Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈立言zh_TW
dc.contributor.advisorLee-Yan Sheenen
dc.contributor.author黃茉溪zh_TW
dc.contributor.authorMo-Shi Huangen
dc.date.accessioned2024-01-28T16:20:55Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citationArab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017, 65(1):350-362.
Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate Immunity and Inflammation in NAFLD/NASH. Dig Dis Sci. 2016, 61(5):1294-1303.
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004, 2;101(44):15718-23.
Belzer C, de Vos WM. Microbes inside--from diversity to function: the case of Akkermansia. ISME J. 2012, 6(8):1449-58.
Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest. 2012, 122(6):2176-94.
Boland ML, Oró D, Tølbøl KS, Thrane ST, Nielsen JC, Cohen TS, Tabor DE, Fernandes F, Tovchigrechko A, Veidal SS, Warrener P, Sellman BR, Jelsing J, Feigh M, Vrang N, Trevaskis JL, Hansen HH. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J Gastroenterol. 2019, 7;25(33):4904-4920.
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016, 65(8):1038-48.
C. Peng, A. G. Stewart, O. L. Woodman, R. H. Ritchie and C. X. Qin. Non-Alcoholic Steatohepatitis: a review of its mechanism, models and medical treatments. Front Pharmacol. 2020, 11:603926.
Caballero F, Fernández A, Matías N, Martínez L, Fucho R, Elena M, Caballeria J, Morales A, Fernández-Checa JC, García-Ruiz C. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010, 11;285(24):18528-36.
Carr, R.M., Reid, A.E. FXR agonists as therapeutic agents for Non-alcoholic Fatty Liver Disease. Curr Atheroscler Rep, 2015, 17(4):500.
Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012, 55(6):2005-23.
Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB, Park YH. Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek. 2001, 80(2):193-9.
Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, Jeon J, Kim MS, Jee YK, Gho YS, Park HS, Kim YK, Ryu SH. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018, 23;50(2):e450.
Cheng Q, Fan C, Liu F, Li Y, Hou H, Ma Y, Tan Y, Li Y, Hai Y, Wu T, Zhang L, Zhang Y. Structural and functional dysbiosis of gut microbiota in Tibetan subjects with coronary heart disease. Genomics. 2022, 114(6):110483.
Cheng W, Lu J, Lin W, Wei X, Li H, Zhao X, Jiang A, Yuan J. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018, 1;9(3):1612-1620.
Cho KH. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int J Mol Sci. 2022, 23(7):3967.
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012, 148(6):1258-1270.
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 2017, 49(2):197-211.
Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007, 73(23):7767-70.
Corvin A, Craddock N, Sullivan PF. Genome-wide association studies: a primer. Psychol Med. 2010, 40(7):1063-77.
Czaja MJ. JNK regulation of hepatic manifestations of the metabolic syndrome. Trends Endocrinol Metab. 2010, 21(12):707-13.
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes Consortium; Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016, 65(3):426-36.
Debédat J, Le Roy T, Voland L, Belda E, Alili R, Adriouch S, Bel Lassen P, Kasahara K, Hutchison E, Genser L, Torres L, Gamblin C, Rouault C, Zucker JD, Kapel N, Poitou C, Marcelin G, Rey FE, Aron-Wisnewsky J, Clément K. The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes. 2022, 14(1):2050635.
Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019, 25(7):1096-1103.
Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020, 11(5):1231-1245.
Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008, 74(5):1646-1648.
Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004, 54(Pt 5):1469-1476.
Dongiovanni P, Petta S, Maglio C, Fracanzani A L, Pipitone R, Mozzi E, Motta B M, Kaminska D, Rametta R, Grimaudo S, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015 Feb;61(2):506-514.
Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010, 103(2):71-83.
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of inflammatory cytokines with Non-Alcoholic Fatty Liver Disease. Front Immunol. 2022, 13:880298.
European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016, 64(6):1388-402.
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J.,19(9):e06780.
Ekstedt M, Franzén LE, Mathiesen UL, Holmqvist M, Bodemar G, Kechagias S. Statins in non-alcoholic fatty liver disease and chronically elevated liver enzymes: a histopathological follow-up study. J Hepatol. 2007, 47(1):135-41.
Estes C, Chan HLY, Chien RN, Chuang WL, Fung J, Goh GB, Hu TH, Huang JF, Jang BK, Jun DW, Kao JH, Lee JW, Lin HC, Razavi-Shearer K, Seto WK, Wong GL, Wong VW, Razavi H. Modelling NAFLD disease burden in four Asian regions-2019-2030. Aliment Pharmacol Ther. 2020, 51(8):801-811.
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013, 110(22):9066-71.
Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014, 8(10):2116-30.
Fåk F, Bäckhed F. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice. PLoS One. 2012, 7(10):e46837.
Fang T, Wang H, Pan X, Little PJ, Xu S, Weng J. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. Int J Biol Sci. 2022, 18(15):5681-5697.
Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M. Preclinical models for studying nash-driven hcc: how useful are they? Cell Metab. 2019, 29(1):18-26.
Fernando DH, Forbes JM, Angus PW, Herath CB. Development and Progression of Non-Alcoholic Fatty Liver Disease: The role of advanced glycation end products. Int J Mol Sci. 2019, 20(20):5037.
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018, 24(7):908-922.
Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, Obermeier F. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 2011, 55(6):1391-9.
Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L, Surrenti C, Casini A. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002, 122(7):1924-40.
Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest. 2016;126(3):859-864.
Han Y, Li L, Wang B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives. Frontiers of Medicine. 2022, 16(5):667-685.
Hanayama M, Yamamoto Y, Utsunomiya H, Yoshida O, Liu S, Mogi M, Matsuura B, Takeshita E, Ikeda Y, Hiasa Y. The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Sci Rep. 2021, 11(1):13380.
Hansen HH, Ægidius HM, Oró D, Evers SS, Heebøll S, Eriksen PL, Thomsen KL, Bengtsson A, Veidal SS, Feigh M, Suppli MP, Knop FK, Grønbæk H, Miranda D, Trevaskis JL, Vrang N, Jelsing J, Rigbolt KTG. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020, 20(1):210.
Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today. 2017, 22(11):1707-1718.
Henneke L, Schlicht K, Andreani NA, Hollstein T, Demetrowitsch T, Knappe C, Hartmann K, Jensen-Kroll J, Rohmann N, Pohlschneider D, Geisler C, Schulte DM, Settgast U, Türk K, Zimmermann J, Kaleta C, Baines JF, Shearer J, Shah S, Shen-Tu G, Schwarz K, Franke A, Schreiber S, Laudes M. A dietary carbohydrate - gut Parasutterella - human fatty acid biosynthesis metabolic axis in obesity and type 2 diabetes. Gut Microbes. 2022, 14(1):2057778.
Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W, Guo Y, Zhang J, Langhammer A, Løchen ML, Ganesh SK, Vatten L, Skorpen F, Dalen H, Zhang J, Pennathur S, Chen J, Platou C, Mathiesen EB, Wilsgaard T, Njølstad I, Boehnke M, Chen YE, Abecasis GR, Hveem K, Willer CJ. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014, 46(4):345-51.
Honma M, Sawada S, Ueno Y, Murakami K, Yamada T, Gao J, Kodama S, Izumi T, Takahashi K, Tsukita S, Uno K, Imai J, Kakazu E, Kondo Y, Mizuno K, Kawagishi N, Shimosegawa T, Katagiri H. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. Int J Obes (Lond). 2018, 42(9):1544-1555.
Huerta-Ávila EE, Ramírez-Silva I, Torres-Sánchez LE, et al. High relative abundance of Lactobacillus reuteri and fructose intake are associated with adiposity and cardiometabolic risk factors in children from Mexico city. Nutrients. 2019,11(6):1207.
Itagaki H, Shimizu K, Morikawa S, Ogawa K, Ezaki T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol. 2013, 6(12):2683-96.
Jacobs A, Warda AS, Verbeek J, Cassiman D, Spincemaille P. An overview of mouse models of Nonalcoholic Steatohepatitis: from past to present. Curr Protoc Mouse Biol. 2016, 6(2):185-200.
Jegatheesan P, De Bandt J P, Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017, 9(3):230.
Kawano Y, Edwards M, Huang Y, Bilate AM, Araujo LP, Tanoue T, Atarashi K, Ladinsky MS, Reiner SL, Wang HH, Mucida D, Honda K, Ivanov II. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell. 2022 Sep, 185(19):3501-3519.e20.
Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012, 57(1):157-66.
Kechagias S, Ernersson A, Dahlqvist O, Lundberg P, Lindström T, Nystrom FH; Fast Food Study Group. Fast-food-based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut. 2008, 57(5):649-54.
Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A, Azimirad M, Alavifard H, Mohsenifar Z, Davari M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol Spectr. 2021, 9(2):e0048421.
Kim S, Lee Y, Kim Y, Seo Y, Lee H, Ha J, Lee J, Choi Y, Oh H, Yoon Y. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol. 2020, 86(7):e03004-19.
Kim S, Shin YC, Kim TY, Kim Y, Lee YS, Lee SH, Kim MN, O E, Kim KS, Kweon MN. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes. 2021, 13(1):1-20.
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ; Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005, 41(6):1313-21.
Knorr J, Kaufmann B, Inzaugarat ME, Holtmann TM, Geisler L, Hundertmark J, Kohlhepp MS, Boosheri LM, Chilin-Fuentes DR, Birmingham A, Fisch KM, Schilling JD, Loosen SH, Trautwein C, Roderburg C, Demir M, Tacke F, Hoffman HM, Feldstein AE, Wree A. Interleukin-18 signaling promotes activation of hepatic stellate cells in mouse liver fibrosis. Hepatology. 2023, 77(6):1968-1982.
Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010, 21(4):312-8.
Koppe SW, Sahai A, Malladi P, Whitington PF, Green RM. Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet. J Hepatol. 2004, 41(4):592-8.
Krueger ES, Lloyd TS, Tessem JS. The accumulation and molecular effects of trimethylamine N-oxide on metabolic tissues: it's not all bad. Nutrients. 2021, 13(8):2873.
Lai YS, Chen WC, Ho CT, Lu KH, Lin SH, Tseng HC, Lin SY, Sheen LY. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem. 2014, 62(25):5897-906.
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol. 2017, 8:1159.
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012, 380(9838):219-29.
Lee JE, Lee SM, Jung J. Integrated omics analysis unraveled the microbiome-mediated effects of Yijin-Tang on hepatosteatosis and insulin resistance in obese mouse. Phytomedicine. 2020, 79:153354.
Lee JY, Bae E, Kim HY, Lee KM, Yoon SS, Lee DC. High-fat-diet-induced oxidative stress linked to the increased colonization of Lactobacillus sakei in an obese population. Microbiol Spectr. 2021, 9(1):e0007421.
Lee NY, Shin MJ, Youn GS, Yoon SJ, Choi YR, Kim HS, Gupta H, Han SH, Kim BK, Lee DY, Park TS, Sung H, Kim BY, Suk KT. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol. 2021, 27(1):110-124.
Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-oxide pathway: a potential target for the treatment of MAFLD. Front Mol Biosci. 2021, 8:733507.
Li YY, Zheng TL, Xiao SY, Wang P, Yang WJ, Jiang LL, Chen LL, Sha JC, Jin Y, Chen SD, Byrne CD, Targher G, Li JM, Zheng MH. Hepatocytic ballooning in non-alcoholic steatohepatitis: dilemmas and future directions. Liver Int. 2023, 43(6):1170-1182.
Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, Havekes LM, Kleemann R, van den Hoek AM. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014, 9(12):e115922.
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000, 6(3):507-15.
Lu YC, Yin LT, Chang WT, Huang JS. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng. 2010, 110(6):709-15.
Lucas C, Lucas G, Lucas N, Krzowska-Firych J, Tomasiewicz K. A systematic review of the present and future of non-alcoholic fatty liver disease. Clin Exp Hepatol. 2018, 4(3):165-174.
Luukkonen PK, Sädevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, Lallukka S, Pelloux V, Gaggini M, Jian C, Hakkarainen A, Lundbom N, Gylling H, Salonen A, Orešič M, Hyötyläinen T, Orho-Melander M, Rissanen A, Gastaldelli A, Clément K, Hodson L, Yki-Järvinen H. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018, 41(8):1732-1739.
Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol - current therapies and future opportunities. Br J Pharmacol. 2012, 167(6):1177-1194.
Matsuura E, Hughes GR, Khamashta MA. Oxidation of LDL and its clinical implication. Autoimmun Rev. 2008, 7(7):558-66.
Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007, 46(5):1392-403.
Meex RCR, Blaak EE. Mitochondrial dysfunction is a key pathway that links saturated fat intake to the development and progression of NAFLD. Mol Nutr Food Res. 2021, 65(1):e1900942.
Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009, 49(6):1877-87.
Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond). 2013, 37(11):1460-6.
Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012, 36(6):817-825.
Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006, 98(11):1352-64.
Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010, 139(1):323-34.e7.
Morrison MC, Gart E, Duyvenvoorde WV, Snabel J, Nielsen MJ, Leeming DJ, Menke A, Kleemann R. Heat-Inactivated Akkermansia muciniphila improves gut permeability but does not prevent development of Non-Alcoholic Steatohepatitis in diet-induced obese Ldlr-/-.Leiden Mice. Int J Mol Sci. 2022, 23(4):2325.
Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, Penna G, Rescigno M. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol. 2019, 71(6):1216-1228.
Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Fagà E, Silli B, Pagano G. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003, 37(4):909-16.
Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem. 2004, 279(44):45803-9.
Natividad JM, Lamas B, Pham HP, Michel ML, Rainteau D, Bridonneau C, da Costa G, van Hylckama Vlieg J, Sovran B, Chamignon C, Planchais J, Richard ML, Langella P, Veiga P, Sokol H. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun. 2018, 9(1):2802.
Nielsen MH, Gillum MP, Vrang N, Jelsing J, Hansen HH, Feigh M, Oró D. Hepatoprotective effects of the long-acting fibroblast growth factor 21 analog PF-05231023 in the GAN diet-induced obese and biopsy-confirmed mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2023, 324(5):G378-G388.
Özkul C, Yalınay M, Karakan T, Yılmaz G. Determination of certain bacterial groups in gut microbiota and endotoxin levels in patients with nonalcoholic steatohepatitis. Turk J Gastroenterol. 2017, 28(5):361-369.
Panyod S, Wu WK, Chen PC, et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes. 2022, 8(1):4
Panyod S, Wu WK, Ho CT, Lu KH, Liu CT, Chu YL, Lai YS, Chen WC, Lin YE, Lin SH, Sheen LY. Diet supplementation with allicin protects against alcoholic fatty liver disease in mice by improving anti-inflammation and antioxidative functions. J Agric Food Chem. 2016, 64(38):7104-13.
Panyod S, Wu WK, Peng SY, Tseng YJ, Hsieh YC, Chen RA, Huang HS, Chen YH, Chuang HL, Hsu CC, Shen TD, Yang KC, Ho CT, Wu MS, Sheen LY. Ginger essential oil and citral ameliorates atherosclerosis in ApoE-/- mice by modulating trimethylamine-N-oxide and gut microbiota. NPJ Sci Food. 2023, 7(1):19.
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-alcoholic steatohepatitis: a review of its mechanism, models and medical treatments. Front Pharmacol. 2020, 11:603926.
Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A, Delzenne NM, Klievink J, Bhattacharjee A, van der Ark KC, Aalvink S, Martinez LO, Dumas ME, Maiter D, Loumaye A, Hermans MP, Thissen JP, Belzer C, de Vos WM, Cani PD. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017, 23(1):107-113.
Rao Y, Kuang Z, Li C, Guo S, Xu Y, Zhao D, Hu Y, Song B, Jiang Z, Ge Z, Liu X, Li C, Chen S, Ye J, Huang Z, Lu Y. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes. 2021, 13(1):1-19.
Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol. 2010, 53(2):372-84.
Roth JD, Veidal SS, Fensholdt LKD, Rigbolt KTG, Papazyan R, Nielsen JC, Feigh M, Vrang N, Young M, Jelsing J, Adorini L, Hansen HH. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep. 2019, 9(1):9046.
Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016, 31(4):283-93.
Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in MAFLD. Int J Mol Sci. 2021, 22(8):4156.
Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018, 27(1):22-41.
Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, Gomis R, Claret M, Cani PD. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015, 5:16643.
Schneider KM, Mohs A, Kilic K, Candels LS, Elfers C, Bennek E, Schneider LB, Heymann F, Gassler N, Penders J, Trautwein C. Intestinal microbiota protects against MCD diet-induced steatohepatitis. Int J Mol Sci. 2019, 20(2):308.
Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, Gärttner S, Spruss A, Huber O, Bergheim I. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem. 2015, 26(11):1183-92.
Seregin SS, Golovchenko N, Schaf B, et al. NLRP6 protects Il10-/- mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep. 2017, 19(4):733-745.
Sharma M, Premkumar M, Kulkarni AV, Kumar P, Reddy DN, Rao NP. Drugs for Non-alcoholic Steatohepatitis (NASH): quest for the Holy Grail. J Clin Transl Hepatol. 2021, 9(1):40-50.
Sheen L, Panyod S, Wu W, et al. Ginger essential oil prevents NASH progression by blockading the NLRP3 inflammasome and remodeling the gut microbiota-LPS-TLR4 pathway. Research Square; 2022.
Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology. Gastroenterol Res Pract. 2010, 2010:453563.
Sookoian S, Castaño GO, Scian R, Mallardi P, Fernández Gianotti T, Burgueño AL, San Martino J, Pirola CJ. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology. 2015, 61(2):515-25.
Štšepetova J, Sepp E, Kolk H, Lõivukene K, Songisepp E, Mikelsaar M. Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. Br J Nutr. 2011, 105(8):1235-44.
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019, 19(8):477-489.
Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015, 12(7):387-400.
Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease. World J Hepatol. 2020, 12(7):332-349.
Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-oxide levels in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolites. 2022, 12(12):1243.
Tølbøl KS, Kristiansen MN, Hansen HH, Veidal SS, Rigbolt KT, Gillum MP, Jelsing J, Vrang N, Feigh M. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol. 2018, 24(2):179-194.
Torres-Peña JD, Martín-Piedra L, Fuentes-Jiménez F. Statins in non-alcoholic steatohepatitis. Front Cardiovasc Med. 2021, 8:777131.
Corvin A, Craddock N, Sullivan PF. Genome-wide association studies: a primer. Psychol Med. 2010, 40(7):1063-77.
Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the anti-inflammatory properties of HDL. J Clin Invest. 2007, 117(3):746-756.
Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat Rev Endocrinol. 2023, 19(5):258-271.
Vance DE. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol. 2008, 19(3):229-34.
Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M, Romero-Gomez M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015, 149(2):367-78.
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004, 27(6):1487-95.
Wang L, Wu Y, Zhuang L, Chen X, Min H, Song S, Liang Q, Li AD, Gao Q. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice. PLoS One. 2019, 14(6):e0218490.
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014, 14(9):581-97.
Wehmeyer MH, Zyriax BC, Jagemann B, Roth E, Windler E, Schulze Zur Wiesch J, Lohse AW, Kluwe J. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine (Baltimore). 2016, 95(23):e3887.
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998, 95(12):6578-83.
Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li Y, He X, Li L. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol. 2017, 8:1804.
Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Front Immunol. 2017, 8:1728.
Xu R, Tao A, Zhang S, Deng Y, Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015, 5:9284.
Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010, 16(27):3394-3401.
Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016, 8(7):405.
Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim JH, Han D, Cha KH, Moon SH, Lee K, Kim YJ, Lee SJ, Nam TW, Ko G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol. 2021, 6(5):563-573.
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016, 64(1):73-84.
Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, Sheridan D, Sheikh MY, Trotter J, Knapple W, Lawitz E, Abdelmalek MF, Kowdley KV, Montano-Loza AJ, Boursier J, Mathurin P, Bugianesi E, Mazzella G, Olveira A, Cortez-Pinto H, Graupera I, Orr D, Gluud LL, Dufour JF, Shapiro D, Campagna J, Zaru L, MacConell L, Shringarpure R, Harrison S, Sanyal AJ; REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019, 394(10215):2184-2196.
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 inflammasome in non-alcoholic fatty liver disease and steatohepatitis: therapeutic targets and treatment. Front Pharmacol. 2022, 13:780496.
Yu L, Li Y, Du C, Zhao W, Zhang H, Yang Y, Sun A, Song X, Feng Z. Pattern recognition receptor-mediated chronic inflammation in the development and progression of obesity-related metabolic diseases. Mediators Inflamm. 2019, 2019:5271295.
Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-generation probiotics: microflora intervention to human diseases. Biomed Res Int. 2022, 2022:5633403.
Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013, 8(8):e71108.
Zhang Z, Zhang Q, Huang X, Luo K. Intestinal microbiology and metabolomics of streptozotocin-induced type 2 diabetes mice by polysaccharide from Cardamine violifolia. JFF. 2022, 97: 105251.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91516-
dc.description.abstract非酒精性脂肪肝病 (non-alcoholic fatty liver disease, NAFLD) 是全球最常見的慢性肝臟疾病之一,影響全球約30%的人口。若患者未得到即時的治療,則可能會進展為非酒精性脂肪肝炎 (non-alcoholic steatohepatitis, NASH)、肝硬化、甚至是肝癌。NAFLD與NASH的發病機制主要源自於不健康的飲食習慣,進而引發代謝功能失調、全身性的發炎反應以及腸道菌相混亂等。近年來,隨著腸道菌相研究的興起,次世代益生菌Akkermansia muciniphila被發現不論是活菌或是巴斯德殺菌形式,皆具有治療NASH的潛力。而從台灣健康人體的糞便中分離出的A. muciniphila NTUH_Amu01對於NASH的治療效果尚不清楚,因此本研究旨在探討活菌以及巴斯德殺菌的A. muciniphila NTUH_Amu01與標準菌株ATCC BAA-835對於Gubra-Amylin NASH (GAN) 飲食誘導NASH小鼠的治療效果。然而,結果顯示A. muciniphila對於NASH的治療效果有限,甚至會部分加劇NASH的病情。攝取活菌以及巴斯德殺菌形式的標準菌株皆會使體重變化顯著提高,並惡化肝臟NASH的病理症狀。此外,攝取活菌形式的NTUH_Amu01與標準菌株均會使肝臟更為腫大、禁食血糖顯著提高,並伴隨胰島素阻抗更為嚴重的情形。有趣的是,經巴斯德殺菌的標準菌株具有部分抗發炎的效果,包括顯著降低肝臟促發炎細胞激素TNF-α與IL-6的含量,並部分抑制肝臟NLRP3發炎小體途徑的活化。另一方面,腸道菌相的結果中顯示,攝取標準菌株可能會增加肥胖相關菌株; 而攝取活菌形式破壞血糖的恆定則可能與影響血糖調控的菌株含量改變有關,顯示出A. muciniphila的介入可能會導致腸道菌相失調,從而削弱治療效果。綜上所述,A. muciniphila不適合做為治療NASH的補充品,其中活菌形式更有可能會導致NASH更為嚴重,因此未來仍需更多的研究來確保其健康效益與安全性。zh_TW
dc.description.abstractNon-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide, affecting approximately 30% of the global population. If left untreated, NAFLD can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. The pathogenesis of NAFLD is primarily driven by unhealthy diets, leading to metabolic dysfunction, increased lipogenesis, inflammation, and liver fibrosis. With the advancements in gut microbiota research, the next-generation probiotic Akkermansia muciniphila has been found to possess therapeutic potential for NASH regardless of its live or pasteurized forms. Recently, a novel A. muciniphila strain- NTUH_Amu01 was isolated from healthy Taiwanese fecal, which remains unknown on its therapeutic effects on NASH. Therefore, this study aims to investigate whether oral administration of live and pasteurized A. muciniphila strain NTUH_Amu01 and standard strain ATCC BAA-835 could alleviate the Gubra-Amylin NASH (GAN) diet-induced NASH mice model. The results indicate that the therapeutic efficacy of A. muciniphila in NASH is limited and may even worsen the disease. Both live and pasteurized standard strain significantly increased body weight gain and worsen the severity of NASH in the liver. Furthermore, the consumption of live NTUH_Amu01 and the standard strain led to further liver enlargement, significantly increased fasting blood glucose levels, and exacerbated insulin resistance. Interestingly, the pasteurized standard strain exhibited partial anti-inflammatory effects by significantly reducing the levels of pro-inflammatory cytokines TNF-α and IL-6 in the liver and partially inhibiting the activation of the NLRP3 inflammasome pathway. On the other hand, the gut microbiota analysis revealed that consuming the standard strain might increase obesity-related bacterial strains. Additionally, the disruption of blood glucose homeostasis by consuming live A. muciniphila could be associated with changes in the abundance of bacterial strains involved in blood glucose regulation, suggesting that A. muciniphila intervention may cause gut microbiota dysbiosis, thereby weakening its therapeutic effects. In conclusion, A. muciniphila may not be suitable as a therapeutic supplement for NASH, and the use of live A. muciniphila could even exacerbate NASH. Therefore, further research is needed to ensure its health benefits and safety.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:20:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:20:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 I
致謝辭 II
中文摘要 III
英文摘要 IV
目錄 VI
圖目錄 X
表目錄 XII
縮寫表 XIII
第一章 文獻回顧 1
第一節 非酒精性脂肪肝介紹 1
一、 非酒精性脂肪肝定義 1
二、 非酒精性脂肪肝的診斷與疾病進程 1
第二節 酒精性脂肪肝致病機轉 3
一、 基因變異 4
二、 不良的飲食習慣 4
三、 胰島素阻抗與內質網壓力 6
四、 發炎反應 8
五、 腸道菌相失衡 10
第三節 非酒精性脂肪肝炎之動物誘導模式 11
第四節 非酒精性脂肪肝炎的治療 14
第五節 Akkermansia muciniphila 17
一、 A. muciniphila介紹 17
二、 A. muciniphila的健康效益 18
三、 A. muciniphila與代謝性疾病的關聯性 20
四、 A. muciniphila與NAFLD、NASH的關聯性 21
五、 A. muciniphila的安全性 22
六、 A. muciniphila新興分離菌種 - NTUH_Amu01 22
第二章 研究假說與實驗架構 24
第一節 研究假說 24
第二節 研究架構 25
第三章 實驗材料與方法 26
第一節 材料與儀器設備 26
一、 實驗儀器 26
二、 動物實驗 27
三、 肝臟均質液與相關分析 27
四、 西方墨點法 28
五、 抗體 29
第二節 實驗方法 30
一、 Akkermansia muciniphila培養與製備 30
二、 動物實驗 30
三、 肝臟組織病理學分析 33
四、 血液生化值測定 34
五、 肝臟細胞激素與脂肪分析 35
六、 西方墨點法 36
七、 腸道菌相分析 41
八、 統計分析 42
第四章 實驗結果 44
第一節 16週的體重變化 44
第二節 介入A. muciniphila後的體重變化 44
第三節 介入A. muciniphila後的攝食量變化 44
第四節 脂肪組之相對重量 45
第五節 肝臟相對重量與組織型態特徵 45
第六節 肝臟切片與NAFLD activity score (NAS) 45
第七節 血漿肝臟受損指標 46
第八節 肝臟三酸甘油酯分析 46
第九節 血脂分析 47
第十節 血糖恆定性的相關結果 47
第十一節 肝臟發炎細胞激素 48
第十二節 肝臟TLR4路徑相關蛋白表現 48
第十三節 肝臟NLRP3路徑相關蛋白表現 48
第十四節 腸道菌相分析 49
第五章 討論 53
第一節 A. muciniphila加劇NASH的可能原因 53
第二節 血漿膽固醇結果與討論 56
第三節 肝臟與血漿三酸甘油酯結果與討論 57
第四節 血糖恆定性和肝臟TLR4途徑的結果與討論 58
第五節 肝臟發炎細胞激素的結果與討論 59
第六節 肝臟NLRP3發炎小體路徑討論 59
第七節 腸道菌相的結果與討論 60
一、 α-多樣性分析與 β-多樣性分析 60
二、 與肥胖、發炎指標相關的菌相 60
三、 與血糖恆定性相關的菌相 61
第六章 結論 63
第七章 未來展望 65
第八章 圖表 66
第九章 參考資料 85
第十章 補充資料 98
Manuscript 100
-
dc.language.isozh_TW-
dc.subject非酒精性脂肪肝炎zh_TW
dc.subject腸道菌相zh_TW
dc.subjectGAN飲食zh_TW
dc.subjectAkkermansia muciniphilazh_TW
dc.subjectA. muciniphila NTUH_Amu01zh_TW
dc.subjectA. muciniphila ATCC BAA-835zh_TW
dc.subjectgut microbiotaen
dc.subjectNASHen
dc.subjectAkkermansia muciniphilaen
dc.subjectA. muciniphila NTUH_Amu01en
dc.subjectA. muciniphila ATCC BAA-835en
dc.subjectGAN dieten
dc.title探討活菌以及巴斯德殺菌的Akkermansia muciniphila對於GAN飲食誘導小鼠非酒精性脂肪肝炎的影響zh_TW
dc.titleInvestigation the Effects of Live and Pasteurized Akkermansia muciniphila in GAN Diet-Induced NASH Mouse Modelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳明賢;吳偉愷zh_TW
dc.contributor.oralexamcommitteeMing-Shiang Wu;Wei-Kai Wuen
dc.subject.keyword非酒精性脂肪肝炎,Akkermansia muciniphila,A. muciniphila NTUH_Amu01,A. muciniphila ATCC BAA-835,GAN飲食,腸道菌相,zh_TW
dc.subject.keywordNASH,Akkermansia muciniphila,A. muciniphila NTUH_Amu01,A. muciniphila ATCC BAA-835,GAN diet,gut microbiota,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202302617-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-08-01-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved