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Abstract

In the dissertation, we study two kinds of additive maps of (weak) Jordan
types on prime rings. Let R be a prime ring with extended centroid C, and
let Qi(R) (resp. Qms(R)) denote the maximal left (resp. symmetric) ring of
quotients of R.

Firstly, we investigate the structure of Jordan 7-derivations of R, where 7 is
an anti-automorphism of R. An additive map §: R — Qms(R) is called a Jordan
r-derivation if 6(2%) = §(x)a” + xd(x) for all x € R. A Jordan 7-derivation &
of R is called X-inner if there exists a € Qms(R) such that é(x) = az™ — za for
all £ € R. We completely determine Jordan 7-derivations of R when 7 is of the
second kind, which generalizes Lee and the author’s result in 2015 as follows.

e Let R be a noncommutative prime ring with an anti-automorphism 7. If T
is of the second kind, then any Jordan T-derivation of R is X-inner.

We also get the following characterization when 7 is of the first kind.

e Let R be a prime GPI-ring, charR # 2, and let T be an anti-automorphism
of R, which is of the first kind. If deg? # 2, then any Jordan T-derivation of R
is X-inner.

Secondly, we study the structure of weak Jordan derivations of R. An additive
map §: R — Q. (R) is called a weak Jordan derivation if §(2?) —6(z)x —zd(x) €

C for all x € R. Here we give a complete characterization of weak Jordan
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derivations of R. Precisely, we prove the following.
e Let R be a prime ring with dimgRC' > 4, and let 6: R — Qi (R) be a weak
Jordan derivation.
(i) If char R # 2, then 6 is a derivation.
(ii) If char R = 2, then § = d+v, where d: R — Qni(R) is a derivation and
v: R — C is an additive map.
We also give a complete characterization for the case that dimgRC = 4 (see
Theorem 4.6). The characterization can be applied to generalize Bresar’s theorem
in 1993 concerning additive maps 6: R — RC + C satisfying [§(z?) — zd(x) —

d(x)x,x] =0 for all x € R.

2020 Mathematics Subject Classification. 16R60, 16N60, 16 W10, 16W25.
Key words and phrases: Prime ring; functional identity; GPI-ring; Jordan 7-derivation;

weak Jordan derivation; maximal left (symmetric) ring of quotients.
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1 Introduction

Throughout, R denotes a prime ring, that is, for a,b € R, aRb = 0 implies a = 0 or
b =0, and let Z(R) be the center of R. Let Qi (R) (resp. Qms(R)) be the maximal left
(resp. symmetric) ring of quotients of R, and let Qs(R) be the Martindale symmetric
ring of quotients of R. The center of Q,;(R), denoted by C' is called the extended
centroid of R. In this case, C' is always a field. It is well-known that Qs(R) C Qms(R) C

Qmi(R) and Z(Qms(R)) = Z(Qs(R)) = C. We refer the reader to [2] for details.

Let 7 be an anti-automorphism of R. An additive map §: R — Q,s(R) is called a
Jordan 7-derivation if §(2?) = §(x)x” + xd(z) for all z € R. A Jordan 7-derivation ¢ of
R is called X-inner if there exists a € Qs(R) such that 6(z) = az™ — za for all = € R.
In 2015, Lee and the author [20] proved the following: If R is either a non GPI-ring or
a Pl-ring, then every Jordan 7-derivation of R is X-inner except when both charR = 2
and dimgRC = 4. Therefore, it keeps unknown when R is a GPI-ring but is not a
Pl-ring. In order to solve the unknown case, in Chapter 2 we develop some results
concerning certain functional identities with an anti-automorphism 7. In Chapter 3,
we use these results to give a complete characterization of Jordan 7-derivations of R

when 7 is of the second kind.

Theorem 3.12. Let R be a noncommutative prime ring with an anti-automorphism 7.
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If T is of the second kind, then any Jordan T-derivation of R is X-inner.

By an X-inner automorphism o of R, we mean that there exists u € Q(R) such
that o(z) = uzu™! for all z € R. In this case, we define dego = m if u is algebraic over
C with minimal degree m. We define dego = oo otherwise. By Kharchenko’s theorem,
72 is an X-inner automorphism when R is a prime GPI-ring and 7 is of the first kind.

We get the following result for the first kind case.

Theorem 3.14. Let R be a prime GPI-ring with charR # 2 and with 7 an anti-
automorphism of the first kind. If deg7? # 2, then any Jordan T-derivation of R is

X-inner.

In 1993, Bresar [5] proved that an additive map 6: R — RC + C satisfying §(x?) —
zé(x) — 6(x)x € C for all x € R is a derivation if char (R) # 2,3 and dim¢cRC > 4.
Several years later, Bresar et al. characterized weak Lie derivations (i.e., additive maps
d0: R — Qum(R) satisty d([z,y]) — [0(x),y] — [z,0(y)] € C for all z,y € R) when
dimgRC' > 16 (see the book [8]). We use their fashion to define a “weak Jordan
derivation” to be an additive map §: R — Q,u(R) satisfying §(2?) — §(z)x — xd(x) € C

for all z € R. In Chapter 4, we completely determine its structure as follows.

Theorem 4.5. Let R be a prime ring with dimc RC' > 4, and let §: R — Q,u(R) be a

weak Jordan derivation.
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(i) If char R # 2, then 0 is a derivation.
(i) If char R = 2, then § = d + v, where d: R — Q. (R) is a derivation and

v: R — C is an additive map.

Theorem 4.6. Let R be a prime ring with dimgRC = 4, and let 6: R — RC be a
weak Jordan derivation.
(i) If char R # 2, then there exists a field extension F of C' such that RC' can be

embedded into My(F) and
0(x) = d(x) + [a, x] + L(x) + ((2)

for allz € R, where d: R — RC' is a derivation, a € My(F') and L, : My(F) — My(F)
are F-linear maps. Moreover, there exist 5; € F', 1 <1 <6, such that

0 BaTo1
L(z) =

Bsx12 + Berar 0

and

1 0
((r) = <5l($11 — T2) + Powrz + 533521)
0 —1

for all x = (z;5) € My(F). In this case, 0 is a derivation if and only if all B; = 0.
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(ii) If char R = 2, then there exists a field extension F' of C such that RC' can be

embedded into My(F') and
0(r) = d(z) + v(2) + [a, 2] + L(z) + ((2)

for all x € R, where d: R — RC' is a derivation, v: R — C is an additive map,
a € Mo(F), and L,(: Ma(F) — Mao(F') are F-linear maps. Moreover, there exist
B, € F,1<1i<6, such that

0 Bawon
L(z) =

Bsr12 + Berar 0

and

((x) = (51(%1 + T92) + Pom1a + ﬁ3$21>]2

for all x = (z;5) € My(F).
Conversely, an additive map §: R — Quu(R) satisfying (i) or (ii) is a weak Jordan

derivation.

Moreover, we use the above two theorems to generalize Bresar’s theorem [5, Theorem
4].

Theorem 4.9. Let R be a prime ring with char R # 2, and let 6: R — RC + C be an
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additive map satisfying

[6(z%) — 26(2) — §(x)x, 2] =0

for all x € R.

(i) If dimeRC > 4, then

5(x) = vz + d(x) + p(x)

for all x € R, where v € C, d: R — RC + C is a derivation, and p: R — C is an
additive map.

(i) If dimcRC = 4, then

0(x) = d(x) + p(x) + [a, 2] + L(x) + ()

for all x € R, where d: R — RC' s a derivation, u: R — C is an additive map,
a € My(F), and L,(: My(F) — My(F) are as in Theorem 4.6 (i).

Note that all results mentioned above have been published as journal papers (see
[22] and [23]). The method of characterizing weak Jordan derivations developed by the

author was also applied to studying weak Jordan #-derivations by Siddeeque et al. (see

[32]).
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2 Preliminary

2.1 GPI-rings, PlI-rings, and functional identities

Let R be a prime ring with extended centroid C'. We first introduce prime GPI-rings
and Pl-rings and their structure theorems. To be precise, set @ := Q,u(R). Let X
be an infinite set and C'(X) be the free C-algebra on X. Define Q¢ (X) to be the free
product of @ and C(X). Elements of Qc(X) are called generalized polynomials. A
generalized polynomial is said to be nontrivial if it is nonzero in Q¢ (X). Let U be an
additive subgroup of R. By a generalized polynomial identity (GPI) on U we mean an
element ¢ = ¢(x1,...,z,) in Qc(X) such that ¢(ry,...,r,) =0 for all ry,...,r, € U.
In this case, we say that U satisfies a GPI ¢. We say that R is a GPI-ring if R satisfies
a nontrivial GPI. The following is a famous structure theorem due to Martindale (see

[24, Theorem 3] or [2, Theorem 6.1.6]).

Theorem 2.1. Let R be a prime ring with extended centroid C. Then R is a GPI-ring
if and only if its central closure RC contains a nonzero idempotent e such that eRC' is

a minimal right ideal of RC' and eRCe is a finite-dimensional division algebra over C'.

We view C'(X) as a C-subalgebra of Qc(X). We say R is a Pl-ring if it satisfies a
nontrivial element of C'(X) whose coefficients are in {1, —1}. The following describes

the structure of prime PI-rings (see [25], [26], and [9]).
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Theorem 2.2. Let R be a prime Pl-ring with extended centroid C'. Then
(a) RC is a finite-dimensional central simple algebra over C.

(b) Z(R) intersects every nonzero ideal of R nontrivially.

(c) C is the quotient field of Z(R).

Next we introduce some useful results concerning functional identities of prime
rings. These play a key role in characterizing weak Jordan derivations and Jordan

T-derivations.

Before stating them, we fix some notations. Let m be a positive integer, I, J C
{1,2,...,m}, and a,b be non-negative integers. Let Ej,, Fj,: R™ ' — Qu(R), i € I,
jeJ,0<u<a,0<v<b Fixte Qu(R)and V =57 Ct'. Wesay that degt =n
if ¢ is algebraic of minimal degree n over C. Moreover, degt = oo if ¢ is not algebraic

over C. For any maps f: R"' = Q,u(R) and g: "% — Q,u(R) we write

fl(fr) = f(fEl, ey L1, Lja 1y ,JZT)
and
gij(fi'r) = g([El, ey Li—1, Ljg 1y e - - ,l’j_l, I’j+1, Ce ,l’r),
where z, = (x1,...,2,) € R". We need the following important theorems due to Beidar
and Martindale [3].
7
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Theorem 2.3. ([3, Theorem 2.4]) Suppose that degt > a + |I| and

Z za: E:uZL‘Ztu eV

i€l u=0

for all x1,29,..., 2, € R. Then each E;, = 0.

Theorem 2.4. ([3, Theorem 2.5]) Suppose that degt > a+ |I| — 1 and

> Z Ei zt* =0

i€l u=0

for all x1,29,...,2,, € R. Then each E;, = 0.

Theorem 2.5. ([3, Corollary 2.11]) Let E;, F;: R™' — Qmu(R), i € I, j € J such

that

ZEf(ml,...,xm)xﬁ—ij]ﬂj(xl,...,xm) eC

il jed
for all v, 2o, ..., 2, € R. Suppose that dimcRC' > (max{m, |J\})2 Then there exist

unique maps pi;: R™% — Quu(R) and A\g: R™' — C such that
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where \y, = 0 if k ¢ INJ. If E;’s and F}’s are (m — 1)-additive, then all p;;’s are
(m — 2)-additive and all \,’s are (m — 1)-additive. (It is understood that all the p;;’s

are equal to 0 if m =1.)

2.2 Functional identities with an anti-automorphism

Let R be a prime ring. It is well-known that an automorphism (resp. anti-automorphism)
of R can be uniquely extended to an automorphism (resp. anti-automorphism) of Q(R)
(see [2, Proposition 2.5.3] for the automorphism case and [2, Proposition 2.5.4] for the
anti-automorphism case). An automorphism (or anti-automorphism) ¢ is said to be of

the first kind if 59 = § for all § € C'. Otherwise, ¢ is said to be of the second kind.

To study Jordan 7-derivations in the next chapter, we have to develop some results
concerning functional identities with an anti-automorphism. In [21], Lee dealt with
functional identities on prime rings with an automorphism. Now, we will follow his
viewpoint to get useful results. Our purpose in the section is to prove the following

theorem.

Theorem 2.6. Let R be a prime ring with an anti-automorphism 1 of the second kind.

Suppose that Ey, Fpp: B™' — Quu(R) are (r — 1)-additive maps such that

D En@)wi+ ) Ep(@)a] + ) wFy(T,) € C (1)
i=1 i=1 =1

9
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forx, € R, where 1 < 4,0 <r andt=1,2. If R is not a Pl-ring, then there exist a
nonzero ideal I of R, (r — 2)-additive maps pier: I" 2 — Quu(R), and (r — 1)-additive

maps \ji1: 1"t — C such that

and

Fy(z Z pzm Z Pion (T — Xt (70)

1<i<r 1<i<lr
AL AL

forallz, € I", where 1 <1, <r andt=1,2.

Corollary 2.7. Let R be a prime ring with an anti-automorphism 1 of the second kind.

Suppose that E;, Fy: R™' — Q,u(R) are (r — 1)-additive maps such that

N EN&)a] + Y wmF(z,) €C
i=1 /=1

for z, € R", where 1 < i, 0 <r. If R is not a Pl-ring, then there exist a nonzero ideal

10
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I of R and (r — 2)-additive maps py: I""* — Qi (R) such that

§ 'Tfpzf l',,n

1<e<r
#£i

and

Z pzé :L‘r

1<e<r

AL

forallz, € I", where 1 < i, ¢ <.

Proof. By Theorem 2.6, there exist a nonzero ideal I of R, (r — 2)-additive maps

piter: 12 = Quu(R), and (r — 1)-additive maps A;;: I"™' — C such that

0= Z Mp%m (ffr) + )‘21(@):
1<t<r
0#£i

Ei(z,) = Z xfpigzl(ir)a

1<e<r
04

and

Z pzlfl () Z pzzm )‘51(@)

1<i<r 1<i<r
1AL WAL

for all z, € I", where 1 < i,/ <r and t = 1,2. In view of Theorem 2.3, p;;,1 = 0 and

Ai1 =0 for 1 <4, < r. The proof is complete by putting p;r = pioe1.

11
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To begin with the proof of Theorem 2.6, we first give the following lemma.

Lemma 2.8. Suppose that E;, Fy: R™' — Q,u(R) are (r — 1)-additive maps such that

> Ei@)xi+ Y F(T,)1; €C (2)
i=1 (=1

forz, € R", where 1 < 1,0 <r. If R is not a Pl-ring, then there exists a nonzero ideal

I of R such that B! = Ff =0 on I" for 1 <i,{ <.

Before proving it, we define the following notation (see [21]). For a map f: R"™' —

Qmi(R) and t # i, we write

fi(jr; {y}t) = f(zh ceey Ri—1y Bidly - 7ZT’)

where z;, = y and z; = x; for j # ¢, i.e., we replace z; by y in f*(Z,).

Proof of Lemma 2.8. Let A:={1,2,...,r} and
L := {¢ € A | there exists a nonzero ideal .J of R such that Ff =0 on J"}.

We proceed the proof by induction on r — | L.
Suppose first that » — |L| = 0, i.e., L = A. Then there exists a nonzero ideal J such
that £/ =0 on J" for all ¢ = 1,...,r. Thus Y., |, E{(Z,)z; € C for all 7, € J". By

12
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Theorem 2.3, E! =0 on J" foralli=1,...,7, as asserted.
Suppose next that r — |L| > 1. Without loss of generality, we may assume that
r ¢ L. Then, for any nonzero ideal U of R, F' # 0 on U". Fix € C' with 7 # 8 and

choose a nonzero ideal K of R such that K C R. Then, by (2), we have

El (Zr; {Br }r) — /BEZ(ET)>:EZ (3)
r—1
+ 3 (B (@ {Bas ) — BF ()27 + (87 — B)FL(z,)al € C
/=1

forall z, € K". Let K; = KNK". Then K, is an ideal of R such that K{_l C K and,

by (3), we have

r—1 r—1

ZE’ T,)x; + F(z,) a:r—l—ZFg xy € C (4)

=1 /=1

for all z, € K7, where

Ei(Z,) = (87— B)  (Ei(Z,::{B2] ' }») — BE}(Zoi {=] 1)

and

F{(z,) = (8" = B)  (F{ (@ {Bal ' }) — BF{ (T3 {2l }1)).

13
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Set
Li:={0|1<¢<r—1, there exists a nonzero ideal J of R such that Ef =0 on J"}.

Let ¢ € L. Then 1 < /¢ <r —1 and there is a nonzero ideal N of R such that Ff =0on
N7". By the definition of F ¥, there exists a nonzero ideal M of R contained in N such
that F{ =0 on M" and so ¢ € Ly. Thus |L| < |Li| and r—|L| > r—|Ly| > (r—1)—|L4|.
By applying the induction hypothesis on (4), we have F} = 0 on W” for some nonzero

ideal W of R, a contradiction. O

Proof of Theorem 2.6. Let A:={1,2,...,r} and
L := {i € A | there exists a nonzero ideal J of R such that E}, = 0 on J"}.

We proceed the proof by induction on r — |L|.
Assume first that r — |L| = 0, i.e., L = A. Then E!, = 0 on U" for some nonzero

ideal U of R and so (1) becomes

> EL@)mi+ Y wmF(T,) €C
i=1 =1
for 7, € U". Hence the result follows from Theorem 2.5.

14

doi:10.6342/NTU202304234



Assume next that » — |L| > 1. Without loss of generality, assume that r ¢ L. Then
E’, # 0 on any nonzero ideal of R. Let 8 € C' with 87 # 3 and choose a nonzero ideal

J of R such that 5J C R. Then, by (1), we have

r—1
Z (Ezzl(zlm {er}r> - ﬁEfl(i’«,«))l’Z
i=1
r—1
+3 (B (@i {Bar k) — BEL(T,))x] + Ely(2,)(87 — B)a]
=1

[y

r—

+ ) w(Fu(z,; {Bz,},) — BFu(z,) € C

1

~
I

for all z, € J". Let

Ez‘il (z,) = (B — 5)71 (EzZl (Zr; {Bar}r) — ﬁEfl(jr))v

E;‘Q@T) = (" — 5)71 (EiiQ(:_UTQ {Bz,}) — 6E§2(ET))7

and

ﬁé(a_jr) - (ﬂT - 6)_1 (Ffl(jr; {er}r) - 6F;1(fr))

Then

r—1 r—1 r—1
Bl ()3 + ZE;Q T )zl + B (T )z + ngFﬂ z,) € C (5)
i=1 i=1 =1
15
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for all z, € J". Choose a nonzero ideal J; of R contained in J so that Jf_l a Ry

(5), we have

r—1 r—1
i (= 71 i (= =1 T
D EL@{a] Ywmi+ ) Ep(@{a] 3 (6)
i=1 =1
r—1
~ -1
+E5 (T )z, + Z fozél (@i {a; 1) €C
/=1

for all Z, € JI. Set Giy(Z,) = Eiy(Z,; {z7 '},) and
Ly :={i|1<i<r—1, there exists a nonzero ideal J of R such that G, =0 on J"}.

Let i € L and i # r. Then there exists a nonzero ideal N of R such that E! = 0 on
N". From the definition of G, there is a nonzero ideal M of R contained in N such

that Gi% =0 on M", and so i € L;. Thus
r—|L| >r—|Li| > (r—1) — |Ly].

By the induction hypothesis, there exist a nonzero ideal J, of R contained in J; and

(r — 2)-additive maps proer: J3 2 — Quui(R) such that

r—1
EL(T,) = Z Q;EP:gél (@)
(=1

16
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for all Z,, € JI. Substituting it into (1), we have

[y

r—

ZE; () mZE;Q- a7l + Y we(Fh (@) + piba (@)a]) + 2 Fa(@) €€ (0)
1

~
Il

for all z, € Jj. By the induction hypothesis, there is a nonzero ideal I of R contained

in J, and (r — 2)-additive maps pigg: 72 = Quu(R) such that
Ejy(T,) ZWPQA Z)
Z;éz
for all z, € I" and 1 <i <r — 1. Thus (7) becomes
ZEZI (@) :)Sz—i—ng(Fm (T +sz2£1 (Z,) > C
z;éf

for all 7, € I". According to Theorem 2.5, there exist (r—2)-additive maps p;ip: I" % —

mi(R) and (r — 1)-additive maps \;q1: I"~' — C such that
Qi (R) p

Ej\ (z Z xepzm (@) + N ()
1<t<r
#i
17
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and

_ _ 0 /-
Fi(z,) + szw T,)x Z Piter (Tr) s — iy (T)
1<i<r
z‘# A0
for all z, € I", where 1 < 4,0 < r, as asserted. O
18
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3 Jordan 7-derivations of prime GPI-rings

3.1 Motivation

Let R be a prime ring with an anti-automorphism 7. An additive map 6: R — Q.s(R)
is called a Jordan 7-derivation of R if §(z?) = zd(x) + d(z)z™ for all x € R. A Jordan
T-derivation ¢ of R is said to be inner (resp. X-inner) if there exists a € R (resp.
a € Qms(R)) such that 6(z) = ax™ — za for x € R. Note that if 6: R — Qs(R) is a

Jordan 7-derivation, then

O(zy +yx) = 6(x)y” +yo(x) + o(y)x" + zd(y) (8)

for all z,y € R.

Let A be a ring. Suppose that *: A — A is an involution of A, i.e., x is an
anti-automorphism of A such that (z*)* = x for all z € A. The problem of the
representability of quadratic forms by bilinear forms is connected with the structure
of Jordan x-derivations (see [29] and [30]). In 1989, Bresar and Vukman proved the

following (see [4, Theorem 1]).

1

Theorem 3.1. Let A be a unital ring with involution . Suppose that A contains 3

and an invertible skew-hermitian element p (i.e., p* = —p) which lies in Z(A). Then
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every Jordan x-derivation from A into itself is inner.

In particular, every Jordan #-derivation of a unital complex *-algebra is inner. In-
deed, given any complex *-algebra A, we always assume (8x)* = Bz* for all z € A and

p € C. Therefore we can always find an invertible skew-hermitian element in Z(A).

Let H be a real (resp. complex) Hilbert space with dimgH > 1 (resp. dimcH > 1).
Let B(H) stand for the algebra of all bounded linear operators on the Hilbert space
H and let A be a standard operator algebra on H, i.e., A is a subalgebra of B(H)
containing the subalgebra of all bounded finite rank operators (see [31]). Then B(H)
can be endowed with a canonical involution, say *. It is known that A is a prime algebra
with nonzero socle. Moreover, Q,s(A) = Qums(B(H)) = B(H) (see [10, Theorem 1.3]).

In 1990, Semrl proved the following (see [28, Theorem 2.3]).

Theorem 3.2. Let H be a real Hilbert space with dimg H > 1. Let D: B(H) — B(H) be
a Jordan x-derivation. Then there exists a unique T’ € B(H) such that D(S) = ST—-TS5*

for all S € B(H), i.e., D is inner.
In 1994, Semrl showed the following (see [31]).

Theorem 3.3. Let H be a complexr Hilbert space with dimcH > 1 and let A be a
standard operator algebra on H. Suppose that J: A — B(H) is a Jordan *-derivation.
Then there exists a unique T € B(H) such that J(A) = AT —TA* for all A € A, i.e.,
J is X-inner.

20

doi:10.6342/NTU202304234



In 2013, Chuang et al. extended Semrl’s theorems above as follows (see [10, Theorem

1.2)).

Theorem 3.4. Let R be a prime ring, which is not a division ring. Let T be an anti-
automorphism of R and let §: R — Qs(R) be a Jordan T-derivation. If charR # 2 and

the socle of R is nonzero, then § is X-inner.

Moreover, Lee et al. completely determined the structure of Jordan x-derivations

of prime rings (see [11], [17], and [18]). To be precise, we state its conclusion.

Theorem 3.5. ([18, Theorem 1.2]) Let R be a prime ring with involution *, which is
not commutative. Then any Jordan x-derivation of R is X-inner except when charR = 2

and dimc RC = 4.

They also gave an example of non X-inner Jordan x-derivations when charR = 2
and dimgc RC' = 4 (see [18, Example 3.2]). For the general anti-automorphism case,

Lee and the author [20] proved the following results.

Theorem 3.6. ([20, Theorem 2.1]) Let R be a prime ring with an anti-automorphism
7. Suppose that R is not a GPI-ring. Then any Jordan T-derivation §: R — Qus(R)

is X-inner.

Theorem 3.7. ([20, Theorem 2.8]) Let D be a division ring, which is not commutative,
with center C' and let 7 be an anti-automorphism of D. Then any Jordan T-derivation
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0: D — D is X-inner except when charD = 2 and dimcD = 4.

Theorem 3.8. ([20, Theorem 2.9]) Let R be a prime Pl-ring, which is not commutative,
and let T be an anti-automorphism of R. Then any Jordan T-derivation 6: R — RC'" is

X-inner except when charR = 2 and dimgRC' = 4.

By the above theorems, any Jordan 7-derivation of R is X-inner if either R is not
a GPI-ring or R is a Pl-ring except when charR = 2 and dimgRC = 4. In order to

completely characterize Jordan 7-derivations of R, they raised the following question.

Question A. Let R be a prime GPIl-ring, which is not commutative, with an anti-
automorphism 7. Suppose that neither R is a Pl-ring nor R is a division ring. Is any

Jordan 7-derivation of R X-inner?

We remark that, by Theorem 2.1, if R is both a prime GPI-ring and a division
ring, then it is a PI-ring and Question A is solved by Theorem 3.8 in this case. Hence

Question A is reduced to the case that R is a prime GPI-ring but is not a Pl-ring.

3.2 Results

Let R be a prime ring with an anti-automorphism 7. Recall that 7 can be uniquely
extended to an anti-automorphism of Qs(R) and that 7 is said to be of the first kind
if 57 = g for all § € C'. Otherwise, T is said to be of the second kind. In order to deal
with the second kind case, we need the following.
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Lemma 3.9. ([20, Lemma 2.7]) Suppose that 57 # [ for some § € Z(R). Then any

Jordan T-derivation §: R — Qums(R) is X-inner. In fact, 6(x) = ax™ —za for allx € R,

where a = (7 — B)715(B).
By applying Lemma 3.9, we get the following result.

Theorem 3.10. Let R be a noncommutative prime PI-ring with an anti-automorphism

7. If T is of the second kind, then any Jordan T-derivation 0: R — Q.s(R) is X-inner.

Proof. Since R is a prime Pl-ring, it follows from Theorem 2.2 that Z(R) # 0 and C'is
the quotient field of Z(R). Thus there exists 5 € Z(R) such that 57 # [ because 7 is

of the second kind. By Lemma 3.9,  is X-inner, as desired. O

We remark that the lemma below holds for an arbitrary ring R (see [17, Lemma

2.3]).

Lemma 3.11. Let B: Rx R — A be a bi-additive map and let f,g: R — A be additive
maps, where A is an additive group. Suppose that B(x,y) = f(zy) + g(yz) for all

x,y € R. Then

B(zw,yz) — B(x,wyz) = B(zzw,y) — B(zz, wy)

for allw,z,y,z € R.
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Now we can give an affirmative answer to Question A when 7 is of the second kind.

Theorem 3.12. Let R be a noncommutative prime ring with an anti-automorphism 7.

If T is of the second kind, then any Jordan T-derivation of R is X-inner.

Proof. According to Theorem 3.10, we can assume that R is not a Pl-ring. Let 6: R —
Qms(R) be a Jordan 7-derivation. Define the bi-additive map B: R X R — Q.,s(R) by

B(z,y) = 0(zy + yzx) for z,y € R. Tt follows from Lemma 3.11 that
B(zw, yz) — B(z, wyz) = B(zaw,y) — B(zz, wy)
for all z,y, z,w € R. So, by (8), we have

<§(yz)w7 — 5(wyz)>m7 + (5(mw)zT - (5(zxw))yT
+ (5(wy)xT - 5(y)w7x7) 2T+ <5(zx)yT - 5(x)zTyT)wT
+x (wé(yz) — 5(wyz)) + y(zé(xw) — (5(21:10))

+z (xé(wy) — xwd(y)) + w(y&(zx) — yzé(x)) =0

for all x,y,z,w € R. According to Corollary 2.7, there exist a nonzero ideal I; of R
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and bi-additive maps 713, 793, 743: 17 — Qmu(R) such that

2 ((wy) = wd(y)) = —risly, w)a” = rag(w, W)y ragl,y)uT
for all z,y,w € I . Again, there are additive maps p,q: Iy — Q. (R) so that

T

S(wy) —wd(y) = —p(y)w” — q(w)y

for all y,w € Iy, where I, is a nonzero ideal of R contained in I;. Let x,y,t € I,. We

have

§(zy) = 20(y) — p(y)x™ — q(x)y” (9)

Replacing z by tz in (9), we obtain
d(tzy) = tzd(y) — p(y)a™t" — q(tz)y’.

Left-multiplying (9) by ¢, we get td(xy) = txd(y) — tp(y)x™ — tq(z)y™. Thus,

o(twy) — té(xy) = (tQ(:v) - Q(tflf)>yT —p(y)a™t" +tp(y)a™.
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Replacing z,y by t, xy respectively in (9), we have
(tzy) — to(zy) = —p(ay)t” — q()y 2"
Comparing the two equalities above, we see that
(tq(l‘) - C](”))?f + (p(fvy) - p(y)f)f + (tp(y) + Q(t)?f)f =0

for all z,y,t € I,. By Lemma 2.8,

T

tq(x) = q(tx), p(zy) = p(y)z”, and tp(y) = —q(t)y

for all x,y,t € I3, where I3 is a nonzero ideal of R contained in I. According to [16,

Lemma 2.1], there is a € Q,,;(R) such that ¢(x) = za for x € I3. So

for t,y € I3, i.e., I3 (p(y) + ayT) = 0 for all y € I3. Thus, p(y) = —ay™ and it follows
from (9) that

o(zy) — x6(y) = ay"2” — zay”
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for z,y € Is. Let 6: I3 — Qmi(R) be defined by S(x) = ax™ — xa for all ¥ € I3. Then

d(zy) = ayx™ — xya and

(6 = 0)(zy) = way” — zya — x6(y) = (6 — 0)(y),

for z,y € I5. So there exists ¢ € Qm(R) such that (§ — &)(z) = zc for all z € I3 (see
[16, Lemma 2.1]). Define J := § — 8, a Jordan 7-derivation of I5. Thus, z2¢ = J(z2) =
xvJ(z) + J(x)x" = 2%c + wcx™ for all z € I3; that is, xca™ = 0 for all x € I3. By [10,
Lemma 2.2], ¢ = 0 follows, i.e., 6 = & on I3. Therefore, d(z) = ax™ — xa for x € I3. By
[20, Lemma 2.6, a € Qus(R). Finally, we will show that ¢ is X-inner. Let x € I3 and
y € R. Then

dzy +yx) = ay"z" + ax"y" — xya — yzxa

and

S(zy +yx) = 0(x)y” +yo(x) 4+ 6(y)z™ + z(y)

= ax"y" —xzay” +yaxr” — yra+ 0(y)x” + xd(y).
Comparing these equations, we have

(5(y) — (ay” — ya))f + w(5(y) — (ay” — ya)) =0
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forallz € I3 and y € R. Fix y € R and set ¢ := §(y) — (ay™ — ya). Then, for z, z € I3,

x2q = —q(x2)" = —qz"x" = zqz" = —zxaq

and so (xz+zx)q = 0 for all z, z € I3. This implies (zz+z2x)qg = 0 for all z, z € Q. (R).
If charR # 2, let z = 1 and so 2xq = 0 for all z € Q,;;(R) implying ¢ = 0. If charR = 2,
then [Qmu(R), Qmi(R)]qg = 0 forcing ¢ = 0. Hence 0(y) = ay”™ — ya for all y € R, as

desired. ]

We next consider the case that 7 is of the first kind. By an X-inner automorphism
we mean an automorphism of the form z — uzu™' for all x € R, where u € Q4(R).
Kharchenko proved that, given an automorphism o of a prime GPIl-ring, if ¢ is of
the first kind, then it is X-inner (see [14, Proof of Proposition 2]). By Kharchenko’s

2

theorem, 7¢ is X-inner when R is a prime GPI-ring and 7 is of the first kind. The

complexity of the question we will study depends on that of 72.

Definition 3.13. Let R be a prime GPI-ring with an automorphism o of the first
kind. Then there exists u € Q,(R) such that x° = uxu™" for all x € R. We say that
dego = m if u is algebraic of minimal degree m over C. Moreover, dego = oo if u is

not algebraic over C.

Clearly, deg o is independent of the element u we choose. Also, if deg 72 = 1, then
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7 is an involution and Question A has been solved by Theorem 3.5. The following is

the second main theorem and we will prove it in the next section.

Theorem 3.14. Let R be a prime GPI-ring with charR # 2 and with 7 an anti-
automorphism of the first kind. If degt?® # 2, then any Jordan T-derivation of R is

X-inner.

We remark that the case of deg 72 = 2 keeps unknown.

3.3 The first kind case

The goal of this section is to prove Theorem 3.14. Let R be a prime GPI-ring with an
anti-automorphism 7 of the first kind. Let u € Q4(R) be fixed such that ™ = uzu!

for all z € R.
Lemma 3.15. v"u =uu™ € C.

Proof. Let x € R. Then

Wur =u'zT u=(27u)u=(u(z”) ) u=zu"u.

Hence v u = uwu™ € C. O

Now, by Lemma 3.15, we fix 8 := v"u = uu” € C' and so u” = Bu~'. Since R is a
prime GPI-ring, RC is a primitive ring with nonzero socle and so @,,s(RC) = Qs(RC).
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In view of Theorem 3.4, the aim of this section is to extend ¢ to a Jordan 7T-derivation

of RC when charR # 2. The following result plays a key role.

Lemma 3.16. Let f: R — Q. (R) be an additive map such that

cf(y) + f(y)a™ = yf(x) + flx)y" (10)

for all x,y € R. If deg7?® > 2, then f = 0.
Note that this result is better than [22, Lemma 3.2].

Proof. Choose a nonzero ideal such that ul; C R. Then, by replacing x with ux in
(10),

urf(y)u+ Bf(y)a” = yf(uz)u+ flur)yu

for x € I; and y € R. Also, by (10),

wrf(y)u+uf(y)rTu = uy f(r)u + uf(r)y u.

Comparing the two equations, we have

BFW = uf(y)u = yfua)u — uyf @)+ (fuz) —uf(@))yv (A1)
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for z € I and y € R. Replacing y by uy in (11),

BF(uy)a” — uf (uy)eu = uyf (ur)u — uyf (wyu+ B f (ur) — uf() )y
for z,y € I;. Also, by (11),

uBf(y)e” =t f(y)e u = uyf (uz)u — ulyf @)+ u( f(uz) = uf (2))y

Comparing the two equations, we have

5<f(uy) — uf(y)>x7 _ u(f(uy) _ uﬂy))xTU
- ﬂ(f(ux) — uf(x)>y7 _ u<f(ux) _ uf(m))gfu

for all x,y € I;. By Theorem 2.4, f(uy) = uf(y) for all y € I;. So (11) becomes
Bf(y)a" —uf(y)z"u = yuf (x)u — uy f(z)u (12)

for all z,y € I;. Choose a nonzero ideal I; of R contained in I; such that uls C I.

Replacing = by uzx in (12), we have

B fy)a” — Buf(y)aTu = yu’ f(v)u* — uyuf(x)u®
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for all z,y € I5. On the other hand, (12) implies

FIW)a = Buf()amu = 8(yuf (@) — uyf (@)u)

for all =,y € I,. Comparing the two equations, we have

y(ﬁuf(a:) — u2f(x)u> + uy (uf(x)u - ﬂf@)) =0

for all z,y € I5. Similarly, uf(x)u = g f(x) for all z € I. Thus (12) becomes

Bfy)a" —uf(y)x"u = Pyf(z) — uyf(z)u (13)

for all =,y € I,. Choose a nonzero ideal I3 of R contained in I, such that Isu C Is.

Replacing y by yu in (13),

Bfyu)a” — uf(yu)zu
= Pyuf(x) —uyuf(z)u
= Byf(x)u™ - Buyf(z)
= f (ﬂyf (z) —uyf (;c)u) u”
= B f(y)aTut = Buf(y)a”
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for all z,y € I35. So we get

B F(w)a” — (Buf () + 8 F(yu) )omu+ uf (yu)a™u? = 0

for all x,y € I3. By Theorem 2.4, f(y) = 0 for all y € I3. Thus it follows from (10)

that

yf(@) + fx)y" =2f(y) + f(y)a" =0
for all z € R and y € I3. By applying the same argument as the last part of the proof
of Theorem 3.12, we have f = 0, as desired. [

Remark 3.17. In Lemma 3.16, the case for deg 72 = 1 had been solved by Beidar and

Martindale [3]. However, the solution of (10) is still unknown when deg 72 = 2.

Lemma 3.18. Suppose deg7? > 2. Let o € C and I be a nonzero ideal of R such that

al CR. Then 6(ax) = ad(x) for all x € 1.

Proof. Let x,y € I. Then

((ax)y +y(ax)) = d(ax)y” +yd(az) + ad(y)x” + axd(y)

33

doi:10.6342/NTU202304234



and
o(z(ay) + (ay)x) = ad(x)y” + ayd(z) + d(ay)z” + x6(ay).
Comparing the two equations, we have

(5(ay) — ozé(y))f + x(é(ay) - a5(y)> = (5(@:17) — oz5(:13)>y7 + y(é(aw) — oz5(m)>.

By Lemma 3.16, d(ax) = ad(z) for all x € . O

Lemma 3.19. Suppose degt? > 2. Then every Jordan T-derivation 6 of R can be

extended to a Jordan T-derivation of RC'.

Proof. Choose a subset {w;}ice of R which is a basis of RC' over C, where ¢ is a
nonempty well-ordered set. Then any element of RC' can be written as the form
Y ico Qiw;, where o; = 0 for all but finitely many ¢ € ®. Recall that Q, (R) =

Qums(RC). Define 6: RC' — Quns(RC) by

g( Z &iwi> = Z ;0 (w;).

ied ied

Then it is clearly a well-defined additive map since {w;};ce forms a basis of RC' over

C. We claim that |z = 6. Let € R. Write z = Y ico ®iw;. By Lemma 3.18, there is
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a nonzero ideal I of R such that a;I C R and 6(ayy) = o;0(y) for all i € ® and y € I.

Let y € I. Then

Say +yr) = 3 6((ow)ws +wilay))

e

= Z o(aiy)wi + 6(wi)aiy” + wid(auy) + ayd(w;)
i€

= ()" +ad(y) + Y (aid(wy)y” + cuyd(w;)).

1€d

Comparing this with (8), we have

(o)~ St (3o~ ) =0

1€d 1ed

for all y € I. By applying the same argument as the last part of the proof of Theorem

3.12, we have 0(x) = ), 4 @;0(w;) = §(x) and so the claim holds.

Finally we show that 5 is a Jordan 7-derivation. Let 7 = Zi@ a;w; € RC. For
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cach 4,7 € ®, write wyw; = ), 4 v,ijwk € R, where 7,? € C. Then

5(z?) = E(Zaiozjwiwj>
2¥]
= (D aies 3o aiw)
2¥]

ke®
_ ij
= E OéiOéjE %5(1019)
] ked

= > wayo(waw;)

IR

_ z]: ad(wi) + Y oo (wiw; + wiw;)
- ia?(wﬁ(zui)?é(wi)wz)

J:Z a0y <5(wi)w; +w;d(w;) + 0 (wy)wi + wié(wj))

i<j

= xd(x) + o(z)x".

Hence the proof of Lemma 3.19 is complete. [
Applying Lemma 3.19, we are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. In view of Theorem 3.8, we can assume that R is not a PI-
ring. By Theorem 3.5, we also assume that deg7? > 2. Recall that if R is a prime
GPI-ring and RC' is a division ring, then R is a Pl-ring. So RC' is not a division ring.

Let 6: R — Qums(R) be a Jordan 7-derivation of R. Since the socle of RC' is nonzero,
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Qms(RC) = Qs(RC). By Lemma 3.19, 6 can be extended to a Jordan 7-derivation
§: RC — Q,(RC) of RC. According to Theorem 3.4, there exists a € Q4(RC) such
that 0(z) = az™ — za for z € RC. In particular, (z) = az™ — za for all © € R.

As a consequence of [2, Proposition 2.1.10], Qus(R) = Qms(RC) = Qs(RC) and so

a € Qms(R). Hence § is X-inner, as desired. O
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4 Weak Jordan derivations

4.1 Motivation

Let R be a prime ring with extended centroid C'. An additive map d: R — Quu(R)
is called a derivation if d(xy) = d(z)y + xd(y) for all z,y € R and is called a Jordan
derivation (resp. Lie derivation) if d(z?) = d(z)z +zd(z) for all z € R (resp. d([z,y]) =
[d(z),y]+[x,d(y)] for all z,y € R), where [a, ] := ab—ba for a,b € Q,u(R). Clearly, any
derivation is a Jordan derivation but a Jordan derivation is not in general a derivation.

In 1957, Herstein proved the following theorem.

Theorem 4.1. ([12, Theorem 3.1]) Let R be a prime ring with char R # 2. Then every

Jordan derivation of R is a derivation.

We remark that though a Jordan derivation defined in [12] maps R to itself, the
same proof is also valid for our definition. In 2014, Lee and the author completely

described Jordan derivations of a prime ring R with char R = 2 as follows.

Theorem 4.2. ([19, Theorem 2.2]) Let R be a prime ring with char R = 2. An additive
map §: R — Qun(R) is a Jordan derivation if and only if there exist a derivation
d: R — Qu(R) and an additive map p: R — C such that 6 = d+ p and p(z?) =0 for

all x € R.
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They also gave an example to show the existence of a Jordan derivation, which
is not a derivation, on R when char R = 2 (see [19, The remark below Corollary
2.4]). Therefore the structure of Jordan derivations of prime rings has been completely

determined.

As a generalization of Jordan derivations (resp. Lie derivations), an additive map
§: R — Qu(R) is called a weak Jordan derivation (resp. weak Lie derivation) if §(z?)—
zd(x)—0(z)x € Cforall x € R (resp. §([x,y])—[0(z),y]—[z,0(y)] € C forall z,y € R).
In order to characterize additive maps d: R — R satisfying [d(2?)—xzd(x)—d(x)z,x] = 0
for all z € R (see [5, Theorem 4]), Bresar proved the following result.
Theorem 4.3. ([5, pp. 541-542]) Let R be a prime ring of characteristic different from

2 and 3. Suppose that 6: R — RC + C' is a weak Jordan derivation. If dimcgRC > 4,

then 6 s a derivation.

Also, in [8, Remark 6.8], Bresar et al. studied weak Lie derivations. In particular,

they characterized weak Lie derivations of R when dimcRC > 9 as follows.

Theorem 4.4. Let R be a prime ring with dimcRC > 9. If 6: R — Qu(R) is a
weak Lie derivation, then there exist a derivation d: R — Quu(R) and an additive map

v: R— C such that d =d + v.

We remark that every weak Jordan derivation of R is a weak Lie derivation when
char R = 2. The aim of the chapter is to determine the structure of weak Jordan
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derivations of R. On the other hand, weak Jordan derivations of prime rings occur

canonically when one studies Jordan derivations of semiprime rings.

4.2 Results

Let R be a prime ring with extended centroid C'. We give a complete characterization

of weak Jordan derivations of prime rings. The following is the first result.

Theorem 4.5. Let R be a prime ring with dimcRC' > 4, and let 6: R — Q,u(R) be a
weak Jordan derivation.

(i) If char R # 2, then 0 is a derivation.

(i) If char R = 2, then 0 = d + v, where d: R — Quu(R) is a derivation and

v: R — C is an additive map.

To state the second result, we will fix some notations. Suppose dimgRC = n? < 0.
It follows from Theorem 2.2 that RC'is a finite-dimensional central simple algebra over
C'and C' is the quotient field of Z(R). In this case, we have @,y (R) = RC. By the well-
known Wedderburn-Artin theorem, RC' = M,,(A) for some division ring A and m < n.
Let F be a separable maximal subfield of A. Then RC ®¢ F = M,,(F') and we regard
RC' as a C-subalgebra of M,,(F'). Denote I,, for the identity matrix in M, (F'). Notice
that, if RC' is not a division ring and dimgRC = 4, then F' = C' and RC' = My(C).
Also, if RC' = A is a division ring with dimg RC' = 4, then F' is a Galois extension over
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C. We are now ready to state the second result.

Theorem 4.6. Let R be a prime ring with dimcRC' =4, and let 6: R — Quu(R) be a
weak Jordan derivation.

(i) If char R # 2, then
§(z) =d(x) + [a,z] + L(z) + ((z)

forallx € R, where d: R — RC' is a derivation, a € My(F') and L,(: My(F) — My (F)

are F-linear maps. Moreover, there exist 5; € F', 1 <1 <6, such that

0 Baa1
L(z) =

Bsx12 + Bexa1 0

and

1 0
((x) = <51($11 — %92) + Paz12 + 53@1)
0 —1

for all x = (z;5) € Ma(F). In this case, 0 is a derivation if and only if all 5; = 0.

(i) If char R = 2, then

0(x) = d(x) + v(z) + [a, 2] + L(z) + ((x)
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for all x € R, where d: R — RC' s a derivation, v: R — C is an additive map,
a € Mo(F), and L,(: Ma(F) — Ma(F) are F-linear maps. Moreover, there ezist

B; € F, 1<1i<6, such that
0 54$21
Bsx12 + Bexa1 0

and

((r) = (51(9511 + x22) + Powr2 + 531’21)[2

for all x = (z;5) € Ma(F).
Conversely, an additive map 0: R — Quu(R) satisfying (i) or (i) is a weak Jordan

derivation.

Remark 4.7. The additive maps L and ¢ in Theorem 4.6 are weak Jordan derivations.

In fact, they satisfy

L(a?) — aL(z) — L(x)e = — (Biad, + By + Bowipwm ) L

and

((2?) — x((x) = ((z)r = — <51($11 — T) + for1a + 53@1) (ZE11 - €U22)]2
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for all x = (x;;) € Ma(F'). By substituting some appropriate x;;, we will see that L
(resp. () is a Jordan derivation if and only if L = 0 (resp. ¢ = 0). Indeed, if L is a
Jordan derivation, then

Bax® + Bsy® + Bexy =0

for all x,y € F. Substituting (z,y) by (1,0), (0,1), and (1, 1), we get 84 = 85 = s = 0.

Suppose next that ¢ is a Jordan derivation. Then

(Bl(x —y) + Poz + 53w> (z—y)=0

for all xz,y,z,w € F. Substituting (z,y, z,w) by (1,0,0,0), (1,0,1,0), and (1,0,0,1),

we get 1 = [Py = B3 = 0, as asserted.

A map q: R — RC + C is called a trace of a biadditive map if there is a biadditive
map B: R x R — RC + C such that ¢(z) = B(x,z) for all # € R. Bresar and Semrl
characterized commuting traces of biadditive maps when char R # 2 (see [5, Theorem

1] and [7, Theorem 3.1]). The following is the conclusion.

Theorem 4.8. Let R be a prime ring with char R # 2 and q: R — RC + C be a trace

of a biadditive map such that [q(x),x] = 0 for all x € R. Then there exist A € C, an
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additive map p: R — C, and a trace of a biadditive map v: R — C such that

a(x) = Ao + pla)e + v(a)

for all x € R. Moreover, in case dimcRC = 4 one may take \ = 0.

As an application of Theorem 4.5 and Theorem 4.6, the following generalizes Bresar’s

theorem [5, Theorem 4].

Theorem 4.9. Let R be a prime ring with char R # 2, and let 6: R — RC + C be an
additive map satisfying

[6(z®) — 26(z) — §(z)z, 2] =0

for all x € R.

(i) If dimcRC > 4, then

0(x) = yx +d(z) + p(x)

for all x € R, where v € C, d: R — RC + C is a derivation, and pn: R — C is an

additive map.
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(ii) If dimcRC =4, then

0(x) = d(x) + p(x) + [a, 2] + L(x) + ()

for all € R, where d: R — RC' is a derivation, u: R — C is an additive map,

a € My(F), and L,(: My(F) — My(F) are as in Theorem 4.6 (i).

Proof. We will follow the proof of [5, Theorem 4] and apply Theorem 4.5 and Theorem
4.6. Let ¢: R — RC +C be the map defined by q(x) = 6(2?) —26(x) — §(x)x for z € R.
Then ¢ is a trace of a biadditive map. According to Theorem 4.8, there exist \ € C,

an additive map fi: R — C, and a trace of a biadditive map v: R — C such that

§(2?) — 26(z) — §(x)r = \o® + fi(z)z + ()

for all x € R. Note that we may take A = 0 if dimgRC' = 4. Define an additive map

D: R— RC+ C by

D(xz) =6(z) + \x + =f(z), =z € R.
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We claim that D is a weak Jordan derivation. Indeed, let x € R. Then

D(a?) = (%) +\a? + ie?)

= 26(z) + 6(x)x + 202* + fi(z)x + D(z) + %u(ﬁ)

and 2D (z) + D(z)z = z6(z) + d(x)x + 2Ax? + ji(z)z. Thus

and hence D is a weak Jordan derivation.
If dimgRC' > 4, then it follows from Theorem 4.5 (i) that D is a derivation, and

hence

where v = —\, d = D, and p(z) = —1f(z).
Suppose that dimgRC' = 4. Then RC' + C' = RC and, by Theorem 4.6 (i), D is of
the form

D(x) = d(x) + [a, 2] + L(z) + ((2),

where d: R — RC is a derivation, a € My(F), and L,(: Ma(F) — My(F) are as in
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Theorem 4.6 (i). Hence

0(x) = d(x) + p(x) + [a, 2] + L(z) + ((2),

where p(z) = —1i(x). O

4.3 Proofs of Theorem 4.5 and 4.6

Let R be a prime ring and let §: R — Q,,(R) be a weak Jordan derivation. Thus,

p(x) == 6(x?) — 26(x) — 6(z)x € C (14)

for all z € R. Linearizing it, we get

Mz, y) = 0(xy +yz) — 26(y) — ydé(z) — 6(x)y — d(y)r € C (15)

for all z,y € R.

Proposition 4.10. Let 6: R — Quu(R) be a weak Jordan derivation.
(i) If char R # 2 and dim¢cRC' > 16, then § is a derivation.
(ii) If char R = 2 and dimgRC > 9, then 6 = d + v, where d: R — Quu(R) is a

derivation and v: R — C' is an additive map.
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Proof. We first prove (ii). Since char R = 2, a weak Jordan derivation is also a weak
Lie derivation by (15). Therefore (ii) follows from Theorem 4.4.

We turn to the proof of (i). Suppose that char R # 2 and dimc RC' > 16. We claim
that there exist additive maps p,q: R — Q,(R) and a bi-additive map ¢: B> — C

such that

d(zy) — o(x)y = zp(y) + yq(z) + ¢(x,y) (16)

for all z,y € R. Let B(z,y) := §(xy + yx). By Lemma 3.11,

B(azw, yz) — Bz, wyz) = B(zaw,y) — B(zz, wy)

for all z,y, z,w € R. It follows from (15) that

(O(wy)z — 6(wyz))x + (0(z2z)w — d(zzw))y
+0(zw)y — d(x)wy)z + (9(yz)z — o(y)zz)w
+r(wé(yz) — 6(wyz)) + y(20(xw) — 6(zzw))
+z(xd(wy) — zwi(y)) + w(yd(zz) — yzd(z)) € C

for all 2, y, z,w € R. According to Theorem 2.5, there are bi-additive maps p, ¢, 5: R?> —
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Qmi(R) and a 3-additive map 7: R*> — C such that

for all z,y,w € R. By Theorem 2.5 again, there exist additive maps p,q: R — Q,u(R)

and a bi-additive map ¢: R? — C such that

d(zw) — d(x)w = zp(w) + wq(z) + ¢(z, w)

for all z,w € R. Hence (16) holds.

Next, let z,y,z € R. By (16), we have

8(z(yz)) — 6(x)yz = ap(y2) + yzq(x) + o(z,y2),

§((zy)z) — 6(zy)z = zyp(2) + zq(zy) + ¢ (zy, 2).

Thus,

(0(zy) = 0(x)y)z — x(p(y2) — yp(2)) — yzq(x) + 2q(xy) € C.
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So, by Theorem 2.5, there is an additive map d: R — Q,u(R) such that

p(yz) —yp(z) = d(y)=.

By (17) again,

p(zyz) — ap(yz) = d(x)yz,

p(ryz) — zyp(z) = d(zy)z.

Thus,

—zd(y)z = 2(yp(z) — p(yz)) = (d(x)y — d(zy))z

and so

(d(zy) — d(z)y — xd(y))z = 0.

This proves that d is a derivation. So, by (17),

(p—d)(yz) = y(p — d)(2).

By [16, Lemma 2.1], there exists a € @Q,;;(R) such that d(z) = p(x) — za for all x € R.
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So

d(zy) — d(x)y

zd(y) = zp(y) — zya.

Compare it with (16) and let & = § — d, and then we have

d(zy) — d(x)y — xya — yq(z) € C. (18)

It follows from (18) that

d(zyz) — 6(x)yz — xyza — yzq(z) € C,

dzyz) — 6(xy)z — zyza — zq(zy) € C.

Thus,

(6(zy) — d(2)y)z — yzq(x) + zq(zy) € C.

By Theorem 2.5, there is an additive map A: R — Q,u(R) such that
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and so q(z) € C for all z € R. Let Q = 8 + ¢. Then, by (18), we get

Q(ry) — Q(x)y — wya € C. (19)

Let x,y,2 € R. Then, by (19),

Q(ryz) — Q(v)yz — vyza € C,

Q(ryz) — Q(zy)z — xyza € C.

So (Q(zy) — Q(z)y)z € C. Since R is not commutative, we see that Q(zy) — Q(x)y =0
for all z,y € R. It follows from this and (19) that a = 0, p = d and so p is a derivation.

Furthermore, since () = 6 — d + ¢, we have

—2Q(z) = Q(2°) — Q(z)r — 2Q(x) = u(x) + q(2”) — 2q(x)x

and so

2(Q(z) - 2q(x)) € C.

Thus, Q(z) = 2¢(x) € C for all x € R, and hence § = d + v, where d: R — Q,u(R) is
a derivation and v = ¢: R — C is an additive map. Since char R # 2, v(x)z € C for

all z € R and thus v = 0, as desired. O
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According to Proposition 4.10, we may assume that R is either char R # 2 with
dimgRC' < 16 or char R = 2 with dimgRC < 9. In either case, Z(R) is nonzero by
Theorem 2.2. We next claim that 6 can be assumed to be Z(R)-linear and 6 = 0 on

Z(R).

Lemma 4.11. Assume that dimcRC < oo. Let 6: R — RC' be a weak Jordan deriva-
tion.

(i) If char R # 2, then there is a derivation d: R — RC' such that §—d is Z(R)-linear
and § =d on Z(R).

(ii) If char R = 2, then there exist a derivation d: R — RC' and an additive map

v: R — C such that 6 +d+ v is Z(R)-linear and § + d+v =0 on Z(R).

Proof. (i) Assume that char R # 2. Let 3,y € Z(R) and « € R. Then, by (15),

20((By)x) = 267v6(x) + 0(By)x 4+ 26(By) + A(B, x),

and

20(B(yx)) = 2B6(vz) +0(B)yx +y2d(B) + A(B, vx)
= B(2y0(z) +6(v)x + x6(7) + A7y, 7)) + 0(B)yx +v25(8) + A(B,7vx)

= 28v6(x) + (Bo(7) + 6(B)y)x 4+ x(B(y) +6(B)7) + BA(Y, x) + A(B, 7).
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Comparing the two equations, we have

(0(87) = Bo(v) = 6(B)v)x + 2(6(By) — Bo(v) = 6(B)v) € C.

Thus, (87y) = B(7) +(8)y and so 6|zry: Z(R) — RC is a derivation. Next we claim

that 0(Z(R)) CC. Let 0 # € Z(R) and = € R. Then

20(B%2%) = 28%0(a*) + 2%0(8%) + 6(6%)2” + N(5°, 2°)

= 26%(xd(x) + 8(2)x + p(w)) + 28(x*6(8) + 6(B)a?) + A(5%, 2),

and

26((B=)*) = 2Bwd(Bx) + 20(Bx)Bx + 2u(Bx)
= [x(200(z) + 20(B) + 6(B)x + A(B, x))
+(286(2) + 26(8) + 6(B)x + A(f, x)) B + 2pu(Bx)
= 20%(xd() + d(x)x) + B(20(5%) + 6(8)?)

+28x6(8)x + 28N (6, z)x + 2u(Sx).
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Comparing the two equations, we get

zB(zd(B) — 6(B)x — A(B,x)) + B(xd(B) — d(B)x — A(B,2))x € C
and so
2(6(8) — 3(8) — M8, ) + (20(8) — 8(B)z — A(B,x))w € C

for all x € R. This means

[23(8) = 0(B)x — A(B,2),2] = 0

for all x € R. Note that the proof of [6, Theorem 1] is also valid when we replace
f:R— Rby f: R— RC. Thus, there exist « € C' and an additive map &: R — C
such that z0(8) —6(B)x — A(B,z) = ax +&(x). So x(d(8) —a) —d(B)z € C and hence
d(B) € C. This proves the claim. Since C is the quotient field of Z(R), d|z(r) can
be extended to a derivation from C to C'. According to [13, Theorem 6] (also see [27,
Theorem 4.1] and [1]), it can also be extended to a derivation d: RC — RC. Thus,

(0 —d)(Z(R))=0. Let J:=d—d,0+# g € Z(R), and x € R. Then by (15) we have

J(Be) = BI(x) + SA(B ).
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Thus,

2J(8%2?) = 2% J(2?) + \(B?, 2?),
and
2J((p2)?) = 2BrJ(fx) + J(Bx)b + p(Br))

= 25w(BI(@) + 5M6.2)) +2(8I(@) + SAB,2) )b + 2u(51)

= 26%(xJ(x) + J(2)x) + 28M\(B, x)x + 2u(Ba).

Comparing the two equations, we have 26A(f,z)x € C and so A(5,x) = 0. Therefore
(i) has been proved.

(ii) Assume that char R = 2. Let 0 # 8 € Z(R). Then, by (15), we have [0(5),z] €
C for all x € R. Thus, §(Z(R)) C C. Also, by letting y = Sz in (15), we get
[0(Bz) + Bd(x),xz] € C for all z € R. According to [15, Theorem 2|, there exist

d: Z(R) — C and ¥: Z(R) x R — C such that

0(Bx) = po(x) + d(B)x + ¥ (f, ) (20)

for all z € R and 8 € Z(R). We will show that d: Z(R) — C is a derivation. Let

56

doi:10.6342/NTU202304234



B,7 € Z(R) and z € R. Then

d((By)z) + Bvyo(z) + d(By)x € C,
6(B(yx)) + Bé(vx) +d(B)yr € C,

Bé(yx) + Bv6(x) + Bd(v)z € C.

Considering the sum of the above three equations, we have

(d(Bv) + Bd(y) + d(B)y)z € C

for 8,7 € Z(R) and x € R. This implies that d(87y) = Bd(v)+d(B)y for all 3,y € Z(R),
that is, d is a derivation. Since C' is the quotient field of Z(R), d can be uniquely
extended to a derivation from C to itself. By [13, Theorem 6], it can be extended to a

derivation from RC' to itself, say the same d. Let J := ¢ + d. Then, by (20), we have

J(Bx) + BJ(x) € C,

J(Z(R)) € Z(R),

and

J(2?) + [z, J(z)] € C,
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for p € Z(R) and z € R. Choose a C-subspace V of RC such that RC =V & C as
vector spaces over C. Let m;: RC' — V and my: RC' — C be the induced projections.

Let j::moJandy::moJ. Then J = 6 + d + v and

J(Bx) = BJ(x),

and

J(2?) + [z, J(z)] € C,

for 6 € Z(R) and = € R, as desired. Hence (ii) is proved. O

Now we assume that ¢ is Z(R)-linear and §(Z(R)) = 0. Since C is the quotient field
of Z(R), the map ¢ can be uniquely extended to a map from RC' into itself (denoted

by 4 also) satisfying

for all z € RC and ¢ € C. Since 6: RC — RC'is C-linear, by the universal property

of tensor product, there is a unique additive map ¢ from RC ®¢ F into itself which
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maps £ ® 5 to d(z) ® p for all x € RC and § € F. Since RC ®@¢ F = M, (F') where
= /dimgRC > 1, we can view § as a map from M, (F) to M,(F). By a direct

calculation, we have

for all z € M,,(F) and ¢ € F. Now we will determine the map 6. Let eij’s, 1 <i,j <n,
be the standard matrix units of M,,(F). It suffices to determine d(e;;) for all 4, j because

0 is F-linear. For convenience, we set

d(eiy) = akl : E :@kzekl

k,l=1

Lemma 4.12. Let F be a field with char F # 2 and 0: My(F) — My(F) be an F-linear

weak Jordan derivation such that 6(F) = 0. Then § is an inner derivation.

Proof. We will compute az by the following steps.
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Step 1. Calculate (14) for z = e, i = 1, ..., 4. For & = ey,

implies

and

So

3(621) - 6113(611) — g<€11)€11 =

g =@

11 11 11
0 Qgp Qo3 Qigy

el

11 11 11
0 Qg O3z O3y

Qyo Oyz Oy

11 11 11 11
Qgg = Qigzg = Oy = —Qy

11 11 11 _ 11 _ 11 _
94 = Q39 = gy = Qp = g = 0.

11
aqq

11
Qg1

11

1
a4

60

aiz - ag
0 0

—all 0
0 —al
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Similarly, we have

d(ex) =

5(633) =

and

33
Q31

44
g

33
a1y

33
Q39

44
Oy

61

22
Qa3

11
a1

33
—a7

33
a3

44
aqy

44
Q3

0

22
Qg

0

33
Q3

33
a1

44
Qg

44
Aoy

44
Qi34

44
—Qq
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Step 2. Since (1) = 0, we have

Thus,

aff = ot = aft = alf =0,

olf = —all, alf = —a, afi =%
att = —all, aff =~} afi = —af.
ot = ~ali, ot = ~al},

N T Bt

o} = —af}, o = —af}

11 11 11
0 ap o3 apy

5(611) - 5
oz},j 0 0 0
ozﬂ 0 0 0
0 —a}% 0 0
11 22 922
_ —Q 0 Qo3 Qg
0(e2) = ,
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d(es3) = ,
~all —af 0 af
0 0 aig 0
and
0 0 0 —aﬁ
_ 0 0 0 —a%i
5(644)—

11 22 33
Oy Ty O3 0

Step 3. For each © = ¢;;, i # j, calculate (14), and then calculate (15) for y = ey,

k =1,2,3. For example, by (14), we have

g by g3 ) 0 ajif 00

_ _ 0 0 0 0 0 a2 00
e120(e12) + d(e1a)ern = + e F.

0 0 0 0 0 0451)3 00

0 0 0 0 0 a2 00

63

doi:10.6342/NTU202304234



Thus,

12 12 12
Qg1

12 12

Qgg = — 0y,
and so

12 12

Qi Qo

_ 0 —aﬁ
(5(612) =

12

0 Q55

12

0 oy

64

12

12
Qi3

12
Q33

12
Qg3

12

= Qg3 = Qigy = Qi3p = QY =

12
Oy

12
Q34

12
Oy

0,

doi:10.6342/NTU202304234



Let x = e15 and y = es3. By (15), we get

e120(e33) + 0(esz)ern + e330(ern) + 6(e1a)ess

00 —aZ 0 0 0 00
00 0 0 0 0 00

= +
00 0 0 0 —adl 00
00 0 0 0 0 00
00 0 0 00 a2 0
00 0 0 00 0 0

+ + €F,
0 a3 o5 o3 0 0 az 0
00 0 0 00 a2 0

and so

12 22
Q13 = Qog,

12 11

Q39 = O3y,
12 12 12
Qg5 = Qg = a3 = 0.
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These give

d(e2) =

0 a2 0

Let x = €15 and y = ey, and compute (15). Then

12 _ 11
Q1 = — Ao,

12 _
g =0,

12 922
Oy = Qgy.

These give

1 12 .22
—Qg Qg Qg

d(e2) =

0 a3 0

66

12
Oy

22
Qg
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Again, let = ej5 and y = €11, and compute (15). Then a}3 = aji and so

5(612):
0 all 0 0
0 ol 0 0
Similarly, we have
a0 00
_ a3 oy ajy ag
d(ea1) = ,
a2 0 0 0
a2 0 0 0
ol o alf of a0 0 0
- 0 0 ait o | a2 0 0 0
o(e13) = ,0(e31) = ,
0 0 a3 O ag oy ajy o
0 0 all 0 a0 0 0
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d(ea3) =

d(en) =

5(634) =

—af —o
0 0
0 0
0 0
0 0
ol —o}
0 0
0 0
0 0
~all o
0 0
0 0
0 0
0 0
~alf —af
0 0

33
—0y3

0

— Q3

0

Step 4. Calculate (15) for z =

14
Q1q

11
Qg1

11
Q3

11
Qg1

,5(632) =

75(642) =

,5(643) =

—ay 0
—a2 0
a0
ap - an
0 —al
0 -af
~all o
0 ai
0 -alj
0 —af
0 —af
o} af
0 0
0 0
0 0

11 22
—CQg] —Q3

22
Qa3

43
Qy3

22
Qg

0

33
Q34

ei; and y = ej;, © < j. For example, if = e, and
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Yy = es1, then

(_5(611 + 622) - 6123(621) - 3(621)612 - 6213(612) - (_5(612)621

0 0 bt (a3 et ot att) [0 —at o0
I R 0 0 0 o0 0 a2 0 0
all a2 0 0 0 0 0 o0 0 a2 00
ol a2 0 0 0 0 0 0 0 a2 00

0 0 0 0 a2 00 0

—oy o3 agg agg a; 0 00

— — el
0 0 0 o0 all 00 0
11
0O 0 0 0 all 00 0
giving a3} = —aq3. Hence, we get a new

12 11 11 11
—Qy Gy gz Qg

d(ear) =
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Similarly, we have new

5(831) =

5(641) =

d(es2) =

d(eq2) =

—ajy 0
29
13 11
—Qq3 Qg
33
ags, 0
11
22
33
14 11
—Qqg 09
11
0 —agp
22
0 —Ql5s
11 23
—Qy —Qa3
33
0 Qy3
11
0 —ayy
22
0 —ay
33
11 24
—Q1 Ty
70

0

11
Qi3

0

22
23

Q

22
Qg3

0

11
Qg

0

22
Qg4

22
Q4
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and

0 0 —af o0

11 22 34 33
—Q31 —Q35 —Q34 (gy

Step 5. Calculate (15) for (z,y) € {(e12,€31), (€12, €41), (€13, €41)}. For example, if

(z,y) = (e12,€31), then (15) gives

5(632) - 6123(631) - 5(631)612 - 6315(612) - 5(612)631

0 —all 0 o0 a2 00 0 0 —all 00
0 a2 0 0 0 000 0 —a2 0 0
E —adl —a3 a2 o2 0 000 0 —ais 0 0
0 ags 0 0 0 000 0 iy 00
0 0 0 0 a2 0 0 0
0 0 0 0 0 00O
— — e F.
—a3i ajs a2 as? 0 000
0 0 0 0 0 00O
Thus, we have a2 = —ajs + als. Similarly, a2] = —al2 + ol and a3} = —ais + alf.
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Step 6. As a result, we get

5(611) =

d(ex) =

5(633) =

deq) =

0 o3 oy oy
all 0 0 0
all 0 0 0
all 0 0 0
0 —all 0 0
—ay 0 a3 off
0 a2 0 0
0 a2 0 0
0 0 —all o0
0 0 —a2 0
—ay —af 0 o
0 0 a¥ o0
0 0 0 —all
0 0 0 —a2
0O 0 0 —al
—ay —aj —ag 0
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11 12 .22 29 11
—Og1 Oy O3 (g —ajy 0 0 0
11 12 11 11 11
— 0 ay 0 0 — —Qp Qpy gz Oy
d(erz) = , 0(e21) = )
11 22
0 as; 0 0 a5 0 0 0
11 22
0 ay O 0 g 0 0 0
11 22 13 .33 11
—CQg; —Q3 Q3 O3y —aq3 0 0 0
1 22
5(613) = ) 5(631) = )
11 13 11 11 11
0 0 azg 0 —Q3 Qpp Qg3 Qg
1 33
0 0 ay 0 oy 0 0 0
11 22 33 14 11
@y —Qyy —Oy3 Ay —agy 0 0 0
11 22
d(ew) = , 0(eq) = 7
0 0 0 a%% —agi 0 0 0
11 14 11 11 11
0 0 0 Qg —Qy Gy g3 Oy
11 11
11 22 12 13 33 22
— —Qgp —Q3; —Ogp + oy gy — 0 —Qo3 0 0
5(623) = ) 5(632) = )
22 11 .12 13 22 22
0 0 Q35 0 —Q51 Oy — Qi3 Qo3 Qgy
22 33
0 0 g 0 0 oy 0 0
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0 0 0 0 0
11 22 33
- TQy Ty Ty - 00
6(624) - ) 6<€42) = s
0 0 0 0 0
0 0 0 app —ony g3 a3
0 0 0 —ai; 0
_ 0 0 0 _ —ad? 0
o(esa) = , 0(eqs) =
—ay —afy —ofs —oft o —azi 0
0 0 o0 ol —all off
Now, let
0 —at)
o ot
a = € M4(F)
o af
ai —an;
Therefore, by a direct computation, we have 6(z) = [a,z], for all z € My(F), as
desired. ]

Lemma 4.13. Let F be a field and 6: Ms(F) — Ms(F) an F-linear weak Jordan

derivation such that 0(F) = 0.

(i) If char F # 2, then 0 is an inner derivation.
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(ii) If char F' = 2, then there exist an inner derivation d: Ms(F) — Ms(F) and an

F-linear map v: Ms(F) — F such that 6 = d + 7.

Proof. For (i), assume that char F' # 2. Then, by following the same process given in

the proof of Lemma 4.12, we have

d(er1)

6(622) =

11
0 ap
— 11
as; 0
11
ag; 0
1
0 _alz
11
22
0 o
0 0
0 0
11 22
—CQg] —Q3
22
Qa3
0 | d(ea)
0

5

0

22
Qaz |
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~alf —af af
d(es) = 0 0 all | 0(es)=
0 0 ai
0 0 —af}
Oezs) = | —all —a2 —alZ+al} |, O(es)
0 0 a2
Let
0 —ap —ag
o= | ot -alf -3
o} of -af

Then 6(z) = [a, x|, for all € M3(F), as desired.

11
22
13 11 .11
—Qy3 Qip (g3
0 —all 0
= 0 —a22 0
11 12 13 22
—CQg] Qi — Q3 Qo3
€ M;(F).

For (ii), assume that char F' = 2. Then, by following the same process given in the

proof of Lemma 4.12, we have

0 oy g
(en) = aly 0 0
aii 00
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0

0

22
Q35

C“12

0413
%3
0‘23

0415

7

22
Qg3

)
)
)

+ 0411]3,

0411 + 0411)]3,

0411 + a21)13?

0411 + 0‘12)]37
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11 .22 13
Gg3p O3y O3

des)=| 0 0 all | +(af+ay)h,

0 0 aif

des)=1] a2 0 0 |+(a+oy)ls

13 11 11
Q3 Qg Q3

0 0 ald

Oezs) = | adl a2 al24ald |+ (ak+a)l,
0 0 a2
0 als 0

dle)=| 0 o 0 |+(ah+ay)hs

22
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Let

11 11
0 ap o

a = 11 12 22 Ma(F).
ay o5 azz | € 3(F)
1 .22 13

Qg1 Q35 Qi3

Then 6§ = d + 7, where d(z) = [a, 2] and

v(r) = (Oéﬁl’n + oftwo + (g1 + ail)ass + (o] + agp)@1e + (f] + ag3) 2

+(og} + adi)mis + (o] + oq8)ws1 + (033 + o33z + (a3 + a33)32) I,

for all z = (z;5) € M3(F), as asserted. O

Lemma 4.14. Let F be a field and §: My(F) — My(F) be an F-linear weak Jordan
derivation such that 0(F) = 0. Thend = d+L+( for some inner derivation d: My(F) —

My(F) and F-linear maps L,(: My(F) — My(F). The F-linear maps L and ¢ are of

the forms
0 549521
L(z) =
Bsx12 + BeTa1 0
and
1 0
C(z) = (Bi(z11 — z22) + Pox1a + P3221)
0 —1
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for all x = (z,5) € My(F), where

o1 12 11 o7 11
B1=aqy, P2 =051 + gy, B3 =ai; + agy,

21 12 12 21
B1 =iy, PBs = Qq1, fs = Qpp + gy

Moreover, § is a derivation if and only if f; =0 for alli =1, ...,6.

Proof. We follow the same process step by step as given in the proof of Lemma 4.12.

Step 1. Calculate (14) for z = e;;, i = 1,2. For = = ey,

— _ _ —all 0
d(etr) —endlenr) —d(en)en = eF
0 oé%

implies —aj} = adj. Similarly, for z = eg, we have —a%? = a33. Thus

11 11 22 22

— Qqp Qg — ajy Qg
(5(611) = ) (622) =

11 11 22 22

Qo1 —aqy Q57 aqy

Step 2. Since §(,) = 0, we have all + a2 =0, all + a2 =0, and all +a2? = 0.

From these, we have

11 11
- —Qip — @y
5(622) =
11 11
—Qo1 O
80

doi:10.6342/NTU202304234



Step 3. For each = = ¢;5, i # j, calculate (14), and then calculate (15) for y = e;.

For x = ey9,
_ - azy ay +afi
e120(e1n) + 5(612)612 = € F
12
0 Q57
implies o33 = —aj?. Thus
12 12
- a1 ®qp
5(612) =
12 12
Qo1 —0q7
Similarly, f = h 2l — —a2! and
imilarly, for z = e, we have a3, aj; and so
21 21
- a1 o
(5(621) =
21 21
Qo1 —a7]
Note that

3(612) - 6123(611) - 5(611)612 - 6113(612) - 5(612)611 = —(0411 +

and
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Step 4. Calculate (15) for x = ej5 and y = e9;. We have

6123(621) + 3(621)612 + 6213(612) + 5(612)621 = (a}% + Oé%})IQ-

Step 5. In My(F') case, this step does not exist.

Step 6. As a result, we get

_ 0 ol L0
d(en) = + g )
ali 0 0 -1
_ 0 —ail a1 o
0(eg) = + (—a1) ;
—ail 0 0 —1
_ —a3l aj? 0 O b " 1 0
d(ern) = + + (a7 + ag) )
0 i a2 0 0 -1
_ —ajsy 0 0 all S B S
5(621) = + + (0‘11 + 0‘12)
—a13 gy ajy+az 0 0 —1
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Let

0l

a = € MQ(F)
11 12
Q51—

and d(z) = [a, 7] for & € My(F). Then 6 = d + L + ¢, where L and ¢ are of the forms
as in the description of this Lemma.

Finally we show the last statement. If 5; = 0 for all i = 1,...,6, then § = d is
a derivation. Conversely, assume that ¢ is a derivation. In particular, it is a Jordan

derivation. Note that ¢ is a Jordan derivation if and only if

and

O(zy +yx) — 20(y) — yd(x) — §(x)y — d(y)z = 0

for all x,y € {e;j}ij=12. From the above computations, we see that ; = 0 for all

t =1,...,6. Hence the last statement holds. [

Proof of Theorem 4.5. Recall that, by Proposition 4.10, we can assume that dimgc RC <
16 if char R # 2, and dimc RC' < 9 if char R = 2. Also, it follows from Lemma 4.11 that
we can assume that ¢ is Z(R)-linear and §(Z(R)) = 0, and let §: M,,(F) — M, (F) be an

extension of § as above, where n = y/dimgRC' > 2. For (i), suppose that dimc RC' < 16
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and char R # 2. Then, by Lemma 4.12 and Lemma 4.13, ¢ is a derivation, and so is 4.
Hence (i) holds.

Now we turn to prove (ii). Assume that dimcRC = 9 and char R = 2. It follows
from Lemma 4.13 that there exist an a € RC ®¢ F and an F-linear map 7: RC®¢c F —
F such that §(z) = [a,2] +7(z) for all 2 € RC ®¢ F. If F = C, then a € RC and ¥
maps R into C, as asserted. Suppose that dimgF = 3. Let {1, ws, w3} be a basis of F'
over C'. Then

a=a1 Q14+ a ® wy + ag ® ws,

for some aq,as,a3 € RC'. Thus,

la,z] = [a1, 2] ® 1 + [ag, x] @ wq + [as, x] @ ws

for all z € R. Also, we write

v(x) =1v(2) @ 1+ 1n(r) ® wy + v3(z) ® w;

for all x € R, where v; : RC — C'. Thus, we have

6(r) ® 1= (lar, 7] + v1(2)) @ 1+ ([ag, 2] + 12(x)) ® wy + ([as, 7] + v3(7)) @ ws
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for all z € R. This means 6(x) = [ay, 2| + v(z) for © € R, where v = »1jp: R — C, as

desired. 0

Proof of Theorem 4.6. By Lemma 4.11, we can assume that § is Z(R)-linear and
§(Z(R)) = 0, and let 6: My(F) — My(F) be an extension of § as above. Hence

Theorem 4.6 follows directly from Lemma 4.14. O
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