321-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2028-10-12-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
3.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved