Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91775
Title: 防禦拆分式學習中的資料重建攻擊
Defending against Data Reconstruction Attacks in Split Learning
Authors: 鄭力誠
Li-Chen Cheng
Advisor: 逄愛君
Ai-Chun Pang
Keyword: 隱私,差分隱私,隨機降採樣,拆分式學習,資料重建攻擊,模型逆向攻擊,影像分類,
Privacy,Stochastic Downsampling,Split Learning,Data Reconstruction Attack,Model Inversion Attack,Differential Privacy,Image Classification,
Publication Year : 2024
Degree: 碩士
Abstract: 拆分式學習是一種很有前景的協作學習架構,用於解決深度學習應用中的隱私問題。它有助於在不損害個人資料隱私的情況下進行協作神經網路訓練。然而,由於潛在的資料重建攻擊,即使參與者只分享中間特徵,也會威脅到參與者的隱私,因此如何在拆分式學習中保護隱私,仍然是一個巨大的挑戰。以往針對資料重建攻擊的防禦策略通常會導致模型效用顯著下降或需要高昂的計算成本。為了解決這些問題,我們提出了一種新的防禦方法--差分隱私隨機降採樣。這種防禦策略將隨機降採樣和雜訊應用到中間特徵中,在不增加大量計算成本的情況下,有效地實現了隱私與效用的平衡。在各種資料集上進行的實證分析表明,所提出的防禦方法優於現有的最先進方法,突出了它在不犧牲效用的情況下維護隱私的功能。
Split learning emerges as a promising collaborative learning framework addressing privacy concerns in deep learning applications. It facilitates collaborative neural network training without compromising individual data privacy. However, preserving privacy in split learning remains a substantial challenge due to potential data reconstruction attacks that threaten participants' privacy even when participants only share intermediate features. Previous defense strategies against data reconstruction attacks usually result in a significant drop in model utility or require high computational costs. To navigate these issues, we propose a novel defense method --- differentially private stochastic downsampling. This defense strategy applies stochastic downsampling and noise addition to intermediate features, effectively creating a privacy-utility balance without imposing substantial computational burdens. Empirical evaluations conducted on diverse datasets demonstrate the superiority of the proposed defense method over existing state-of-the-art methods, highlighting its efficacy in maintaining privacy without sacrificing utility.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91775
DOI: 10.6342/NTU202400487
Fulltext Rights: 未授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
  Restricted Access
5.95 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved