Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢(Zueng-Sang Chen)
dc.contributor.authorPin-Chieh Chenen
dc.contributor.author陳品潔zh_TW
dc.date.accessioned2021-05-20T20:11:00Z-
dc.date.available2011-07-31
dc.date.available2021-05-20T20:11:00Z-
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation參考文獻
陳慧美。2004。南仁山溪谷樣區土壤水分含量與土壤溶液組成隨時間與空間之變異。國立臺灣大學農業化學所碩士論文。
何學哲。1998。福山地區坡面土壤水分變化之研究。國立臺灣大學森林學學所碩士論文。
黃仁欽。1997。福山森林土壤之氮素動態:硝化作用、移動與植群吸收。國立臺灣大學農業化學所碩士論文。
謝長富、陳尊賢。2004。福山 25 公頃永久樣區之設置及監測。行政院國科會委託計劃期末報告。
金恒鑣、劉瓊霦、夏禹九、黃正良。2003。福山天然闊葉林生態系對降水水化學的交互作用。臺灣林業科學。18 (4):363-373。
陳尊賢、蔡呈奇、邱春媚。2004。阿里山區粗質地淋澱土的化育作用與土壤溶液化學。行政院國家科學委員會專題研究計畫成果報告 (NSC 93-2313-B-002-035)。
李芳胤。1997。全球變遷:南仁山森林生態系研究-土壤性質及植物養分之探討。行政院國科會委託研究計畫報告 (NSC 86-2621-B-020-001-A07)。
洪富文、林光清、程煒兒、蔣先覺、張雲翔。1996。福山試驗林土壤調查與分類。臺灣林業科學。11 (2):159-174。
林能暉、劉振榮、李崇德及嚴明鉦。2000。東亞地區空氣污染跨國長程傳輸對臺灣地區之影響。行政院環保署。
廖偉志。2006。福山天然闊葉林25公頃永久樣區土壤性質之空間變異。國立臺灣大學農業化學所碩士論文。
張至懿。2008。福山永久樣區優勢樹種凋落物養分釋出及土壤氮礦化之季節性變動。國立臺灣大學農業化學所碩士論文。
林國銓。1997。福山闊葉林枯落物及枝葉層之動態變化。臺灣林業科學。12 :135-144。
林登秋。1997。土壤水在福山森林生態系營養循環中所扮演角色之探討。行政院國家科學委員會委託研究計畫報告 (NSC87-2621-B-018-001-A07)。
吳佳其。2002。南仁山亞熱帶雨林優勢樹種養分含量與環境因子之關係。國立臺灣大學農業化學所碩士論文。
Barbee, G.C., and K.W. Brown. 1986. Comparison between suction and free-drainage soil solution samplers. Soil Sci. 141:149-154.
Beier, C., and P. Gundersen. 1989. Atmospheric deposition to the edge of a spruce forest in Denmark. Environ. Pollut. 60:257-271.
Berg, B., and H. Staaf. 1987. Release of nutrients from decomposing white birch leaves and Scots pine needle litter. Pedobiologia 30:55-63.
Bini, C., and F. Bresolin. 1998. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. Sci. Total Environ. 222:1-15.
Bormann, F.H., and G.E. Likens. 1979. Catastrophic disturbance and the steady-state in northern hardwood forests. Am. Sci. 67:660-669.
Boxman, A.W., H.F.G. van Dijk, and J.G.M. Roelofs. 1994. Soil and vegetation responses to decreased atmospheric nitrogen and sulphur inputs into a Scots pine stand in the Netherlands. For. Ecol. Manage. 68:39-45.
Boxman, A.W., R.C.J.H. Peters, and J.G.M. Roelofs. 2008. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environ. Pollut. 156:1252-1259.
Chang, S.C., C.P. Wang, C.M. Feng, R. Rees, U. Hell, and E. Matzner. 2007. Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest. For. Ecol. Manage. 242:133-141.
De Schrijver, A., L. Nachtergale, J. Staelens, S. Luyssaert, and L. De Keersmaeker. 2004. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ. Pollut. 131:93-105.
de Vries, W., G.J. Reinds, and E. Vel. 2003. Intensive monitoring of forest ecosystems in Europe 2: Atmospheric deposition and its impacts on soil solution chemistry. For. Ecol. Manage. 174:97-115.
de Vries, W., E. Leeters, and C.M.A. Hendriks. 1995. Effects of acid deposition on Dutch forest ecosystems. Water Air Soil Pollut. 85:1063-1068.
de Vries, W., C. van der Salm, G.J. Reinds, and J.W. Erisman. 2007. Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environmental Pollution 148:501-513.
Dechert, G., E. Veldkamp, and R. Brumme. 2005. Are partial nutrient balances suitable to evaluate nutrient sustainability of land use systems? Results from a case study in Central Sulawesi, Indonesia. Nutr. Cycling Agroecosyst. 72:201-212.
Derome, J. 1991. Boron immobilization in limed forest soils. Abstracts of Papers of the Am. Chem. Soc. 201:18-34.
Dezzeo, N., and N. Chacon. 2006. Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. For. Ecol. Manage. 234:218-226.
Eriksson, E., and V. Khunakasem. 1969. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J. Hydrol. 7:178-197.
Giesler, R., U.S. Lundstrom, and H. Grip. 1996a. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Eur. J. Soil Sci. 47:395-405.
Giesler, R., F. Moldan, U. Lundstrom, and H. Hultberg. 1996b. Reversing acidification in a forested catchment in southwestern Sweden: Effects on soil solution chemistry. J. Environ. Qual. 25:110-119.
Grimaldi, C., M. Grimaldi, A. Millet, T. Bariac, and J. Boulegue. 2004. Behaviour of chemical solutes during a storm in a rainforested headwater catchment. Hydrol. Processes 18:93-106.
Goudie, A. S., and N. J. Middleton. 2001. Saharan dust storms: nature and consequences. Earth Sci. Rev. 56:179-204.
Hafner, S.D., P.M. Groffman, and M.J. Mitchell. 2005. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74:257-282.
Hendershot, W.H., and F. Courchesne. 1991. Comparison of soil solution chemistry in zero tension and ceramic-cup tension lysimeters. J. Soil Sci. 42:577-583.
Hostin, P.J., and S.J. Titus. 1996. Indirect site productivity models for white spruce in Alberta's boreal mixedwood forest. Forestry Chronicle 72:73-79.
Huber, C., W. Weis, and A. Gottlein. 2006a. Tree nutrition of Norway spruce as modified by liming and experimental acidification at the Hoglwald site, Germany, from 1982 to 2004. Ann. For. Sci. 63:861-869.
Huber, C., R. Baier, A. Gottlein, and W. Weis. 2006b. Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Hoglwald, Germany. For. Ecol. Manage. 233:11-20.
Laclau, J.P., J. Ranger, J.P. Bouillet, J.D. Nzila, and P. Deleporte. 2003a. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo - 1. Chemical composition of rainfall, throughfall and stemflow solutions. For. Ecol. Manage. 176:105-119.
Laclau, J.P., J. Ranger, J.D. Nzila, J.P. Bouillet, and P. Deleporte. 2003b. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo 2. Chemical composition of soil solutions. For. Ecol. and Manage. 180:527-544.
Lawrence, G.B., and M.B. David. 1996. Chemical evaluation of soil-solution in acid forest soils. Soil Sci. 161:298-313.
Lin, T.C., H.B. Hing, Y.J. Hsia, L.J. Wang, J.L. Hwong, and C.B. Liou. 1996. Evaluating rainfall contamination in Fu-shan Experimental Forest by using factor analysis. Quart. J. Chin. For. 29(1): 121-132.
Lin, T.C., T.T. Lin, Z.M. Chiang, Y.J. Hsia, and H.B. King. 1999. A study on typhoon disturbance to the canopy of natural hardwood forest in northeastern Taiwan. Quart. J. Chin. For. 32:67-78.
Liu, C.P., S.Y. Lu, C.H. Wang, and L.S. Hwang. 2008. Soil solution chemistry on the three slopes of a natural hardwood stand in the subtropics of the Fushan forest. Soil Sci. 173:845-856.
Lovett, G.M., and J.D. Kinsman. 1990. Atmospheric pollutant deposition to high-elevation ecosystems. Atmos. Environ. Part A-General Topics 24:2767-2786.
Lubchenco, J., A.M. Olson, L.B. Brubaker, S.R. Carpenter, M.M. Holland, S.P. Hubbel, S.A. Levin, J.A. Macmahon, P.A. Matson, J.M. Melillo, H.A. Mooney, C.H. Peterson, H.R. Pulliam, L.A. Real, P.J. Regal, and P.G. Risser. 1991. The sustainable biosphere initiative-An ecological research agenda. Revista Chilena De Historia Natural 64:175-226.
Ludwig, B., K.J. Meiwes, P. Khanna, R. Gehlen, H. Fortmann, and E.E. Hildebrand. 1999. Comparison of different laboratory methods with lysimetry for soil solution composition-experimental and model results. J. Plant Nutr. Soil Sci. 162:343-351.
Meiresonne, L., A. De Schrijver, and B. De Vos. 2007. Nutrient cycling in a poplar plantation (Populus trichocarpa x Populus deltoides 'Beaupre') on former agricultural land in northern Belgium. Can. J. For. Res. 37:141-155.
Menendez, J., G. Moreno, J.F. Gallardo, and J. Saavedra. 2007. Hydrogeochemical balance of forest umbrisol profiles ('Sierra de Gata', central western Spain). Hydrol. Processes 21:1949-1956.
Michalzik, B., K. Kalbitz, J.H. Park, S. Solinger, and E. Matzner. 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry 52:173-205.
Moffat, A.J., H. Kvaalen, S. Solberg, and N. Clarke. 2002. Temporal trends in throughfall and soil water chemistry at three Norwegian forests, 1986-1997. For. Ecol. Manage. 168:15-28.
Newell, R.E., E.P. Condon, and H.G. Reichle. 1981. Measurements of CO and CH4 in the troposphere over Saudi-Arabia, India, and the Arabian Sea during the 1979 international summer monsoon experiment (Monex). J. Geophys. Res. 86:9833-9838.
Nissinen, A., H. Ilvesniemi, and N. Tanskanen. 1999. Equilibria of weak acids and organic Al complexes explain activity of H+ and Al3+ in a salt extract of exchangeable cations. Eur. J. Soil Sci. 50:675-686.
Parker, G.G. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 13:57-133.
Peterson, D.L., and G.L. Rolfe. 1979. Determining sample-size in throughfall studies. For. Sci. 25:582-584.
Ranger, J., S. Loyer, D. Gelhaye, B. Pollier, and P. Bonnaud. 2007. Effects of the clear-cutting of a Douglas-fir plantation (Pseudotsuga menziesii F.) on the chemical composition of soil solutions and on the leaching of DOC and ions in drainage waters. Ann. For. Sci. 64:183-200.
Raulund-Rasmussen, K. 1989. Effect of artificial acid rain and liming on the base status in an acid forest Picea abies L. Karst. Soil typic Haplohumod. Scand. J. For. Res. 4:417-426.
Reuss, J. O. 1983. Implications of the Ca-Al exchange system for the effect of acid precipitation on soils. J. Environ. Qual. 12:591-595.
Robson, A.J., C. Neal, G.P. Ryland, and M. Harrow. 1994. Spatial variations in throughfall chemistry at the small plot scale. J. Hydrol. 158:107-122.
Scheel, T., L. Haumaier, R.H. Ellerbrock, J. Ruhlmann, and K. Kalbitz. 2008. Properties of organic matter precipitated from acidic forest soil solutions. Org. Geochem. 39:1439-1453.
Shilova, Y. E. I. 1955. A method of obtaining th e soil solution under natural conditions Pochvovedeniye, 11.
Sposito, G. 1984. The future of an illusion-ion activities in soil solutions. Soil Sci. Soc. Am. J. 48:531-536.
Su, S. H., C. H. Chang Yang, C. L. Lu, T. T. Lin, W. L. Chiou, I. F. Hsieh, H. B. King. 2006. The ecology of tree species in Fushan forest dynamics plot, Taiwan. Taiwan Forest Research Institute, Taipei.
Su, S. H., C. H. Chang Yang, C. L. Lu, C. C. Tsui, T. T. Lin, C. L. Lin, W. L. Chiou, L. H. Kuan, Z. S. Chang, and C. F. Hsieh. 2007. Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns. Taiwan Forest Research Institute. Taipei.
Thomas, F.M., and G. Büttner. 1998. Nutrient relations in healthy and damaged stands of mature oaks on clayey soils: two case studies in northwestern Germany. For. Ecol. Manage. 108:301-319.
Vandijk, H.F.G., A.W. Boxman, and J.G.M. Roelofs. 1992. Effect of nitrogen and sulfur on the mineral balance and vitality of a Scots pine stand in the Netherlands. For. Ecol. Manage. 51:207-215.
Vogt, K.A., C.C. Grier, and D.J. Vogt. 1986. Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests. Adv. Ecol. Res. 15:303-377.
Weis, W., V. Rotter, and A. Gottlein. 2006. Water and element fluxes during the regeneration of Norway spruce with European beech: Effects of shelterwood-cut and clear-cut. For. Ecol. Manage. 224:304-317.
Zabowski, D., and F.C. Ugolini. 1990. Lysimeter and centrifuge soil solutions - seasonal differences between methods. Soil Sci. Soc. Am. J. 54:1130-1135.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9152-
dc.description.abstract水是森林生態系中的重要溶劑,為元素提供了移動的途徑。對複雜的森林生態系統而言,土壤溶液的化學組成提供了植物有效養分隨時間與空間分佈的資訊,故前人藉此描述森林土壤的養分狀態,以增進對研究地區基礎生態特性的了解。工業革命後,土壤溶液的研究更被應用於評估森林土壤面對人為酸沉降逆境的反應。本研究目的為建立福山永久樣區穿落水、地表逕流與土壤溶液之化學組成資料庫,並推估土壤養分元素的輸入與輸出量。本研究始於2007年12月選定永久樣區弱育土與極育土分佈之兩研究區,各設置三重覆樣區。於現地土壤剖面中A層底部與B化育層底部埋設滲漏水收集裝置以收取土壤溶液,並在剖面旁同時進行穿落水與地表逕流水的收集。研究期間每月收取水樣一次,攜回實驗室後分析其溶液組成。化學分析的項目包含溶液pH、電導度、可溶性有機碳、土壤溶液中鉀、鈉、鈣、鎂、鐵、鋁、錳、矽、氯、硫酸鹽、硝酸鹽及磷酸鹽的濃度。研究結果顯示,福山永久樣區降下之穿落水pH值平均為4.7,此溶液pH值已屬於酸雨的範圍。穿落水入滲進入土壤中後,土壤溶液的pH值平均為6.4,顯示福山天然闊葉林土壤具有緩衝酸雨的能力。溶液化學組成的監測結果顯示,鈣離子是土壤溶液中主要的鹽基陽離子,其年平均濃度達341 μeq/L,大幅高於穿落水的20.9 μeq/L及地表逕流水的42.4 μeq/L,鈣離子濃度在土壤溶液中大幅高於穿落水與地表逕流,可能是研究區土壤緩衝外來酸性物質沉降的機制。在森林生態系統中土壤元素收支量的估計結果顯示,矽酸、鈣、鐵與硝酸根離子,呈現淨釋放狀態;鋁與錳的輸入與輸出量接近平衡;鉀、鈉、鎂、氯與硫酸根離子可能多經吸持或吸收作用,留存於此土壤生態系統中。本研究將B化育層底端所收集之土壤溶液視為自土壤流失的養分,有可能造成元素輸出量的高估。zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-20T20:11:00Z (GMT). No. of bitstreams: 1
ntu-98-R96623021-1.pdf: 1849135 bytes, checksum: d1d50aeaf948a9db7c6a7032a9f11e60 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
頁次
中文摘要............................................................................................................................I
英文摘要.........................................................................................................................III
目錄..................................................................................................................................V
表目錄...........................................................................................................................VII
圖目錄..........................................................................................................................VIII
第一章 前言..................................................................................................................1
第二章 前人研究
2.1土壤溶液化學組成所提供的資訊.....................................................................3
2.2 土壤溶液的採集................................................................................................5
2.3 元素收支的模式................................................................................................6
2.4 福山永久樣區之相關研究................................................................................7
第三章 材料與方法
3.1 研究地區環境概述............................................................................................9
3.1.1 地理位置.................................................................................................9
3.1.2 氣候.......................................................................................................13
3.1.3 樣區植物組成.......................................................................................13
3.1.4 不同地形之土壤剖面特性及土壤基本性質.......................................16
3.2 穿落水、逕流水與土壤溶液之化學組成試驗..............................................19
3.2.1 樣區設置...............................................................................................19
3.2.2 穿落水、地表逕流水與土壤溶液之採樣方法...................................19
3.2.3 溶液化學組成分析之前處理...............................................................28
3.2.4 測定溶液化學組成...............................................................................28
3.2.5 元素收支模式.......................................................................................29
3.2.6 溶液化學組成之元素量的計算...........................................................31

第四章 結果與討論
4.1 溶液化學組成..................................................................................................35
4.1.1. 穿落水 (throughfall) ..........................................................................35
4.1.2. 地表逕流水 (surface runoff) ..............................................................42
4.1.3. 土壤溶液 (soil solution) ....................................................................51
4.2溶液之陰陽離子平衡.......................................................................................70
4.3 元素輸入與輸出量的估計..............................................................................72
4.3.1. 元素輸入 (element input) ..................................................................73
4.3.2 元素之輸出 (element output) .............................................................76
4.3.3 估算元素收支之誤差與不確定因素...................................................80
第五章 結論................................................................................................................80
參考文獻.......................................................................................................................82
附錄................................................................................................................................87
 
表目錄
頁次
表1、調查樣區的優勢種..............................................................................................15
表2、福山25公頃永久樣區之表土土壤基本性質……............................................18
表3、研究期間弱育土與極育土樣區溶液量紀錄......................................................22
表4、試驗期間弱育土與極育土樣區之元素輸入量與輸出量估計值…..................74
表5、福山與其它森林元素輸入量的比較..................................................................75
表6、試驗期間弱育土與極育土樣區之元素收支估計值..........................................77
表7、福山與其它森林元素輸出量的比較..................................................................79
 
圖目錄
頁次
圖1、福山永久樣區地理位置......................................................................................10
圖2、福山25公頃樣區等高線地形圖........................................................................11
圖3、福山25公頃樣區網格地形圖............................................................................12
圖4、福山1993-2004年之生態氣候圖.......................................................................14
圖5、福山永久樣區土壤剖面採樣位置圖..................................................................17
圖6、福山樣區設置圖..................................................................................................20
圖7、福山2008年及2004-2008年之平均 (a) 氣溫 與 (b) 雨量..........................21
圖8、穿落水收集裝置..................................................................................................24
圖9、地表逕流水收集裝置..........................................................................................25
圖10、土壤滲漏溶液收取裝置…….......................................................,....................26
圖11、用於土壤溶液收集之土壤滲漏溶液收集器....................................................27
圖12、試驗中所採集的水樣........................................................................................30
圖13、兩研究區穿落水之 (a) pH 與 (b) 電導度.....................................................36
圖14、兩研究區穿落水陽離子組成 (a) 鉀、(b) 鈉、(c) 鈣、(d) 鎂、(e) 鐵、
(f) 鋁、(g) 錳與 (h) 矽濃度隨時間的變化..................................................38
圖14、(續) .....................................................................................................................39
圖14、(續) .....................................................................................................................40
圖14、(續) .....................................................................................................................41
圖15、兩研究區穿落水 (a) 氯、(b) 硝酸根、(c) 硫酸根與 (d) DOC濃度隨時間
的變化……………………………………………...........................................43
圖15、(續) .....................................................................................................................44
圖16、兩研究區地表逕流水之 (a) pH 與 (b) 電導度.............................................45
圖17、兩研究區地表逕流水陽離子組成 (a) 鉀、(b) 鈉、(c) 鈣、(d) 鎂、(e) 鐵、
(f) 鋁、(g) 錳與 (h) 矽濃度隨時間的變化..................................................47
圖17、(續) .....................................................................................................................48
圖17、(續) .....................................................................................................................49
圖17、(續) .....................................................................................................................50
圖18、兩研究區地表逕流水 (a) 氯、(b) 硝酸根、(c) 硫酸根與 (d) DOC濃度
隨時間的變化………………..………………………….................................52
圖18、(續) .....................................................................................................................53
圖19、兩研究區A層土壤溶液之 (a) pH 與 (b) 電導度.........................................54
圖20、兩研究區B層底端土壤溶液之 (a) pH 與 (b) 電導度.................................55
圖21、兩研究區A層土壤溶液陽離子組成 (a) 鉀、(b) 鈉、(c) 鈣、(d) 鎂、
(e) 鐵、 (f) 鋁、(g) 錳與 (h) 矽濃度隨時間的變化.....................................57
圖21、(續) .....................................................................................................................58
圖21、(續) .....................................................................................................................59
圖21、(續) .....................................................................................................................60
圖22、兩研究區B層底端土壤溶液陽離子組成 (a) 鉀、(b) 鈉、(c) 鈣、(d) 鎂、(e) 鐵、(f) 鋁、(g) 錳與 (h) 矽濃度隨時間的變化....................................61
圖22、(續) .....................................................................................................................62
圖22、(續) .....................................................................................................................63
圖22、(續) .....................................................................................................................64
圖23、兩研究區A層土壤溶液 (a) 氯、(b) 硝酸根、(c) 硫酸根與 (d) DOC濃度
隨時間的變化...................................................................................................66
圖23、(續) .....................................................................................................................67
圖24、兩研究區B層底端土壤溶液 (a) 氯、(b) 硝酸根、(c) 硫酸根與 (d) DOC
濃度隨時間的變化...........................................................................................68
圖24、(續) .....................................................................................................................69
圖25、(a) 弱育土與 (b) 極育土樣區中穿落水、地表逕流與A、B層土壤溶液
陰陽離子的體績加權當量濃度..................................................................71
dc.language.isozh-TW
dc.title福山永久樣區土壤溶液元素之組成與收支量估算zh_TW
dc.titleSoil Solution Composition and Estimation of Element Inputs and Outputs of Fushan Permanent Siteen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王敏昭(Min-Chao Wang),劉瓊霦(Chiung-Pin Liu),蔡呈奇(Cheng-Chi Tsai)
dc.subject.keyword福山永久樣區,大氣沈降,土壤溶液化學,氮,硫,zh_TW
dc.subject.keywordFushan forest ecosystem permanent site,atmospheric deposition,soil solution chemistry,nitrogen,sulfur,en
dc.relation.page111
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved