請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9141
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周正俊 | |
dc.contributor.author | Wan-Ling Hsiao | en |
dc.contributor.author | 蕭婉琳 | zh_TW |
dc.date.accessioned | 2021-05-20T20:10:39Z | - |
dc.date.available | 2014-08-11 | |
dc.date.available | 2021-05-20T20:10:39Z | - |
dc.date.copyright | 2009-08-11 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-28 | |
dc.identifier.citation | 廖繼洲、林雪蓉、曾千芳、陳惠芳、蔡淑貞、蔡佳芬、朱正明。 2009。認識阪崎腸桿菌。行政院衛生署。藥物食品安全週報 179: 1-2。
張家祥。2008。熱震處理影響Enterobacter sakazakii在後續致死環境下之存活。國立台灣大學食品科技研究所碩士論文。台北市。 Abee, T.; Wouters, J. A. Microbial stress response in minimal processing. Int. J. Food Microbiol. 1999, 50, 65-91. Adams, M. R.; Nicolaides, L. Review of sensitivity of different foodborne pathogens to fermentation. Food Control. 1997, 8, 227-239. Ahmed, A. H.; Houstafa, M. K.; El-Bassinoy, T. A. Growth and survival of Yersinia enterocolitica in yogurt. J. Food Prot. 1986, 49, 983-985. AOAC. Official Method of Analysis of the Association of Official Analytical Chemists. 14th ed. Washington, DC.: The Association of Official Analytical Chemists. 1984. Arsène, F.; Tomoyasu, T.; Bukau, B. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 2000, 55, 3-9. Aytac, S. A.; Ozbas, Z. Y. Survey of the growth and survival of Yersinia enterocolitica and Aeromonas hydrophila in yogurt. Milchwissenschaft. 1994, 49, 322-325. Bar-Oz, B.; Preminger, A.; Peleg, O.; Block, C.; Arad, I. Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001, 90, 356-358. Bearson, S.; Bearson, B.; Foster, J. W. Acid stress responses in enterobacteria. FEMS Microbiol Lett. 1997, 147, 173-180. Begley, M.; Gahan, C. G. M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625-651. Beuchat, L. R.; Nail, B. V.; Adler, B. B.; Clavero, M. R. S. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Prot. 1998, 61, 1305-1311. Biering, G.; Karlsson, S.; Clark, N. V. C.; Jonsdottir, K. E.; Ludvigsson, P.; Steingrimsson, O. Three cases of neonatal meningitis caused by Enterobacter sakzakii in powdered milk. J. Clin. Microbiol. 1989, 27, 2054-2056. Blom, H.; Mørtvedt, C. Anti-microbial substances produced by food associated micro-organisms. Biochem. Soc. Trans. 1991, 19, 694-698. Bonten, M. J.; Guillard, C. A.; Vantiel, F. H. Continuous enteral feeding counteracts preventive measures for gastric colonization in intensive care patients. Crit. Care Med. 1994, 22, 939-944. Breeuwer, P.; Lardeau, A.; Peterz, M.; Joosten, H. M. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 2003, 95, 967-973. Buchanan, R. L.; Edelson, S. G. Effect of pH-dependent, stationary phase acid resistance on the thermal tolerance of Echerichia coli O157:H7. Food Microbiol. 1999, 16, 447-458. Bukau, B. Regulation of the E. coli heat shock reponse. Mol. Microbiol. 1993, 9, 671-680. Bunning, V. K.; Crawford, R. G.; Tierney, J. T.; Peeler, J. T. Thermotolerance of Listeria monocytogenes and Salmonella typhimurium after sublethal heat shock. Appl. Environ. Microbiol. 1990, 56, 3216-3219. Burdette, J. H.; Santos, C. Enterobacter sakazakii brain abscess in the neonate: the importance of neuroradiologic imaging. Pediatr. Radiol. 2000, 30, 33-34. Caubilla-Barron, J.; Iversen, C.; Forsythe, S. J. The desiccation survival of Enterobacter sakazakii and related Enterobacteriaceae. Abstract P-003, 104th Gen. Mtg., Am. Soc. Microbiol. May, 2004, New Orleans, LA, USA. 23-27. Cited by Gurtler, J. B.; Kornacki, J. L.; Beuchat, L. R. 2005. Chang, C.-M.; Chiang, M.-L. Chou, C.-C. Response of heat-shocked Vibrio parahaemolyticus to subsequent physical and chemical stresses. J. Food Prot. 2004, 67, 2183-188. Chang, J. H.; Chou, C. C.; Li, C. F. Growth and survival of Escherichia coli O157:H7 during the fermentation and storage of diluted cultured milk drink. Food Micirobiol. 2000, 17, 579-587. Charteris, W. P.; Kelly, P. M.; Morelli, L.; Collins, J. K. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 1998, 84, 759-768. Chen, J. L.; Chiang, M. L.; Chou, C. C. Survival of the acid-adapted Bacillus cereus in acidic environments. Int J Food Microbiol. 2009, 128, 424-428. Chiang, M. L.; Yu, R. C.; Chou, C. C. Fatty acid composition, cell morphology and responses to challenge by organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus. Int. J. Food Microbiol. 2005, 104, 179-187. Clark, P. A.; Martin, J. H. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III. Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 1994, 29, 18-21. Clavero, M. R. S.; Beuchat, L. R. Suitability of selective plating media for recovering heat- or freeze-stressed Escherichia coli O157:H7 from tryptic soy broth and ground beef. Appl. Environ. Microbiol. 1995, 61, 3268-3273. Coleman, R.; Lowe, P. J.; Billington, D. Membrane lipid composition and susceptibility to bile salt damage. Biochim. Biophys. Acta. 1980, 588, 294-300. Conlin, L. K.; Nelson, H. C. M. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol. Cell. Biol. 2007, 27, 1505-1515. Conner, D. E.; Hall, G. S. Efficacy of selected media for recovery of Escherichia coli O157:H7 from frozen chicken meat containing sodium chloride, sodium lactate or polyphosphate. Food Microbiol. 1994, 11, 337-344. Cordier, J.-L. Production of powdered infant formulae and microbiological control measures. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp 145-177. Cronan, J. E. Phospholipid modifications in bacteia. Curr. Opin. Microbiol. 2002, 5, 202-205. Daeschel, M. A. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 1989, 43, 164-167. Dauga, C.; Breeuwer, P. Taxonomy and physiology of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp 15-16. Davenport, H. W. Intestinal digestion and absorption of fat. In Physiology of the Digestive Tract 4th. Davenport, H. W. (ed.), Year Book Medical Publishers Incorporated, Chicago, London, 1977, pp 232. Davidson, P. M.; Harrison, M. A. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 2002, 56, 69-78. De Angelis, M.; Di Cagno, R.; Huet, C.; Crecchio, C.; Fox, P. F.; Gobbetti, M. Heat shock response in Lactobacillus plantarum. Appl. Environ. Microbiol. 2004, 70, 1336-1346. Dennison, S. K.; Morris, J. Multiresistant Enterobacter sakazakii wound infection in an adult. Infect. Med. 2002, 19, 533-535. Dinsmore, J. E.; Jackson, R. J.; Smith, S. D. The protective role of gastric acidity in neonatal bacterial translocation. J. Pediatr. Surg. 1997, 32, 1014-1016. Drudy, D.; Mullane, N. R.; Quinn, T. ; Wall, P. G.; Fanning, S. Enterobacter sakazakii: An Emerging Pathogen in Powdered Infant Formula. Clin. Infect. Dis. 2006, 42, 996-1002. Dziezak, J. D. Preservatives: antimicrobial agents. A means toward product stability. Food Technol. 1986, 40, 104-111. Edelson-Mammel, S. G.; Buchanan, R. L. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J. Food Prot. 2004, 67, 60– 63. Edelson-Mammel, S.; Porteous, M. K.; Buchanan, R. L. Acid resistance of twelve strains of Enterobacter sakazakii, and the impact of habituating the cells to an acidic environment. J. Food Sci. 2006, 71, M201-M207. El-Ziney, M. G.; De Meyer, H.; Debevere, J. M. Growth and survival kinetics of Yersinia enterocolitica IP 283 O:9 as affected by equimolar concentration of undissociated short-chain organic acids. Int J Food Microbiol, 1997, 34, 233-247. Fanning, S.; Forsythe, S. Isolation and identification of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp 27-32. Farber, J. M.; Brown, B. E. Effect of prior heat shock on the heat resistance of Listeria monocytogenes in meat. Appl. Environ. Microbiol. 1990, 56, 1584-1587. Farkas, J. Physical methods of food preservation. In Food microbiology: fundamentals and frontiers, 3rd ed.; Doyle, M. P.; Beuchat, L. R., Eds.; ASM Press: NW, Washington, 2007; pp 692-697. Farmer, J. J., III; Asbury, M. A.; Hickman, F. W.; Brenner, D. J.; the Enterobacteriaceae study group. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int. J. Syst. Bacteriol. 1980, 30, 569-584. Fontaine, J. W.; Claydon, E. Tayler-Robinson, D. Lactobacillus from women with or without bacterial vaginosis and observations on the significance of hydrogen peroxide. Microb. Ecol. Health Dis. 1996, 9, 135-141. Food and Agriculture Organization of the United Nations; World Health Organization. Enterobacter sakazakii and other microorganisms in powdered infant formula, Meeting Report. Food and Agriculture Organization of the United Nations, Rome, Italy. WHO Press: Switzerland, 2004. Food and Agriculture Organization of the United Nations; World Health Organization. Enterobacter sakazakii and Salmonella in powdered infant formula, Meeting Report. Food and Agriculture Organization of the United Nations, Rome, Italy. WHO Press: Switzerland, 2006. Forsythe, S. J. Enterobacter sakazakii and other bacteria in powdered infant milk formula. Matern. Child Nutr. 2005, 1, 44-50. Friedemann, M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int. J. Food Microbiol. 2007, 116, 1-10. Fujisawa, T. and Mori, M. Influence of bile salts on β-glucuronidase activity of Intestinal bacteria. Lett. Appl. Microbiol. 1996, 22, 271-274. Gallagher, P. G.; Ball, W. S. Cerebral infarctions due to CNS infection with Enterobacter sakzakii. Pediatr. Radiol. 1991, 21, 135-136. Giannella, R. A.; Broitman, S. A.; Zamcheck, N. Gastric acid barrier to ingested microorganism in man: Studies in vivo and in vitro. Gut. 1972, 13, 251-256. Gilliland, S. E. Acidophilus milk products: A review of potential benefits to consumers. J. Dairy Sci. 1989, 72, 2483-2494. Golden, M. H.; Buchanan, R. L.; Whiting RC. Effect of sodium acetate or sodium propionate with EDTA and ascorbic acid on the inactivation of Listeria monocytogenes. J Food Saf. 1995, 15, 53-65. Gorden, J.; Small, P. L. C. Acid resistance in enteric bacteria. Infect. Immun. 1993, 61, 364-367. Graumann, P.; Marahiel, M. A. Some like it cold: Response of microorganisms to cold shock. Arch. Microbiol. 1996, 166, 293-300. Gulmez, M.; Guven, A. Survival of Echerichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3 in different yogurt and kefir combination as perfermentation contaminant. J. Appl. Microbiol. 2003, 95, 631-636. Gunn, J. S. Mechanism of bacterial resistance and response to bile. Micobes Infect. 2000, 2, 907-913. Gurtler,J. B.; Kornacki, J. L.; Beuchat, L. R. Enterobacter sakazakii: a coliform of increased concern to infant health. Int. J. Food Microbiol. 2005, 104, 1-34. Hamilton, J. V.; Lehane, M. J.; Braig, H. R. Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerg. Infect. Dis. 2003, 9, 1355– 1356. Hawkins, R. E.; Lissner, C. R.; Sanford, J. P. Enterobacter sakazakii bacteremia in an adult. South. Med. J. 1991, 84, 793– 795. Hecker, M.; Schumann, W.; Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 1996, 199, 417-428. Helander, I. M.; von Wright, A.; Mattila-Sandholm, T-M. Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends Food Sci. Technol. 1997, 8, 146-150. Heuman, D. M.; Bajaj, R. S.; Lin, Q. Adsoption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membrane: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 1996, 37, 562-573. Hill, C.; Cotter, P. D.; Sleator, R. D.; Gahan, C. G. M. Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. Int. Dairy J. 2002, 12, 273-283. Himelright, I.; Harris, E.; Lorch, V.; Anderson, M. Enterobacter sakazakii infections associated with the use of powdered infant formula — Tennessee, 2001. J. Am. Med. Assoc. 2002, 287, 2204-2205. International Commission on Microbiology Specification for Foods, Micro-Organisms in Foods, Vol. 7. Microbiological Testing in food Safety Management, Chap. 8. Selection of Cases and Attibute Plans. Kluwer Academic/ Plenum Publishers, New York. 2002. Iversen, C.; Forsythe, S. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Technol. 2003, 14, 443-454. Iversen, C.; Lane, M.; Forsythe, S. J. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 2004, 38, 378-382. Iversen, C.; Lehner, A.; Mullane, N.; Bidlas, E.; Cleenwerck, I.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 2007, 7, (no page number for citation). Iversen, C.; Mullane, N.; McCardell, B.; Tall, B. D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442-1447. Iversen, C.; Waddington, M.; Farmer, J. J., III; Forsythe, S. J. The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol. 2006, 6, (no page number for citation). Jay, J. M. Antimicrobial properties of diacetyl. Appl Environ Microbiol. 1982, 44, 525-532. Joker, R. N.; Norholm, T.; Siboni, K. E. A case of neonatal meningitis caused by a yellow Enterobacter. Danish Med. Bull. 1965, 12, 128– 130. Juneja, V. K.; Klein, P. G.; Marmer, B. S. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef. J. Appl. Microbiol. 1998, 84, 677-684. Kempf, B.; Bremer. E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 1998, 170, 319-330. Kim, H.; Beuchat, L. R. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food. Prot. 2005, 68, 2541-2552. Kim, H.; Ryu, J.-H.; Beuchat, L. R. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol. 2006, 72, 5846-5856. Kim, H.; Ryu, J.-H.; Beuchat, L. R. Effectiveness of disinfectants in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Appl. Environ. Microbiol. 2007, 73, 1256-1265. Kleiman, M. B.; Allen, S. D.; Neal, P.; Reynolds, J. Meningoencephalitis and compartmentalization of the cerebral ventricles caused by Enterobacter sakazakii. J. Clin. Microbiol. 1981, 14, 352–354. Kociubinski, G. L.; Perez, P. F.; Anon, M. C.; Antoni, G. L. A method of screening for highly inhibitory lactic acid bacteria. J. Food Prot. 1996, 59, 739-745. Koga, T.; Takumi, K. Comparision of cross-protection against some environmental between cadmium-adapted and heat-adapted cells of Vibrio parahaemolyticus. J. Gen. Appl. Microbiol. 1995, 41, 263-268. Lai, K. K. Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Med. Baltimore. 2001, 80, 113–122. Laplace, J. M.; Sauvageot, N.; Hartke, A.; Auffray, Y. Characterization of Lactobacillus collinoides response to heat, acid and ethanol treatments. Appl. Microbiol. Biotechnol. 1999, 51, 659-663. Leclercq, A.; Wanegue, C.; Baylac, P. Comparison of fecal coliform agar and violet red bile lactose agar for fecal coliform enumeration in foods. Appl. Environ. Microbiol. 2002, 68, 1631–1638. Lee, J.; Gupta, M. J.; Lopes, J.; Pascall, M. A. Efficacy of two acidic sanitizers for microbial reduction on metal cans and low-density polyethylene film surfaces. J. Food Sci. 2007, 72, 335-339. Lehner, A.; Riedel, K.; Eberl, L.; Breeuwer, P.;Diep, B.; Stephan, R. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J. Food Prot. 2005, 68, 2287-2294. Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry, 2nd ed. Worth Publishers, New York. 1993. Leslie, S. B.; Israeli, E.; Lighthart, B.; Crowe, J. H.; Crowe, L. M. Trehalose and sucrose protect both membrances and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 1995, 61, 3592-3597. Leyer, G. J.; Wang, L. H.; Johnson, E. A. Acid adaptation of Echerichia coli O157:H7 increase survival in acidic foods. Appl. Environ. Microbiol. 1995, 61, 3752-3755. Lin, Y. D.; Chou, C. C. Effect of heat shock on thermal tolerance and susceptibility of Listeria monocytogenes to other environmental stresses. Food Microbiol. 2004, 21, 605-610. Linton, R. H.; Webster, J. B.; Pierson, M. D.; Hanckney, C. R. The effect of sublethal heat shock and growth atmosphere on the heat resistance of Listeria monocytogenes Scott A. J. Food Prot. 1992, 55, 84-87. Lou, Y.; Yousef, A. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 1997, 63, 1252-1255. Lund, B. M.; George, S. M.; Franklin, J. G. Inhibition of type A and type B (proteolytic) Clostridium botulinum by sorbic acid. Appl Environ Microbiol. 1987, 53, 935-941. Massa, S.; Altieri, C.; Quaranta, V.; De Pace, R. Survival of Echerichia coli O157:H7 in yogurt during preparation and storage at 4℃. Lett. Appl. Microbiol. 1997, 24, 347-350. McDonnell, G.; Russell, A. D. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 1990, 12, 147-179. McIngvale, S. C.; Chen, X. Q.; Mckillip, J. L.; Drake, M. A. Survival of Echerichia coli O157:H7 in buttermilk as affected by contamination point and storage temperature. J. Food Prot. 2000, 63, 441-444. Mehall, J. R.; Northrop, R.; Saltzman, D. A.; Jackson, R. J.; Smith, S. D. Acidification of formula reduces bacterial translocation and gut colonization in a neonatal rabbit model. J. Pediatr. Surg. 2001, 36, 56-62. Monroe, P. W.; Tift, W. L. Bacteremia associated with Enterobacter sakazakii (yellow, pigmented Enterobacter cloacae). J. Clin. Microbiol. 1979, 10, 850-851. Mullane, N. R.; Drudy, D.; Whyte, P.; O’Mahony. M.; Scannell, A. G. M.; Wall, P. G.; Fanning, S. Enterobacter sakazakii: biological properties and significance in dried infant milk formula (IMF) powder. Int. J. Dairy Technol. 2006, 59, 102-111. Murano, E. A.; Pierson, M. D. Effect of heat shock and growth atmosphere on the heat resistnce of Escherichia coli O157:H7. J. Food Prot. 1992, 55, 171-175. Murano, E. A.; Pierson, M. D. Effect of heat shock and incubation atmosphere on injury and recovery of Escherichia coli O157: H7. J. Food. Prot. 1993, 56, 568-572. Muytjens, H. L.; Kollee, L. A. A. Enterobacter sakazakii meningitis in neonates: causative role of formula. Pediatr. Infect. Dis. J. 1990, 9, 372– 373. Muytjens, H. L.; Roelofs-Willemse, H.; Jaspar, G. H. J. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 1988, 26, 743-746. Muytjens, H. L.; Zanen, H. C.; Sonderkamp, H. J.; Kllée, L. A.; Wachsmuth, K.; Farmer, J. J., III. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J. Clin. Microbiol. 1983, 18, 115-120. Nazarowec-White, M.; Farber, J. M. Enterobacter sakazakii: a review. Int. J. Food Microbiol. 1997a, 34, 103-113. Nazarowec-White, M.; Farber, J. M. Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Prot. 1997b, 60, 226-230. Nazarowec-White, M.; Farber, J. M. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 1997c, 24, 9-13. Nazarowec-White, M.; McKellar, R. C.; Piyasena, P. Predictive modeling of Enterobacter sakazakii inactivation in bovine milk during high-temperature short-time pasteurization. Food Res. Int. 1999, 32, 375– 379. Neidhardt, F. C.; Van Bogelen, R. A.; Vaughn, V. The genetics and regulation of heat-shock proteins. Annu. Rev. Genet. 1984, 18, 295-329. Nikaido, H. Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochim. Biophys. Acta. 1976, 433, 118-132. Noguchi, J.; Konishi, M.; Tatara, T. The effects of H2 blockers on gastric flora and sputum culture. Japn. J. Anes. 1994, 43, 1243-1247. Noh, D. O. and Gilliland, S. E. Influence of bile on the cellular integrity and β-galactosidase activity of Lactobacillus acidoplilus. J. Dairy Sci. 1993, 76, 1253-1259. Ogwaro, B. A.; Gibson, H.; Whitehead, M.; Hill, D. J. Survival of Echerichia coli O157:H7 in traditional African yogurt fermentation. Int. J. Food Microbiol. 2002, 15, 105-110. Pagotto, F. J.; Lenati, R. F.; Farber, J. M. Enterobacter sakazakii. In Food microbiology: fundamentals and frontiers, 3rd ed.; Doyle, M. P.; Beuchat, L. R., Eds.; ASM Press: NW, Washington, 2007; pp 271-287. Pagotto, F.; Farber, J. M.; Lenati, R. Pathogenicity of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp 127-141. Peng, J. S.; Tsai, W. C.; Chou, C. C. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 2002, 77, 11-18. Pflug, I.; Dumay, E.; Guiraud, J.-P.; Cheftel, J. C. Heat treatment. In The microbiological safety and quality of food, Lund, B. M.; Baird-Parker, T. C.; Gould, G. W., Eds.; Aspen Publishers, Inc.: Gaithersburg, Md, 2005; Vol. 1., pp 36-64. Cited by Farkas, J. 2007. Pharmacal Research Labs., INC., Connecticut, USA. 2007. Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994, 58, 755-805. Pribyl, C.; Salzer, R.; Beskin, J.; Haddad, R. J.; Pollock, B.; Beville, R.; Holmes, B.; Mogabgab, W. J. Azteonam in the treatment of serious orthopaedic infections. Am. J. Med. 1985, 78, 51– 56. Ray, B. Impact of bacterial injury and repair in food microbiology: its past, present and future. J. Food Prot. 1986, 49, 651-655. Ricke, S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci. 2003, 82, 632-639. Ries, M. ;Harms, D.; Scharf, J. Multiple cerebral infarcts with resulting multicystic encephalomalacia in a premature infarct with Enterobacter sakazakii meningitis. Klin. Padiatr. 1994, 206, 184-186. Ritossa, F. A new fuffing pattern induced by temperature shock and DEP in Drosophila. Experientia. 1962, 18, 571-573. Røssland, E.; Borge, G. I. A.; Langsrud, T.; Søhaug, T. Inhibition of Bacillus cereus by strain of Lactobacillus and Lactococcus in milk. Int. J. Food Microbiol. 2003, 89, 205-212. Rubin, H. E.; Vaughan, F. Elucidation of the inhibitory factors of yogurt against Salmonella typhimurium. J. Dairy Sci. 1979, 62, 1873-1879. Sander, J. W.; Venema, G.; Kok, J. Environmental stress responss in Lactococcus lacti. FEMS Microbiol. Rev. 1999, 23, 483-501. Sapers, G. M.; Miller, R. L.; Mattrazzo, A. M. Effectiveness of sanitizing agents in inactivating Escherichia coli in golden delicious apples. J. Food Sci. 1999, 64, 734-737. SAS. SAS user’s guide: statistics SAS institute, 8th ed.; SAS Institute Inc: Cary, NC, 2001. Savage, N.; Walker, R.; Steele, J. Enterobacter sakazakii: A case of coincidental infantile sepsis. Lab. Med. 2008, 39, 658-660. Schaack, M. M.; Marth, E. H. Survival of Listeria monocytogenes in refrigerated cultured milk and yogurt. J. Food Prot. 1988, 51, 848-852. Shaker, R. R.; Osaili, T. M.; Ayyash, M. Effect of thermophilic lactic acid bacteria on the fate of Enterobacter sakazakii during processing and storage of plain yogurt. J. Food Saf. 2008, 28, 170-182. Shen, H. W.; Yu, R. C.; Chou, C. C. Viability of acid-adapted and non-adapted Bacillus cereus during the lactic fermentation of skim milk and product storage at 5℃. Journal of food and drug analysis. 2008, 16, 88-94. Simmons, B. P.; Gelfand, M. S.; Hass, M.; Metts, L.; Ferguson, J. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect. Control Hosp. Epidemiol. 1989, 10, 398-401. Sinskey, T. J.; Silverman, G. J. Characterization of injury incurred by Escherichia coli upon freeze-drying. J. Bacteriol. 1970, 101, 429-437. Skladal, P.; Mascini, M.; Salvadori, C.; Zannoni, G. Detection of bacterial contamination in sterile UHT milk using an L-lactate biosensor. Enzyme Microbiol. Technol. 1993, 15, 508-512. Sondheimer, J.; Clark, D.; Gervaise, E. Continuous gastric pH measurement in young and older healthy preterm infants receiving formula and clear liquid feedings. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 352-355. Souci, S. W.; Fachmann, W.; Kraut, H. Food composition and nutrition tables. 5th ed. Medpharm Scientific Publishers, Stuttgart, Germany, 1994. Sukupolvi, S. and Vaara, M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. Biochim. Biophys. Acta. 1989, 988, 377-387. Tetteh, G. L.; Beuchat, L. R. Exposure of Shigella flexneri to acid stress and heat shock enhances acid tolerance. Food Microbiol. 2003, 20, 179-185. Tewari, G. Thermal processing of liquid foods with or without particulates. In Advances in thermal and non-thermal food preservation, Tewari, G.; Juneja, V. K., Eds.; Blackwell Publishing: USA, 2007; p 35. Thornley, M. J. The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. Appl. Bacteriol. 1960, 23, 37-50. Tift, W. L. Group B streptococcal infections in the neonate. J. Med. Assoc. Ga. 1977, 66, 703-705. Tisseres, A., Mitchchell, H.K., Tracy, U. Protein synthesis in salivary glads of Drosphila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 1974, 84, 389-398. Urmenyi, A. M. C.; Franklin, A. W. Neonatal death from pigmented coliform infection. Lancet. 1961, 1, 313–315. Cited by Nazarowec-White, M.; Farber, J. M. 1997a. Van Acker, J.; De Smet, F.; Muyldermans, G.; Bougatef, A.; Naessens, A.; Lauwers, S. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 2001, 39, 293–297. Van Bogelen, R. A.; Neidhardt, F. C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 5589-5593. Van Velkinburgh, J. C. and Gunn, J. S. PhoP-PhoQ-regulated loci are required for enhance bile resistance in Salmonella spp. Infect. Immun. 1999, 67, 1614-1622. Wang, G.; Doyle, M. P. Heat shock response enhances acid tolerance of Escherichia coli O157:H7. Lett. Appl. Microbiol. 1998, 26, 31-34. Wong, H. C.; Peng, P. Y.; Lan, S. L.; Chen, Y. C. Effect of heat shock on the thermotolerance, protein composition, and toxin production of Vibrio parahaemolyticus. J. Food Prot. 2002, 65, 499-507. Young, K. M.; Foegeding, P. M. Acetic, lactic and citric acid and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH. J. Appl. Bacteriol. 1993, 74, 515-520. Yousef, A. E.; Courtney, P. D. Basics of stress adaptation and implications in new-generation foods. In Microbial stress adaptation and food safety, Yousef, A. E.; Juneja, V. K., Eds.; CRC Press LLC: US, 2003; pp 2-25. Yura, T., Nagai, H., Mori, H. Regulation of the heat shock response in bacteria. Annu. Rev. Microbiol. 1993, 47, 321-350. Zaika, L. L. Effect of organic acids and temperature on survival of Shigella flexneri in broth at pH 4. J Food Prot. 2002, 65, 1417-1412. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9141 | - |
dc.description.abstract | 阪崎腸桿菌 (Cronobacter sakazakii) 為革蘭氏陰性菌,是一種新興食源性病原菌,常能存活於嬰兒配方奶粉等食品中,感染引發新生兒之腦膜炎、壞死性小腸結腸炎和菌血症等疾病,並具有40%~80% 之高致死率。本研究將C. sakazakii BCRC 13988進行47℃-15 min之熱震處理,探討其於一些後續致死環境壓力 (有機酸、模擬胃腸液、消毒劑) 及乳酸發酵過程與產品貯存時之存活情形。
結果顯示,熱震處理顯著地 (p < 0.05) 提高了C. sakazakii菌體暴露於含40 mM 之有機酸 (乳酸、醋酸、丙酸、檸檬酸及酒石酸) 之磷酸緩衝溶液 (pH 4.0 ),於模擬胃液 (pH 2.0、3.0、3.5、4.0) 中,以及含消毒劑 (氯化合物、四級銨) 致死壓力下之耐受性,然而在含0.5%及2.0% 之膽鹽溶液中熱震與未熱震菌體之敏感性並無顯著性 (p > 0.05) 差異。 將熱震與未熱震之C. sakazakii 與Streptococcus thermophilus或Lactobacillus bulgaricus 同時接種於脫脂乳並置於37℃下進行發酵,在發酵初期24小時,菌數皆可迅速增加至約108-109 CFU/mL,其後菌數皆呈下降之現象,發酵48小時熱震之C. sakazakii 之存活菌數高於未熱震處理者。C. sakazakii 接種於市售發酵乳製品中並置於5℃下,於48 小時貯存過程,其存活菌數隨時間之延長而減少,惟熱震之存活菌數亦呈現高於未熱震者。 | zh_TW |
dc.description.abstract | Cronobacter sakazakii is a Gram-negative, emerging opportunistic pathogen which has been associated with life-threatening cases in infants, with infant formulas been implicated as the mode of transmission, and with high mortality rate of 40-80%. In the present study, C. sakazakii BCRC13988, the type strain, was subjected to heat shock treatments (47℃, 15 min). Their subsequent survival to various stress conditions, including organic acid, simulated gastrointestinal and sanitizer. Besides, growth and survival behavior of heat-shocked C. sakazakii during the lactic fermentation of skim milk by Streptococcus thermophilus or Lactobacillus bulgaricus and during 48 h storage of commercial dairy lactic fermented products at 5 ℃ were also investigated.
It was found that heat-shocked cells showed a higher tolerance than the non-heat-shocked cells when exposure to phosphate buffer solution (pH 4.0) containing 40 mM organic acid (lactic acid, acetic acid, propionic acid, citric acid, tartaric acid). Furthermore, heat shock treatment significantly (p < 0.05) increase the tolerance in simulated gastric acid (pH 2.0, 3.0, 3.5, 4.0) and sanitizer (chlorine and quaternary ammonia compound) in temperature and in 40℃. It was showed no significan difference (p > 0.05) susceptibility of heat-shocked cells and non-heat-shocked cells to bile solution (0.5%, 2.0%). During the lactic acid fermentation of skim milk, survival of heat-shocke cells of C. sakazakii was higher than the non-heat-shocked cells. Similar phenomenon was also noted during the storage of commercial lactic fermented product at 5℃. In addition, heat shock treatment may also enhance the tolerance of C. sakazakii to refrigerated temperature and other antimicrobial principles in fermented milk. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:10:39Z (GMT). No. of bitstreams: 1 ntu-98-R96641018-1.pdf: 2279642 bytes, checksum: 84ac4991c9e689cc5f863fc589e8aaf4 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄 頁次
中文摘要 …………………………………………………………..i Abstract …………………………...…………………………..ii 目錄 ……………………………………………………………..iii 表目錄 ……………………………………………………………..v 圖目錄 …………………………………………………………….vi 壹、 前言 …………………………………………………….1 貳、 文獻整理 ……………………………………………….2 一、 阪崎腸桿菌 (Cronobacter sakazakii) …………….2 (一) 分類與生化生理特性 ………………………………….2 (二) 基本生理特性 ………………………………………….5 (三) 分布及來源 ………………………………………………….7 1. 嬰兒配方奶粉 …………………………………………….....7 2. 臨床來源 ……………………………………………………….9 3. 食品及環境 …………………………………………………….10 (四) 致病性…………………………………………………………10 1. 新生兒感染 …………………………………………………….10 2. 成年人感染 …………………………………………………….11 (三) C. sakazakii對壓力之耐抗性……………………....11 1. 熱耐受性…………………………………………………11 2. 滲透壓與乾燥之耐受性…………………………………12 二、 熱震反應 ……………………………………………….14 (一) 熱震反應 ……………………………………………….14 (二) 熱震反應之調控 ……………………………………….16 (三) 熱震處理提升菌體之熱耐受性 ……………………….17 (四) 熱震處理所誘發之交叉保護效應 …………………….19 參、 材料與方法 …………………………………………….20 一、 實驗架構 ……………………………………………….20 二、 實驗材料 ……………………………………………….20 (一) 菌種 …………………………………………………….20 (二) 培養基 ………………………………………………….20 (三) 試驗藥品 ……………………………………………….22 (四) 奶粉 …………………………………………………….22 (五) 市售發酵乳製品………………………………………..22 (六) 儀器設備…………………………………………………23 三、 實驗方法 ……………………………………………….23 (一) 菌株之保存 …………………………………………….23 (二) 實驗菌株接種源之製備 ……………………………….23 (三) C. sakazakii 之熱震處理 ……………………………24 (四) 熱震處理影響C. sakazakii於不同有機酸環境下之存 活試驗 .......................................24 (五) 熱震處理影響C. sakazakii在模擬胃酸及膽鹽下之耐 受性試驗 .....................................24 (六) 熱震處理影響C. sakazakii於消毒劑中之存活試驗…24 (七) 熱震處理影響C. sakazakii於乳酸發酵及產品中之生 長與存活試驗..................................25 (八) 菌數測定 …………………………………….………..26 (九) 統計分析 ……………………………………………….27 肆、 結果與討論 …………………………………………...28 一、 熱震處理影響C. sakazakii對有機酸之敏感性……..28 二、 熱震處理影響C. sakazakii在模擬胃酸及膽鹽下之耐 受性試驗 ………...............................33 (一) 熱震影響C. sakazakii在模擬胃酸下之耐受性……..33 (二) 熱震影響C. sakazakii在膽鹽環境下之耐受性 …...35 三、 熱震處理影響C. sakazakii於消毒劑中之存活試驗…38 四、 熱震處理對C. sakazakii於乳酸發酵過程與產品貯存 時之活性影響……..............................43 (一) C. sakazakii單獨或混合乳酸菌發酵脫脂乳過程中滴 定酸度及pH 之變化…………………………………….43 (二) 熱震影響 C. sakazakii 在脫脂乳乳酸發酵過程中之 存活 .........................................45 (三) C. sakazakii 之添加對脫之乳中乳酸菌生長性狀之 影響 ………….................................48 (四) 熱震處理影響 C. sakazakii 在市售發酵乳貯存期間 之存活 ……….................................51 伍、 結論 …………………………………………………….53 陸、 參考文獻 ……………………………………………….54 | |
dc.language.iso | zh-TW | |
dc.title | 熱震處理阪崎腸桿菌在一些致死壓力下及乳酸發酵過程與產品貯存時之活性 | zh_TW |
dc.title | Viability of Heat Shocked-Cronobacter sakazakii Subjected to Various Lethal Stresses and During the Fermentation as well as Storage of Lactic Cultured Milk | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡國珍,潘崇良,邱志威,游若? | |
dc.subject.keyword | Cronobacter sakazakii,熱震,致死壓力,乳酸發酵, | zh_TW |
dc.subject.keyword | Cronobacter sakazakii,heat shock,stresses,lactic fermentation, | en |
dc.relation.page | 71 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 2.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。