Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤zh_TW
dc.contributor.advisorTsiu-Kwen Leeen
dc.contributor.author林政輝zh_TW
dc.contributor.authorJheng-Huei Linen
dc.date.accessioned2023-12-20T16:20:04Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-09-15-
dc.identifier.citationS.A. Amitsur, Extension of derivations to central simple algebras, Comm. Algebra 10(8) (1982), 797–803.
K.I. Beidar, W.S. Martindale III, and A.A. Mikhalev. “Rings with generalized identities.” Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
K.I. Beidar and W.S. Martindale III, On functional identities in prime rings with involution, J. Algebra 203(2) (1998), 491–532.
M. Brešar, and J. Vukman. On some additive mappings in rings with involution, Aequationes Math. 38(2-3) (1989), 178–185.
M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335(2) (1993), 525–546.
M. Brešar and B. Hvala, On additive maps of prime rings, Bull. Austral. Math. Soc. 51(3) (1995), 377–381.
M. Brešar and P. Šemrl, Commuting traces of biadditive maps revisited, Comm. Algebra 31(1) (2003), 381–388.
M. Brešar, M.A. Chebotar and W.S. Martindale III, “Functional identities”, Frontiers in Mathematics. Birkhauser Verlag, Basel, 2007.
M. Brešar. A unified approach to the structure theory of PI-rings and GPI-rings, Serdica Math. J. 38 (2012), 199-210.
C.-L. Chuang, A. Fošner, and T.-K. Lee, Jordan τ-derivations of locally matrix rings, Algebr. Represent. Theory 16(3) (2013), 755–763.
A. Fošner and T.-K. Lee, Jordan ∗-derivations of finite-dimensional semiprime algebras, Canad. Math. Bull. 57(1) (2014), 51–60.
I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(6) (1957), 1104–1110.
G. Hochschild, Restricted Lie algebras and simple associative algebras of characteristic p, Trans. Amer. Math. Soc. 80 (1955), 135–147.
V.K. Kharchenko, Generalized identities with automorphisms, Alg. Logik. 14 (1975), 215–237.
T.-K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese J. Math. 1(3) (1997), 333–342.
T.-K. Lee, Generalized skew derivations characterized by acting on zero products. Pacific J. Math. 216(2) (2004), 293–301.
T.-K. Lee and Y. Zhou, Jordan ∗-derivations of prime rings, J. Algebra Appl. 13(4) (2014), 1350126.
T.-K. Lee, T.-L. Wong, and Y. Zhou, The structure of Jordan ∗-derivations of prime rings, Linear Multilinear Algebra 63(2) (2014), 411–422.
T.-K. Lee and J.-H. Lin, Jordan derivations of prime rings with characteristic two, Linear Algebra Appl. 462 (2014), 1–15.
T.-K. Lee and J.-H. Lin, Jordan τ-derivations of prime rings, Comm. Algebra. 43(12) (2015), 5195–5204.
T.-K. Lee, Jordan σ-derivations of prime rings, Rocky Mountain J. Math. 47(2) (2017), 511–525.
J.-H. Lin, Jordan τ-derivations of Prime GPI-rings, Taiwanese J. Math. 24(5) (2020), 1091–1105.
J.-H. Lin, Weak Jordan derivations of prime rings, Linear Multilinear Algebra 69(8) (2021), 1422–1445.
W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
E.C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180–183.
L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219–223.
A. Roy and R. Sridharan, Derivations in Azumaya algebras, J. Math. Kyoto Univ. 7 (1967), 161–167.
P. Šemrl, On Jordan ∗-derivations and an application, Colloq. Math. 59(2) (1990), 241–251.
P. Šemrl, Quadratic functionals and Jordan ∗-derivations, Studia Math. 97(3) (1991), 157–165.
P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119(4) (1993), 1105–1113.
P. Šemrl, Jordan ∗-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120(2) (1994), 515–518.
M.A. Siddeeque, N. Khan, A.A. Abdullah, Weak Jordan ∗-derivations of prime rings, J. Algebra Appl. 22(5) (2023), 2350105.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91289-
dc.description.abstract在本篇論文中,我們將研究兩種質環上(弱)喬登型式的可加函數。在此我們令 R 為一個質環,且 C 為其廣義中心子,而 Q_ml (R) 及 Q_ms (R) 則分別代表 R 的左邊及雙邊極大商環。
首先我們研究 R 上頭的喬登 τ 導算之結構,其中 τ 為 R 的反自同構。如果一個可加函數 δ: R → Q_ms (R) 滿足對於所有 x ∈ R 都有 δ(x^2 ) = δ(x)x^τ + xδ(x),則我們稱其為喬登 τ 導算。另外,我們稱 x → ax^τ − xa 型式的函數為 X-內喬登 τ 導算,其中 a 是 Q_ms (R) 中的元素。在此我們證明了,當 τ 為第二型時,喬登 τ 導算的結構可被完全決定,這推廣了李秋坤教授及筆者在 2015 年的結果。定理敘述如下:
• 令 R 為一個非交換的質環且 τ 為其上之反自同構。如果 τ 是第二型,則所有在 R 上頭的喬登 τ 導算皆為 X-內喬登 τ 導算。
當 τ 為第一型時,我們還有得到下面的結果:
• 令 R 為一個質 GPI 環且 charR ≠ 2,並假設 τ 為其上第一型的反自同構。如果degτ 2 ≠ 2,則所有在 R 上頭的喬登 τ 導算皆為 X-內喬登 τ 導算。
接下來我們研究 R 上頭的弱喬登導算之結構。如果一個可加函數 δ: R → Q_ml (R)滿足所有 x ∈ R 都有 δ(x^2 ) − δ(x)x − xδ(x) ∈ C,則我們稱其為弱喬登導算。在此我們完整給出了弱喬登導算的結構,其中 dim_C RC > 4 的情況如下:
• 令 R 為一個質環且 dim_C RC > 4,並假設 δ: R → Q_ml (R) 為一個弱喬登導算。
(i) 如果 charR ≠ 2,則 δ 是一個導算。
(ii) 如果 charR = 2,則存在一個導算 d: R → Q_ml (R) 和一個可加函數ν: R → C 使得 δ = d + ν。
另外,dim_C RC = 4 的情況也有決定出弱喬登導算的結構,但由於敘述較複雜,請讀者觀看內文的 Theorem 4.6。作為此結構定理的應用,我們推廣了 Brešar 在 1993 年的定理,其內容為關於可加函數 δ: R → RC + C 滿足對於所有 x ∈ R 都有[δ(x^2 ) − xδ(x) − δ(x)x,x] = 0 的結構。
zh_TW
dc.description.abstractIn the dissertation, we study two kinds of additive maps of (weak) Jordan types on prime rings. Let R be a prime ring with extended centroid C, and let Q_ml (R) (resp. Q_ms (R)) denote the maximal left (resp. symmetric) ring of quotients of R.
Firstly, we investigate the structure of Jordan τ-derivations of R, where τ is an anti-automorphism of R. An additive map δ: R → Q_ms (R) is called a Jordan τ-derivation if δ(x^2 ) = δ(x)x^τ + xδ(x) for all x ∈ R. A Jordan τ-derivation δ of R is called X-inner if there exists a ∈ Q_ms (R) such that δ(x) = ax^τ − xa for all x ∈ R. We completely determine Jordan τ-derivations of R when τ is of the second kind, which generalizes Lee and the author’s result in 2015 as follows.
• Let R be a noncommutative prime ring with an anti-automorphism τ. If τ is of the second kind, then any Jordan τ-derivation of R is X-inner.
We also get the following characterization when τ is of the first kind.
• Let R be a prime GPI-ring, charR ≠ 2, and let τ be an anti-automorphism of R, which is of the first kind. If degτ 2 ≠ 2, then any Jordan τ-derivation of R is X-inner.
Secondly, we study the structure of weak Jordan derivations of R. An additive map δ: R → Q_ml (R) is called a weak Jordan derivation if δ(x^2 )−δ(x)x−xδ(x) ∈ C for all x ∈ R. Here we give a complete characterization of weak Jordan derivations of R. Precisely, we prove the following.
• Let R be a prime ring with dim_C RC > 4, and let δ: R → Q_ml (R) be a weak Jordan derivation.
(i) If charR ≠ 2, then δ is a derivation.
(ii) If charR = 2, then δ = d+ν, where d: R → Q_ml (R) is a derivation and ν: R → C is an additive map.
We also give a complete characterization for the case that dim_C RC = 4 (see Theorem 4.6). The characterization can be applied to generalize Brešar’s theorem in 1993 concerning additive maps δ: R → RC + C satisfying [δ(x^2 ) − xδ(x) − δ(x)x,x] = 0 for all x ∈ R.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:20:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:20:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
1 Introduction 1
2 Preliminary 6
2.1 GPI-rings, PI-rings, and functional identities 6
2.2 Functional identities with an anti-automorphism 9
3 Jordan τ-derivations of prime GPI-rings 19
3.1 Motivation 19
3.2 Results 22
3.3 The first kind case 29
4 Weak Jordan derivations 38
4.1 Motivation 38
4.2 Results 40
4.3 Proofs of Theorem 4.5 and 4.6 47
References 86
-
dc.language.isoen-
dc.subject質環zh_TW
dc.subject泛函恆等式zh_TW
dc.subjectGPI 環zh_TW
dc.subject喬登 τ 導算zh_TW
dc.subject弱喬登導算zh_TW
dc.subject左邊(雙邊)極大商環zh_TW
dc.subject質環zh_TW
dc.subject泛函恆等式zh_TW
dc.subjectGPI 環zh_TW
dc.subject喬登 τ 導算zh_TW
dc.subject弱喬登導算zh_TW
dc.subject左邊(雙邊)極大商環zh_TW
dc.subjectGPI-ringen
dc.subjectPrime ringen
dc.subjectmaximal left (symmetric) ring of quotientsen
dc.subjectmaximal left (symmetric) ring of quotientsen
dc.subjectPrime ringen
dc.subjectfunctional identityen
dc.subjectweak Jordan derivationen
dc.subjectJordan τ-derivationen
dc.subjectfunctional identityen
dc.subjectGPI-ringen
dc.subjectJordan τ-derivationen
dc.subjectweak Jordan derivationen
dc.title質環上(弱)喬登型式的可加函數zh_TW
dc.titleAdditive maps of (weak) Jordan types of prime ringsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee李白飛;王彩蓮;劉承楷;蔡援宗;柯文峰zh_TW
dc.contributor.oralexamcommitteePjek-Hwee Lee;Tsai-Lien Wong;Cheng-Kai Liu;Yuan-Tsung Tsai;Wen-Fong Keen
dc.subject.keyword質環,泛函恆等式,GPI 環,喬登 τ 導算,弱喬登導算,左邊(雙邊)極大商環,zh_TW
dc.subject.keywordPrime ring,functional identity,GPI-ring,Jordan τ-derivation,weak Jordan derivation,maximal left (symmetric) ring of quotients,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202304234-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-09-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf809.54 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved