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中文摘要

在本篇論文中，我們將研究兩種質環上（弱）喬登型式的可加函數。在此我們令

R 為一個質環，且 C 為其廣義中心子，而 Qml(R) 及 Qms(R) 則分別代表 R 的左邊

及雙邊極大商環。

首先我們研究 R 上頭的喬登 τ 導算之結構，其中 τ 為 R 的反自同構。如果一個

可加函數 δ : R → Qms(R) 滿足對於所有 x ∈ R 都有 δ(x2) = δ(x)xτ + xδ(x)，則我們

稱其為喬登 τ 導算。另外，我們稱 x 7→ axτ − xa 型式的函數為 X-內喬登 τ 導算，

其中 a 是 Qms(R) 中的元素。在此我們證明了，當 τ 為第二型時，喬登 τ 導算的結

構可被完全決定，這推廣了李秋坤教授及筆者在 2015 年的結果。定理敘述如下：

• 令 R 為一個非交換的質環且 τ 為其上之反自同構。如果 τ 是第二型，則所有

在 R 上頭的喬登 τ 導算皆為 X-內喬登 τ 導算。

當 τ 為第一型時，我們還有得到下面的結果：

• 令 R 為一個質 GPI 環且 charR 6= 2，並假設 τ 為其上第一型的反自同構。如果

deg τ 2 6= 2，則所有在 R 上頭的喬登 τ 導算皆為 X-內喬登 τ 導算。

接下來我們研究 R 上頭的弱喬登導算之結構。如果一個可加函數 δ : R → Qml(R)

滿足所有 x ∈ R 都有 δ(x2)− δ(x)x− xδ(x) ∈ C，則我們稱其為弱喬登導算。在此我

們完整給出了弱喬登導算的結構，其中 dimCRC > 4 的情況如下：

• 令 R 為一個質環且 dimCRC > 4，並假設 δ : R → Qml(R) 為一個弱喬登導算。

(i) 如果 charR 6= 2，則 δ 是一個導算。
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(ii) 如果 charR = 2，則存在一個導算 d : R → Qml(R) 和一個可加函數

ν : R → C 使得 δ = d+ ν。

另外，dimCRC = 4 的情況也有決定出弱喬登導算的結構，但由於敘述較複雜，

請讀者觀看內文的 Theorem 4.6。作為此結構定理的應用，我們推廣了 Brešar 在

1993 年的定理，其內容為關於可加函數 δ : R → RC + C 滿足對於所有 x ∈ R 都有

[δ(x2)− xδ(x)− δ(x)x, x] = 0 的結構。

關鍵字：質環；泛函恆等式；GPI 環；喬登 τ 導算；弱喬登導算；左邊（雙邊）極

大商環。
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Abstract

In the dissertation, we study two kinds of additive maps of (weak) Jordan

types on prime rings. Let R be a prime ring with extended centroid C, and

let Qml(R) (resp. Qms(R)) denote the maximal left (resp. symmetric) ring of

quotients of R.

Firstly, we investigate the structure of Jordan τ -derivations of R, where τ is

an anti-automorphism of R. An additive map δ : R → Qms(R) is called a Jordan

τ -derivation if δ(x2) = δ(x)xτ + xδ(x) for all x ∈ R. A Jordan τ -derivation δ

of R is called X-inner if there exists a ∈ Qms(R) such that δ(x) = axτ − xa for

all x ∈ R. We completely determine Jordan τ -derivations of R when τ is of the

second kind, which generalizes Lee and the author’s result in 2015 as follows.

• Let R be a noncommutative prime ring with an anti-automorphism τ . If τ

is of the second kind, then any Jordan τ -derivation of R is X-inner.

We also get the following characterization when τ is of the first kind.

• Let R be a prime GPI-ring, charR 6= 2, and let τ be an anti-automorphism

of R, which is of the first kind. If deg τ2 6= 2, then any Jordan τ -derivation of R

is X-inner.

Secondly, we study the structure of weak Jordan derivations of R. An additive

map δ : R → Qml(R) is called a weak Jordan derivation if δ(x2)−δ(x)x−xδ(x) ∈

C for all x ∈ R. Here we give a complete characterization of weak Jordan

v
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derivations of R. Precisely, we prove the following.

• Let R be a prime ring with dimCRC > 4, and let δ : R → Qml(R) be a weak

Jordan derivation.

(i) If charR 6= 2, then δ is a derivation.

(ii) If charR = 2, then δ = d+ ν, where d : R → Qml(R) is a derivation and

ν : R → C is an additive map.

We also give a complete characterization for the case that dimCRC = 4 (see

Theorem 4.6). The characterization can be applied to generalize Brešar’s theorem

in 1993 concerning additive maps δ : R → RC + C satisfying [δ(x2) − xδ(x) −

δ(x)x, x] = 0 for all x ∈ R.

2020 Mathematics Subject Classification. 16R60, 16N60, 16W10, 16W25.

Key words and phrases: Prime ring; functional identity; GPI-ring; Jordan τ -derivation;

weak Jordan derivation; maximal left (symmetric) ring of quotients.
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1 Introduction

Throughout, R denotes a prime ring, that is, for a, b ∈ R, aRb = 0 implies a = 0 or

b = 0, and let Z(R) be the center of R. Let Qml(R) (resp. Qms(R)) be the maximal left

(resp. symmetric) ring of quotients of R, and let Qs(R) be the Martindale symmetric

ring of quotients of R. The center of Qml(R), denoted by C is called the extended

centroid of R. In this case, C is always a field. It is well-known that Qs(R) ⊆ Qms(R) ⊆

Qml(R) and Z(Qms(R)) = Z(Qs(R)) = C. We refer the reader to [2] for details.

Let τ be an anti-automorphism of R. An additive map δ : R → Qms(R) is called a

Jordan τ -derivation if δ(x2) = δ(x)xτ + xδ(x) for all x ∈ R. A Jordan τ -derivation δ of

R is called X-inner if there exists a ∈ Qms(R) such that δ(x) = axτ − xa for all x ∈ R.

In 2015, Lee and the author [20] proved the following: If R is either a non GPI-ring or

a PI-ring, then every Jordan τ -derivation of R is X-inner except when both charR = 2

and dimCRC = 4. Therefore, it keeps unknown when R is a GPI-ring but is not a

PI-ring. In order to solve the unknown case, in Chapter 2 we develop some results

concerning certain functional identities with an anti-automorphism τ . In Chapter 3,

we use these results to give a complete characterization of Jordan τ -derivations of R

when τ is of the second kind.

Theorem 3.12. Let R be a noncommutative prime ring with an anti-automorphism τ .

1
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If τ is of the second kind, then any Jordan τ -derivation of R is X-inner.

By an X-inner automorphism σ of R, we mean that there exists u ∈ Qs(R) such

that σ(x) = uxu−1 for all x ∈ R. In this case, we define deg σ = m if u is algebraic over

C with minimal degree m. We define deg σ = ∞ otherwise. By Kharchenko’s theorem,

τ 2 is an X-inner automorphism when R is a prime GPI-ring and τ is of the first kind.

We get the following result for the first kind case.

Theorem 3.14. Let R be a prime GPI-ring with charR 6= 2 and with τ an anti-

automorphism of the first kind. If deg τ 2 6= 2, then any Jordan τ -derivation of R is

X-inner.

In 1993, Brešar [5] proved that an additive map δ : R → RC +C satisfying δ(x2)−

xδ(x) − δ(x)x ∈ C for all x ∈ R is a derivation if char (R) 6= 2, 3 and dimCRC > 4.

Several years later, Brešar et al. characterized weak Lie derivations (i.e., additive maps

δ : R → Qml(R) satisfy δ([x, y]) − [δ(x), y] − [x, δ(y)] ∈ C for all x, y ∈ R) when

dimCRC ≥ 16 (see the book [8]). We use their fashion to define a “weak Jordan

derivation” to be an additive map δ : R → Qml(R) satisfying δ(x2)− δ(x)x−xδ(x) ∈ C

for all x ∈ R. In Chapter 4, we completely determine its structure as follows.

Theorem 4.5. Let R be a prime ring with dimCRC > 4, and let δ : R → Qml(R) be a

weak Jordan derivation.

2
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(i) If charR 6= 2, then δ is a derivation.

(ii) If charR = 2, then δ = d + ν, where d : R → Qml(R) is a derivation and

ν : R → C is an additive map.

Theorem 4.6. Let R be a prime ring with dimCRC = 4, and let δ : R → RC be a

weak Jordan derivation.

(i) If charR 6= 2, then there exists a field extension F of C such that RC can be

embedded into M2(F ) and

δ(x) = d(x) + [a, x] + L(x) + ζ(x)

for all x ∈ R, where d : R → RC is a derivation, a ∈ M2(F ) and L, ζ : M2(F ) → M2(F )

are F -linear maps. Moreover, there exist βi ∈ F , 1 ≤ i ≤ 6, such that

L(x) =

 0 β4x21

β5x12 + β6x21 0


and

ζ(x) =
(
β1(x11 − x22) + β2x12 + β3x21

) 1 0

0 −1


for all x = (xij) ∈ M2(F ). In this case, δ is a derivation if and only if all βi = 0.

3
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(ii) If charR = 2, then there exists a field extension F of C such that RC can be

embedded into M2(F ) and

δ(x) = d(x) + ν(x) + [a, x] + L(x) + ζ(x)

for all x ∈ R, where d : R → RC is a derivation, ν : R → C is an additive map,

a ∈ M2(F ), and L, ζ : M2(F ) → M2(F ) are F -linear maps. Moreover, there exist

βi ∈ F , 1 ≤ i ≤ 6, such that

L(x) =

 0 β4x21

β5x12 + β6x21 0


and

ζ(x) =
(
β1(x11 + x22) + β2x12 + β3x21

)
I2

for all x = (xij) ∈ M2(F ).

Conversely, an additive map δ : R → Qml(R) satisfying (i) or (ii) is a weak Jordan

derivation.

Moreover, we use the above two theorems to generalize Brešar’s theorem [5, Theorem

4].

Theorem 4.9. Let R be a prime ring with charR 6= 2, and let δ : R → RC + C be an

4
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additive map satisfying

[δ(x2)− xδ(x)− δ(x)x, x] = 0

for all x ∈ R.

(i) If dimCRC > 4, then

δ(x) = γx+ d(x) + µ(x)

for all x ∈ R, where γ ∈ C, d : R → RC + C is a derivation, and µ : R → C is an

additive map.

(ii) If dimCRC = 4, then

δ(x) = d(x) + µ(x) + [a, x] + L(x) + ζ(x)

for all x ∈ R, where d : R → RC is a derivation, µ : R → C is an additive map,

a ∈ M2(F ), and L, ζ : M2(F ) → M2(F ) are as in Theorem 4.6 (i).

Note that all results mentioned above have been published as journal papers (see

[22] and [23]). The method of characterizing weak Jordan derivations developed by the

author was also applied to studying weak Jordan ∗-derivations by Siddeeque et al. (see

[32]).

5
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2 Preliminary

2.1 GPI-rings, PI-rings, and functional identities

Let R be a prime ring with extended centroid C. We first introduce prime GPI-rings

and PI-rings and their structure theorems. To be precise, set Q := Qml(R). Let X

be an infinite set and C〈X〉 be the free C-algebra on X. Define QC〈X〉 to be the free

product of Q and C〈X〉. Elements of QC〈X〉 are called generalized polynomials. A

generalized polynomial is said to be nontrivial if it is nonzero in QC〈X〉. Let U be an

additive subgroup of R. By a generalized polynomial identity (GPI) on U we mean an

element ϕ = ϕ(x1, . . . , xn) in QC〈X〉 such that ϕ(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U .

In this case, we say that U satisfies a GPI ϕ. We say that R is a GPI-ring if R satisfies

a nontrivial GPI. The following is a famous structure theorem due to Martindale (see

[24, Theorem 3] or [2, Theorem 6.1.6]).

Theorem 2.1. Let R be a prime ring with extended centroid C. Then R is a GPI-ring

if and only if its central closure RC contains a nonzero idempotent e such that eRC is

a minimal right ideal of RC and eRCe is a finite-dimensional division algebra over C.

We view C〈X〉 as a C-subalgebra of QC〈X〉. We say R is a PI-ring if it satisfies a

nontrivial element of C〈X〉 whose coefficients are in {1, −1}. The following describes

the structure of prime PI-rings (see [25], [26], and [9]).

6
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Theorem 2.2. Let R be a prime PI-ring with extended centroid C. Then

(a) RC is a finite-dimensional central simple algebra over C.

(b) Z(R) intersects every nonzero ideal of R nontrivially.

(c) C is the quotient field of Z(R).

Next we introduce some useful results concerning functional identities of prime

rings. These play a key role in characterizing weak Jordan derivations and Jordan

τ -derivations.

Before stating them, we fix some notations. Let m be a positive integer, I, J ⊆

{1, 2, . . . ,m}, and a, b be non-negative integers. Let Eiu, Fjv : R
m−1 → Qml(R), i ∈ I,

j ∈ J , 0 ≤ u ≤ a, 0 ≤ v ≤ b. Fix t ∈ Qml(R) and V =
∑∞

i=0Ct
i. We say that deg t = n

if t is algebraic of minimal degree n over C. Moreover, deg t = ∞ if t is not algebraic

over C. For any maps f : Rr−1 → Qml(R) and g : Rr−2 → Qml(R) we write

f i(x̄r) = f(x1, . . . , xi−1, xi+1, . . . , xr)

and

gij(x̄r) = g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xr),

where x̄r = (x1, . . . , xr) ∈ Rr. We need the following important theorems due to Beidar

and Martindale [3].

7
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Theorem 2.3. ([3, Theorem 2.4]) Suppose that deg t > a+ |I| and

∑
i∈I

a∑
u=0

Ei
iuxit

u ∈ V

for all x1, x2, . . . , xm ∈ R. Then each Eiu = 0.

Theorem 2.4. ([3, Theorem 2.5]) Suppose that deg t > a+ |I| − 1 and

∑
i∈I

a∑
u=0

Ei
iuxit

u = 0

for all x1, x2, . . . , xm ∈ R. Then each Eiu = 0.

Theorem 2.5. ([3, Corollary 2.11]) Let Ei, Fj : R
m−1 → Qml(R), i ∈ I, j ∈ J such

that ∑
i∈I

Ei
i(x1, . . . , xm)xi +

∑
j∈J

xjF
j
j (x1, . . . , xm) ∈ C

for all x1, x2, . . . , xm ∈ R. Suppose that dimCRC >
(
max{|I|, |J |}

)2. Then there exist

unique maps pij : Rm−2 → Qml(R) and λk : Rm−1 → C such that

Ei
i =

∑
j∈J
j ̸=i

xjp
ij
ij + λii,

F j
j = −

∑
i∈I
i ̸=j

pijijxi − λjj,

8
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where λk = 0 if k /∈ I ∩ J . If Ei’s and Fj’s are (m − 1)-additive, then all pij’s are

(m − 2)-additive and all λk’s are (m − 1)-additive. (It is understood that all the pij’s

are equal to 0 if m = 1.)

2.2 Functional identities with an anti-automorphism

LetR be a prime ring. It is well-known that an automorphism (resp. anti-automorphism)

of R can be uniquely extended to an automorphism (resp. anti-automorphism) of Qs(R)

(see [2, Proposition 2.5.3] for the automorphism case and [2, Proposition 2.5.4] for the

anti-automorphism case). An automorphism (or anti-automorphism) g is said to be of

the first kind if βg = β for all β ∈ C. Otherwise, g is said to be of the second kind.

To study Jordan τ -derivations in the next chapter, we have to develop some results

concerning functional identities with an anti-automorphism. In [21], Lee dealt with

functional identities on prime rings with an automorphism. Now, we will follow his

viewpoint to get useful results. Our purpose in the section is to prove the following

theorem.

Theorem 2.6. Let R be a prime ring with an anti-automorphism τ of the second kind.

Suppose that Eit, Fℓ1 : R
r−1 → Qml(R) are (r − 1)-additive maps such that

r∑
i=1

Ei
i1(xr)xi +

r∑
i=1

Ei
i2(xr)x

τ
i +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) ∈ C (1)

9
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for xr ∈ Rr, where 1 ≤ i, ℓ ≤ r and t = 1, 2. If R is not a PI-ring, then there exist a

nonzero ideal I of R, (r − 2)-additive maps pitℓ1 : Ir−2 → Qml(R), and (r − 1)-additive

maps λi1 : Ir−1 → C such that

Ei
i1(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i1ℓ1(xr) + λii1(xr)

Ei
i2(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i2ℓ1(xr)

and

F ℓ
ℓ1(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi −
∑
1≤i≤r
i ̸=ℓ

piℓi2ℓ1(xr)x
τ
i − λℓℓ1(xr)

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r and t = 1, 2.

Corollary 2.7. Let R be a prime ring with an anti-automorphism τ of the second kind.

Suppose that Ei, Fℓ : R
r−1 → Qml(R) are (r − 1)-additive maps such that

r∑
i=1

Ei
i(xr)x

τ
i +

r∑
ℓ=1

xℓF
ℓ
ℓ (xr) ∈ C

for xr ∈ Rr, where 1 ≤ i, ℓ ≤ r. If R is not a PI-ring, then there exist a nonzero ideal

10
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I of R and (r − 2)-additive maps piℓ : Ir−2 → Qml(R) such that

Ei
i(xr) =

∑
1≤ℓ≤r
ℓ ̸=i

xℓp
iℓ
iℓ(xr)

and

F ℓ
ℓ (xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓiℓ(xr)x
τ
i

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r.

Proof. By Theorem 2.6, there exist a nonzero ideal I of R, (r − 2)-additive maps

pitℓ1 : I
r−2 → Qml(R), and (r − 1)-additive maps λi1 : Ir−1 → C such that

0 =
∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i1ℓ1(xr) + λii1(xr),

Ei
i(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i2ℓ1(xr),

and

F ℓ
ℓ (xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi −
∑
1≤i≤r
i ̸=ℓ

piℓi2ℓ1(xr)x
τ
i − λℓℓ1(xr)

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r and t = 1, 2. In view of Theorem 2.3, pi1ℓ1 = 0 and

λi1 = 0 for 1 ≤ i, ℓ ≤ r. The proof is complete by putting piℓ = pi2ℓ1.

11
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To begin with the proof of Theorem 2.6, we first give the following lemma.

Lemma 2.8. Suppose that Ei, Fℓ : R
r−1 → Qml(R) are (r− 1)-additive maps such that

r∑
i=1

Ei
i(xr)xi +

r∑
ℓ=1

F ℓ
ℓ (xr)x

τ
ℓ ∈ C (2)

for xr ∈ Rr, where 1 ≤ i, ℓ ≤ r. If R is not a PI-ring, then there exists a nonzero ideal

I of R such that Ei
i = F ℓ

ℓ = 0 on Ir for 1 ≤ i, ℓ ≤ r.

Before proving it, we define the following notation (see [21]). For a map f : Rr−1 →

Qml(R) and t 6= i, we write

f i(xr; {y}t) = f(z1, . . . , zi−1, zi+1, . . . , zr)

where zt = y and zj = xj for j 6= t, i.e., we replace xt by y in f i(xr).

Proof of Lemma 2.8. Let A := {1, 2, . . . , r} and

L := {ℓ ∈ A | there exists a nonzero ideal J of R such that F ℓ
ℓ = 0 on Jr}.

We proceed the proof by induction on r − |L|.

Suppose first that r−|L| = 0, i.e., L = A. Then there exists a nonzero ideal J such

that F ℓ
ℓ = 0 on Jr for all ℓ = 1, . . . , r. Thus

∑r
i=1E

i
i(xr)xi ∈ C for all xr ∈ Jr. By

12
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Theorem 2.3, Ei
i = 0 on Jr for all i = 1, . . . , r, as asserted.

Suppose next that r − |L| ≥ 1. Without loss of generality, we may assume that

r /∈ L. Then, for any nonzero ideal U of R, F r
r 6= 0 on U r. Fix β ∈ C with βτ 6= β and

choose a nonzero ideal K of R such that βK ⊆ R. Then, by (2), we have

r−1∑
i=1

(
Ei

i(xr; {βxr}r)− βEi
i(xr)

)
xi (3)

+
r−1∑
ℓ=1

(
F ℓ
ℓ (xr; {βxr}r)− βF ℓ

ℓ (xr)
)
xτℓ + (βτ − β)F r

r (xr)x
τ
r ∈ C

for all xr ∈ Kr. Let K1 = K ∩Kτ . Then K1 is an ideal of R such that Kτ−1

1 ⊆ K and,

by (3), we have

r−1∑
i=1

Ẽi
i(xr)xi + F r

r (xr)xr +
r−1∑
ℓ=1

F̃ ℓ
ℓ (xr)x

τ
ℓ ∈ C (4)

for all xr ∈ Kr
1 , where

Ẽi
i(xr) = (βτ − β)−1

(
Ei

i(xr; {βxτ
−1

r }r)− βEi
i(xr; {xτ

−1

r }r)
)

and

F̃ ℓ
ℓ (xr) = (βτ − β)−1

(
F ℓ
ℓ (xr; {βxτ

−1

r }r)− βF ℓ
ℓ (xr; {xτ

−1

r }r)
)
.

13
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Set

L1 := {ℓ | 1 ≤ ℓ ≤ r− 1, there exists a nonzero ideal J of R such that F̃ ℓ
ℓ = 0 on Jr}.

Let ℓ ∈ L. Then 1 ≤ ℓ ≤ r− 1 and there is a nonzero ideal N of R such that F ℓ
ℓ = 0 on

N r. By the definition of F̃ ℓ
ℓ , there exists a nonzero ideal M of R contained in N such

that F̃ ℓ
ℓ = 0 on M r and so ℓ ∈ L1. Thus |L| ≤ |L1| and r−|L| ≥ r−|L1| > (r−1)−|L1|.

By applying the induction hypothesis on (4), we have F ℓ
ℓ = 0 on W r for some nonzero

ideal W of R, a contradiction. □

Proof of Theorem 2.6. Let A := {1, 2, . . . , r} and

L := {i ∈ A | there exists a nonzero ideal J of R such that Ei
i2 = 0 on Jr}.

We proceed the proof by induction on r − |L|.

Assume first that r − |L| = 0, i.e., L = A. Then Ei
i2 = 0 on U r for some nonzero

ideal U of R and so (1) becomes

r∑
i=1

Ei
i1(xr)xi +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) ∈ C

for xr ∈ U r. Hence the result follows from Theorem 2.5.

14
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Assume next that r− |L| ≥ 1. Without loss of generality, assume that r /∈ L. Then

Er
r2 6= 0 on any nonzero ideal of R. Let β ∈ C with βτ 6= β and choose a nonzero ideal

J of R such that βJ ⊆ R. Then, by (1), we have

r−1∑
i=1

(
Ei

i1(xr; {βxr}r)− βEi
i1(xr)

)
xi

+
r−1∑
i=1

(
Ei

i2(xr; {βxr}r)− βEi
i2(xr)

)
xτi + Er

r2(xr)(β
τ − β)xτr

+
r−1∑
ℓ=1

xℓ
(
F ℓ
ℓ1(xr; {βxr}r)− βF ℓ

ℓ1(xr)
)
∈ C

for all xr ∈ Jr. Let

Ẽi
i1(xr) = (βτ − β)−1

(
Ei

i1(xr; {βxr}r)− βEi
i1(xr)

)
,

Ẽi
i2(xr) = (βτ − β)−1

(
Ei

i2(xr; {βxr}r)− βEi
i2(xr)

)
,

and

F̃ ℓ
ℓ1(xr) = (βτ − β)−1

(
F ℓ
ℓ1(xr; {βxr}r)− βF ℓ

ℓ1(xr)
)
.

Then

r−1∑
i=1

Ẽi
i1(xr)xi +

r−1∑
i=1

Ẽi
i2(xr)x

τ
i + Er

r2(xr)x
τ
r +

r−1∑
ℓ=1

xℓF̃
ℓ
ℓ1(xr) ∈ C (5)

15
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for all xr ∈ Jr. Choose a nonzero ideal J1 of R contained in J so that Jτ−1

1 ⊆ J . By

(5), we have

r−1∑
i=1

Ẽi
i1(xr; {xτ

−1

r }r)xi +
r−1∑
i=1

Ẽi
i2(xr; {xτ

−1

r }r)xτi (6)

+Er
r2(xr)xr +

r−1∑
ℓ=1

xℓF̃
ℓ
ℓ1(xr; {xτ

−1

r }r) ∈ C

for all xr ∈ Jr
1 . Set Gi

i2(xr) := Ẽi
i2(xr; {xτ

−1

r }r) and

L1 := {i | 1 ≤ i ≤ r−1, there exists a nonzero ideal J of R such that Gi
i2 = 0 on Jr}.

Let i ∈ L and i 6= r. Then there exists a nonzero ideal N of R such that Ei
i2 = 0 on

N r. From the definition of Gi
i2, there is a nonzero ideal M of R contained in N such

that Gi
i2 = 0 on M r, and so i ∈ L1. Thus

r − |L| ≥ r − |L1| > (r − 1)− |L1|.

By the induction hypothesis, there exist a nonzero ideal J2 of R contained in J1 and

(r − 2)-additive maps pr2ℓ1 : Jr−2
2 → Qml(R) such that

Er
r2(xr) =

r−1∑
ℓ=1

xℓp
rℓ
r2ℓ1(xr)

16
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for all xr ∈ Jr
2 . Substituting it into (1), we have

r∑
i=1

Ei
i1(xr)xi +

r−1∑
i=1

Ei
i2(xr)x

τ
i +

r−1∑
ℓ=1

xℓ

(
F ℓ
ℓ1(xr) + prℓr2ℓ1(xr)x

τ
r

)
+ xrF

r
r1(xr) ∈ C (7)

for all xr ∈ Jr
2 . By the induction hypothesis, there is a nonzero ideal I of R contained

in J2 and (r − 2)-additive maps pi2ℓ1 : Ir−2 → Qml(R) such that

Ei
i2(xr) =

r∑
ℓ=1
ℓ̸=i

xℓp
iℓ
i2ℓ1(xr)

for all xr ∈ Ir and 1 ≤ i ≤ r − 1. Thus (7) becomes

r∑
i=1

Ei
i1(xr)xi +

r∑
ℓ=1

xℓ

(
F ℓ
ℓ1(xr) +

r∑
i=1
i ̸=ℓ

piℓi2ℓ1(xr)x
τ
i

)
∈ C

for all xr ∈ Ir. According to Theorem 2.5, there exist (r−2)-additive maps pi1ℓ1 : Ir−2 →

Qml(R) and (r − 1)-additive maps λi1 : Ir−1 → C such that

Ei
i1(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i1ℓ1(xr) + λii1(xr)

17
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and

F ℓ
ℓ1(xr) +

r∑
i=1
i ̸=ℓ

piℓi2ℓ1(xr)x
τ
i = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi − λℓℓ1(xr)

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r, as asserted. □

18
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3 Jordan τ-derivations of prime GPI-rings

3.1 Motivation

Let R be a prime ring with an anti-automorphism τ . An additive map δ : R → Qms(R)

is called a Jordan τ -derivation of R if δ(x2) = xδ(x) + δ(x)xτ for all x ∈ R. A Jordan

τ -derivation δ of R is said to be inner (resp. X-inner) if there exists a ∈ R (resp.

a ∈ Qms(R)) such that δ(x) = axτ − xa for x ∈ R. Note that if δ : R → Qms(R) is a

Jordan τ -derivation, then

δ(xy + yx) = δ(x)yτ + yδ(x) + δ(y)xτ + xδ(y) (8)

for all x, y ∈ R.

Let A be a ring. Suppose that ∗ : A → A is an involution of A, i.e., ∗ is an

anti-automorphism of A such that (x∗)∗ = x for all x ∈ A. The problem of the

representability of quadratic forms by bilinear forms is connected with the structure

of Jordan ∗-derivations (see [29] and [30]). In 1989, Brešar and Vukman proved the

following (see [4, Theorem 1]).

Theorem 3.1. Let A be a unital ring with involution ∗. Suppose that A contains 1
2

and an invertible skew-hermitian element µ (i.e., µ∗ = −µ) which lies in Z(A). Then

19



doi:10.6342/NTU202304234

every Jordan ∗-derivation from A into itself is inner.

In particular, every Jordan ∗-derivation of a unital complex ∗-algebra is inner. In-

deed, given any complex ∗-algebra A, we always assume (βx)∗ = β̄x∗ for all x ∈ A and

β ∈ C. Therefore we can always find an invertible skew-hermitian element in Z(A).

Let H be a real (resp. complex) Hilbert space with dimRH > 1 (resp. dimCH > 1).

Let B(H) stand for the algebra of all bounded linear operators on the Hilbert space

H and let A be a standard operator algebra on H, i.e., A is a subalgebra of B(H)

containing the subalgebra of all bounded finite rank operators (see [31]). Then B(H)

can be endowed with a canonical involution, say ∗. It is known that A is a prime algebra

with nonzero socle. Moreover, Qms(A) = Qms(B(H)) = B(H) (see [10, Theorem 1.3]).

In 1990, Šemrl proved the following (see [28, Theorem 2.3]).

Theorem 3.2. Let H be a real Hilbert space with dimRH > 1. Let D : B(H) → B(H) be

a Jordan ∗-derivation. Then there exists a unique T ∈ B(H) such that D(S) = ST−TS∗

for all S ∈ B(H), i.e., D is inner.

In 1994, Šemrl showed the following (see [31]).

Theorem 3.3. Let H be a complex Hilbert space with dimCH > 1 and let A be a

standard operator algebra on H. Suppose that J : A → B(H) is a Jordan ∗-derivation.

Then there exists a unique T ∈ B(H) such that J(A) = AT − TA∗ for all A ∈ A, i.e.,

J is X-inner.
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In 2013, Chuang et al. extended Šemrl’s theorems above as follows (see [10, Theorem

1.2]).

Theorem 3.4. Let R be a prime ring, which is not a division ring. Let τ be an anti-

automorphism of R and let δ : R → Qs(R) be a Jordan τ -derivation. If charR 6= 2 and

the socle of R is nonzero, then δ is X-inner.

Moreover, Lee et al. completely determined the structure of Jordan ∗-derivations

of prime rings (see [11], [17], and [18]). To be precise, we state its conclusion.

Theorem 3.5. ([18, Theorem 1.2]) Let R be a prime ring with involution ∗, which is

not commutative. Then any Jordan ∗-derivation of R is X-inner except when charR = 2

and dimC RC = 4.

They also gave an example of non X-inner Jordan ∗-derivations when charR = 2

and dimC RC = 4 (see [18, Example 3.2]). For the general anti-automorphism case,

Lee and the author [20] proved the following results.

Theorem 3.6. ([20, Theorem 2.1]) Let R be a prime ring with an anti-automorphism

τ . Suppose that R is not a GPI-ring. Then any Jordan τ -derivation δ : R → Qms(R)

is X-inner.

Theorem 3.7. ([20, Theorem 2.8]) Let D be a division ring, which is not commutative,

with center C and let τ be an anti-automorphism of D. Then any Jordan τ -derivation
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δ : D → D is X-inner except when charD = 2 and dimCD = 4.

Theorem 3.8. ([20, Theorem 2.9]) Let R be a prime PI-ring, which is not commutative,

and let τ be an anti-automorphism of R. Then any Jordan τ -derivation δ : R → RC is

X-inner except when charR = 2 and dimCRC = 4.

By the above theorems, any Jordan τ -derivation of R is X-inner if either R is not

a GPI-ring or R is a PI-ring except when charR = 2 and dimCRC = 4. In order to

completely characterize Jordan τ -derivations of R, they raised the following question.

Question A. Let R be a prime GPI-ring, which is not commutative, with an anti-

automorphism τ . Suppose that neither R is a PI-ring nor R is a division ring. Is any

Jordan τ -derivation of R X-inner?

We remark that, by Theorem 2.1, if R is both a prime GPI-ring and a division

ring, then it is a PI-ring and Question A is solved by Theorem 3.8 in this case. Hence

Question A is reduced to the case that R is a prime GPI-ring but is not a PI-ring.

3.2 Results

Let R be a prime ring with an anti-automorphism τ . Recall that τ can be uniquely

extended to an anti-automorphism of Qs(R) and that τ is said to be of the first kind

if βτ = β for all β ∈ C. Otherwise, τ is said to be of the second kind. In order to deal

with the second kind case, we need the following.
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Lemma 3.9. ([20, Lemma 2.7]) Suppose that βτ 6= β for some β ∈ Z(R). Then any

Jordan τ -derivation δ : R → Qms(R) is X-inner. In fact, δ(x) = axτ −xa for all x ∈ R,

where a = (βτ − β)−1δ(β).

By applying Lemma 3.9, we get the following result.

Theorem 3.10. Let R be a noncommutative prime PI-ring with an anti-automorphism

τ . If τ is of the second kind, then any Jordan τ -derivation δ : R → Qms(R) is X-inner.

Proof. Since R is a prime PI-ring, it follows from Theorem 2.2 that Z(R) 6= 0 and C is

the quotient field of Z(R). Thus there exists β ∈ Z(R) such that βτ 6= β because τ is

of the second kind. By Lemma 3.9, δ is X-inner, as desired.

We remark that the lemma below holds for an arbitrary ring R (see [17, Lemma

2.3]).

Lemma 3.11. Let B : R×R → A be a bi-additive map and let f, g : R → A be additive

maps, where A is an additive group. Suppose that B(x, y) = f(xy) + g(yx) for all

x, y ∈ R. Then

B(xw, yz)− B(x,wyz) = B(zxw, y)− B(zx, wy)

for all w, x, y, z ∈ R.
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Now we can give an affirmative answer to Question A when τ is of the second kind.

Theorem 3.12. Let R be a noncommutative prime ring with an anti-automorphism τ .

If τ is of the second kind, then any Jordan τ -derivation of R is X-inner.

Proof. According to Theorem 3.10, we can assume that R is not a PI-ring. Let δ : R →

Qms(R) be a Jordan τ -derivation. Define the bi-additive map B : R×R → Qms(R) by

B(x, y) = δ(xy + yx) for x, y ∈ R. It follows from Lemma 3.11 that

B(xw, yz)− B(x,wyz) = B(zxw, y)− B(zx, wy)

for all x, y, z, w ∈ R. So, by (8), we have

(
δ(yz)wτ − δ(wyz)

)
xτ +

(
δ(xw)zτ − δ(zxw)

)
yτ

+
(
δ(wy)xτ − δ(y)wτxτ

)
zτ +

(
δ(zx)yτ − δ(x)zτyτ

)
wτ

+x
(
wδ(yz)− δ(wyz)

)
+ y

(
zδ(xw)− δ(zxw)

)
+z

(
xδ(wy)− xwδ(y)

)
+ w

(
yδ(zx)− yzδ(x)

)
= 0

for all x, y, z, w ∈ R. According to Corollary 2.7, there exist a nonzero ideal I1 of R
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and bi-additive maps r13, r23, r43 : I21 → Qml(R) such that

x
(
δ(wy)− wδ(y)

)
= −r13(y, w)xτ − r23(x,w)y

τ − r43(x, y)w
τ

for all x, y, w ∈ I1. Again, there are additive maps p, q : I2 → Qml(R) so that

δ(wy)− wδ(y) = −p(y)wτ − q(w)yτ

for all y, w ∈ I2, where I2 is a nonzero ideal of R contained in I1. Let x, y, t ∈ I2. We

have

δ(xy) = xδ(y)− p(y)xτ − q(x)yτ (9)

Replacing x by tx in (9), we obtain

δ(txy) = txδ(y)− p(y)xτ tτ − q(tx)yτ .

Left-multiplying (9) by t, we get tδ(xy) = txδ(y)− tp(y)xτ − tq(x)yτ . Thus,

δ(txy)− tδ(xy) =
(
tq(x)− q(tx)

)
yτ − p(y)xτ tτ + tp(y)xτ .
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Replacing x, y by t, xy respectively in (9), we have

δ(txy)− tδ(xy) = −p(xy)tτ − q(t)yτxτ .

Comparing the two equalities above, we see that

(
tq(x)− q(tx)

)
yτ +

(
p(xy)− p(y)xτ

)
tτ +

(
tp(y) + q(t)yτ

)
xτ = 0

for all x, y, t ∈ I2. By Lemma 2.8,

tq(x) = q(tx), p(xy) = p(y)xτ , and tp(y) = −q(t)yτ

for all x, y, t ∈ I3, where I3 is a nonzero ideal of R contained in I2. According to [16,

Lemma 2.1], there is a ∈ Qml(R) such that q(x) = xa for x ∈ I3. So

tp(y) = −q(t)yτ = −tayτ

for t, y ∈ I3, i.e., I3
(
p(y) + ayτ

)
= 0 for all y ∈ I3. Thus, p(y) = −ayτ and it follows

from (9) that

δ(xy)− xδ(y) = ayτxτ − xayτ
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for x, y ∈ I3. Let δ̃ : I3 → Qml(R) be defined by δ̃(x) = axτ − xa for all x ∈ I3. Then

δ̃(xy) = ayτxτ − xya and

(δ̃ − δ)(xy) = xayτ − xya− xδ(y) = x(δ̃ − δ)(y),

for x, y ∈ I3. So there exists c ∈ Qml(R) such that (δ̃ − δ)(x) = xc for all x ∈ I3 (see

[16, Lemma 2.1]). Define J := δ̃ − δ, a Jordan τ -derivation of I3. Thus, x2c = J(x2) =

xJ(x) + J(x)xτ = x2c + xcxτ for all x ∈ I3; that is, xcxτ = 0 for all x ∈ I3. By [10,

Lemma 2.2], c = 0 follows, i.e., δ = δ̃ on I3. Therefore, δ(x) = axτ − xa for x ∈ I3. By

[20, Lemma 2.6], a ∈ Qms(R). Finally, we will show that δ is X-inner. Let x ∈ I3 and

y ∈ R. Then

δ(xy + yx) = ayτxτ + axτyτ − xya− yxa

and

δ(xy + yx) = δ(x)yτ + yδ(x) + δ(y)xτ + xδ(y)

= axτyτ − xayτ + yaxτ − yxa+ δ(y)xτ + xδ(y).

Comparing these equations, we have

(
δ(y)− (ayτ − ya)

)
xτ + x

(
δ(y)− (ayτ − ya)

)
= 0
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for all x ∈ I3 and y ∈ R. Fix y ∈ R and set q := δ(y)− (ayτ − ya). Then, for x, z ∈ I3,

xzq = −q(xz)τ = −qzτxτ = zqxτ = −zxq

and so (xz+zx)q = 0 for all x, z ∈ I3. This implies (xz+zx)q = 0 for all x, z ∈ Qml(R).

If charR 6= 2, let z = 1 and so 2xq = 0 for all x ∈ Qml(R) implying q = 0. If charR = 2,

then [Qml(R), Qml(R)]q = 0 forcing q = 0. Hence δ(y) = ayτ − ya for all y ∈ R, as

desired.

We next consider the case that τ is of the first kind. By an X-inner automorphism

we mean an automorphism of the form x 7→ uxu−1 for all x ∈ R, where u ∈ Qs(R).

Kharchenko proved that, given an automorphism σ of a prime GPI-ring, if σ is of

the first kind, then it is X-inner (see [14, Proof of Proposition 2]). By Kharchenko’s

theorem, τ 2 is X-inner when R is a prime GPI-ring and τ is of the first kind. The

complexity of the question we will study depends on that of τ 2.

Definition 3.13. Let R be a prime GPI-ring with an automorphism σ of the first

kind. Then there exists u ∈ Qs(R) such that xσ = uxu−1 for all x ∈ R. We say that

degσ = m if u is algebraic of minimal degree m over C. Moreover, degσ = ∞ if u is

not algebraic over C.

Clearly, deg σ is independent of the element u we choose. Also, if deg τ 2 = 1, then
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τ is an involution and Question A has been solved by Theorem 3.5. The following is

the second main theorem and we will prove it in the next section.

Theorem 3.14. Let R be a prime GPI-ring with charR 6= 2 and with τ an anti-

automorphism of the first kind. If deg τ 2 6= 2, then any Jordan τ -derivation of R is

X-inner.

We remark that the case of deg τ 2 = 2 keeps unknown.

3.3 The first kind case

The goal of this section is to prove Theorem 3.14. Let R be a prime GPI-ring with an

anti-automorphism τ of the first kind. Let u ∈ Qs(R) be fixed such that xτ2 = uxu−1

for all x ∈ R.

Lemma 3.15. uτu = uuτ ∈ C.

Proof. Let x ∈ R. Then

uτux = uτxτ
2

u = (xτu)τu = (u(xτ )τ
−2

)τu = xuτu.

Hence uτu = uuτ ∈ C.

Now, by Lemma 3.15, we fix β := uτu = uuτ ∈ C and so uτ = βu−1. Since R is a

prime GPI-ring, RC is a primitive ring with nonzero socle and so Qms(RC) = Qs(RC).
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In view of Theorem 3.4, the aim of this section is to extend δ to a Jordan τ -derivation

of RC when charR 6= 2. The following result plays a key role.

Lemma 3.16. Let f : R → Qml(R) be an additive map such that

xf(y) + f(y)xτ = yf(x) + f(x)yτ (10)

for all x, y ∈ R. If deg τ 2 > 2, then f = 0.

Note that this result is better than [22, Lemma 3.2].

Proof. Choose a nonzero ideal such that uI1 ⊆ R. Then, by replacing x with ux in

(10),

uxf(y)u+ βf(y)xτ = yf(ux)u+ f(ux)yτu

for x ∈ I1 and y ∈ R. Also, by (10),

uxf(y)u+ uf(y)xτu = uyf(x)u+ uf(x)yτu.

Comparing the two equations, we have

βf(y)xτ − uf(y)xτu = yf(ux)u− uyf(x)u+
(
f(ux)− uf(x)

)
yτu (11)

30



doi:10.6342/NTU202304234

for x ∈ I1 and y ∈ R. Replacing y by uy in (11),

βf(uy)xτ − uf(uy)xτu = uyf(ux)u− u2yf(x)u+ β
(
f(ux)− uf(x)

)
yτ

for x, y ∈ I1. Also, by (11),

uβf(y)xτ − u2f(y)xτu = uyf(ux)u− u2yf(x)u+ u
(
f(ux)− uf(x)

)
yτu.

Comparing the two equations, we have

β
(
f(uy)− uf(y)

)
xτ − u

(
f(uy)− uf(y)

)
xτu

= β
(
f(ux)− uf(x)

)
yτ − u

(
f(ux)− uf(x)

)
yτu

for all x, y ∈ I1. By Theorem 2.4, f(uy) = uf(y) for all y ∈ I1. So (11) becomes

βf(y)xτ − uf(y)xτu = yuf(x)u− uyf(x)u (12)

for all x, y ∈ I1. Choose a nonzero ideal I2 of R contained in I1 such that uI2 ⊆ I1.

Replacing x by ux in (12), we have

β2f(y)xτ − βuf(y)xτu = yu2f(x)u2 − uyuf(x)u2
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for all x, y ∈ I2. On the other hand, (12) implies

β2f(y)xτ − βuf(y)xτu = β
(
yuf(x)u− uyf(x)u

)

for all x, y ∈ I2. Comparing the two equations, we have

y
(
βuf(x)− u2f(x)u

)
+ uy

(
uf(x)u− βf(x)

)
= 0

for all x, y ∈ I2. Similarly, uf(x)u = βf(x) for all x ∈ I2. Thus (12) becomes

βf(y)xτ − uf(y)xτu = βyf(x)− uyf(x)u (13)

for all x, y ∈ I2. Choose a nonzero ideal I3 of R contained in I2 such that I3u ⊆ I2.

Replacing y by yu in (13),

βf(yu)xτ − uf(yu)xτu

= βyuf(x)− uyuf(x)u

= β2yf(x)u−1 − βuyf(x)

= β
(
βyf(x)− uyf(x)u

)
u−1

= β2f(y)xτu−1 − βuf(y)xτ
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for all x, y ∈ I3. So we get

β2f(y)xτ −
(
βuf(y) + βf(yu)

)
xτu+ uf(yu)xτu2 = 0

for all x, y ∈ I3. By Theorem 2.4, f(y) = 0 for all y ∈ I3. Thus it follows from (10)

that

yf(x) + f(x)yτ = xf(y) + f(y)xτ = 0

for all x ∈ R and y ∈ I3. By applying the same argument as the last part of the proof

of Theorem 3.12, we have f = 0, as desired.

Remark 3.17. In Lemma 3.16, the case for deg τ 2 = 1 had been solved by Beidar and

Martindale [3]. However, the solution of (10) is still unknown when deg τ 2 = 2.

Lemma 3.18. Suppose deg τ 2 > 2. Let α ∈ C and I be a nonzero ideal of R such that

αI ⊆ R. Then δ(αx) = αδ(x) for all x ∈ I.

Proof. Let x, y ∈ I. Then

δ((αx)y + y(αx)) = δ(αx)yτ + yδ(αx) + αδ(y)xτ + αxδ(y)
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and

δ(x(αy) + (αy)x) = αδ(x)yτ + αyδ(x) + δ(αy)xτ + xδ(αy).

Comparing the two equations, we have

(
δ(αy)− αδ(y)

)
xτ + x

(
δ(αy)− αδ(y)

)
=

(
δ(αx)− αδ(x)

)
yτ + y

(
δ(αx)− αδ(x)

)
.

By Lemma 3.16, δ(αx) = αδ(x) for all x ∈ I.

Lemma 3.19. Suppose deg τ 2 > 2. Then every Jordan τ -derivation δ of R can be

extended to a Jordan τ -derivation of RC.

Proof. Choose a subset {wi}i∈Φ of R which is a basis of RC over C, where Φ is a

nonempty well-ordered set. Then any element of RC can be written as the form∑
i∈Φ αiwi, where αi = 0 for all but finitely many i ∈ Φ. Recall that Qms(R) =

Qms(RC). Define δ̃ : RC → Qms(RC) by

δ̃
(∑

i∈Φ

αiwi

)
=

∑
i∈Φ

αiδ(wi).

Then it is clearly a well-defined additive map since {wi}i∈Φ forms a basis of RC over

C. We claim that δ̃|R = δ. Let x ∈ R. Write x =
∑

i∈Φ αiwi. By Lemma 3.18, there is
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a nonzero ideal I of R such that αiI ⊆ R and δ(αiy) = αiδ(y) for all i ∈ Φ and y ∈ I.

Let y ∈ I. Then

δ(xy + yx) =
∑
i∈Φ

δ
(
(αiy)wi + wi(αiy)

)
=

∑
i∈Φ

δ(αiy)w
τ
i + δ(wi)αiy

τ + wiδ(αiy) + αiyδ(wi)

= δ(y)xτ + xδ(y) +
∑
i∈Φ

(
αiδ(wi)y

τ + αiyδ(wi)
)
.

Comparing this with (8), we have

(
δ(x)−

∑
i∈Φ

αiδ(wi)
)
yτ + y

(
δ(x)−

∑
i∈Φ

αiδ(wi)
)
= 0

for all y ∈ I. By applying the same argument as the last part of the proof of Theorem

3.12, we have δ(x) =
∑

i∈Φ αiδ(wi) = δ̃(x) and so the claim holds.

Finally we show that δ̃ is a Jordan τ -derivation. Let x =
∑

i∈Φ αiwi ∈ RC. For
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each i, j ∈ Φ, write wiwj =
∑

k∈Φ γ
ij
k wk ∈ R, where γijk ∈ C. Then

δ̃(x2) = δ̃
(∑

i, j

αiαjwiwj

)
= δ̃

(∑
i, j

αiαj

∑
k∈Φ

γijk wk

)
=

∑
i, j

αiαj

∑
k∈Φ

γijk δ(wk)

=
∑
i, j

αiαj δ̃(wiwj)

=
∑
i, j

αiαjδ(wiwj)

=
∑
i

α2
i δ(w

2
i ) +

∑
i<j

αiαjδ(wiwj + wjwi)

=
∑
i

α2
i

(
wiδ(wi) + δ(wi)w

τ
i

)
+
∑
i<j

αiαj

(
δ(wi)w

τ
j + wjδ(wi) + δ(wj)w

τ
i + wiδ(wj)

)
= xδ̃(x) + δ̃(x)xτ .

Hence the proof of Lemma 3.19 is complete.

Applying Lemma 3.19, we are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. In view of Theorem 3.8, we can assume that R is not a PI-

ring. By Theorem 3.5, we also assume that deg τ 2 > 2. Recall that if R is a prime

GPI-ring and RC is a division ring, then R is a PI-ring. So RC is not a division ring.

Let δ : R → Qms(R) be a Jordan τ -derivation of R. Since the socle of RC is nonzero,
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Qms(RC) = Qs(RC). By Lemma 3.19, δ can be extended to a Jordan τ -derivation

δ̃ : RC → Qs(RC) of RC. According to Theorem 3.4, there exists a ∈ Qs(RC) such

that δ̃(x) = axτ − xa for x ∈ RC. In particular, δ(x) = axτ − xa for all x ∈ R.

As a consequence of [2, Proposition 2.1.10], Qms(R) = Qms(RC) = Qs(RC) and so

a ∈ Qms(R). Hence δ is X-inner, as desired. □
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4 Weak Jordan derivations

4.1 Motivation

Let R be a prime ring with extended centroid C. An additive map d : R → Qml(R)

is called a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R and is called a Jordan

derivation (resp. Lie derivation) if d(x2) = d(x)x+xd(x) for all x ∈ R (resp. d([x, y]) =

[d(x), y]+[x, d(y)] for all x, y ∈ R), where [a, b] := ab−ba for a, b ∈ Qml(R). Clearly, any

derivation is a Jordan derivation but a Jordan derivation is not in general a derivation.

In 1957, Herstein proved the following theorem.

Theorem 4.1. ([12, Theorem 3.1]) Let R be a prime ring with charR 6= 2. Then every

Jordan derivation of R is a derivation.

We remark that though a Jordan derivation defined in [12] maps R to itself, the

same proof is also valid for our definition. In 2014, Lee and the author completely

described Jordan derivations of a prime ring R with charR = 2 as follows.

Theorem 4.2. ([19, Theorem 2.2]) Let R be a prime ring with charR = 2. An additive

map δ : R → Qml(R) is a Jordan derivation if and only if there exist a derivation

d : R → Qml(R) and an additive map µ : R → C such that δ = d+ µ and µ(x2) = 0 for

all x ∈ R.
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They also gave an example to show the existence of a Jordan derivation, which

is not a derivation, on R when charR = 2 (see [19, The remark below Corollary

2.4]). Therefore the structure of Jordan derivations of prime rings has been completely

determined.

As a generalization of Jordan derivations (resp. Lie derivations), an additive map

δ : R → Qml(R) is called a weak Jordan derivation (resp. weak Lie derivation) if δ(x2)−

xδ(x)−δ(x)x ∈ C for all x ∈ R (resp. δ([x, y])−[δ(x), y]−[x, δ(y)] ∈ C for all x, y ∈ R).

In order to characterize additive maps d : R → R satisfying [d(x2)−xd(x)−d(x)x, x] = 0

for all x ∈ R (see [5, Theorem 4]), Brešar proved the following result.

Theorem 4.3. ([5, pp. 541–542]) Let R be a prime ring of characteristic different from

2 and 3. Suppose that δ : R → RC + C is a weak Jordan derivation. If dimCRC > 4,

then δ is a derivation.

Also, in [8, Remark 6.8], Brešar et al. studied weak Lie derivations. In particular,

they characterized weak Lie derivations of R when dimCRC > 9 as follows.

Theorem 4.4. Let R be a prime ring with dimCRC > 9. If δ : R → Qml(R) is a

weak Lie derivation, then there exist a derivation d : R → Qml(R) and an additive map

ν : R → C such that δ = d+ ν.

We remark that every weak Jordan derivation of R is a weak Lie derivation when

charR = 2. The aim of the chapter is to determine the structure of weak Jordan
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derivations of R. On the other hand, weak Jordan derivations of prime rings occur

canonically when one studies Jordan derivations of semiprime rings.

4.2 Results

Let R be a prime ring with extended centroid C. We give a complete characterization

of weak Jordan derivations of prime rings. The following is the first result.

Theorem 4.5. Let R be a prime ring with dimCRC > 4, and let δ : R → Qml(R) be a

weak Jordan derivation.

(i) If charR 6= 2, then δ is a derivation.

(ii) If charR = 2, then δ = d + ν, where d : R → Qml(R) is a derivation and

ν : R → C is an additive map.

To state the second result, we will fix some notations. Suppose dimCRC = n2 <∞.

It follows from Theorem 2.2 that RC is a finite-dimensional central simple algebra over

C and C is the quotient field of Z(R). In this case, we have Qml(R) = RC. By the well-

known Wedderburn-Artin theorem, RC ∼= Mm(∆) for some division ring ∆ and m ≤ n.

Let F be a separable maximal subfield of ∆. Then RC ⊗C F ∼= Mn(F ) and we regard

RC as a C-subalgebra of Mn(F ). Denote In for the identity matrix in Mn(F ). Notice

that, if RC is not a division ring and dimCRC = 4, then F = C and RC ∼= M2(C).

Also, if RC = ∆ is a division ring with dimCRC = 4, then F is a Galois extension over
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C. We are now ready to state the second result.

Theorem 4.6. Let R be a prime ring with dimCRC = 4, and let δ : R → Qml(R) be a

weak Jordan derivation.

(i) If charR 6= 2, then

δ(x) = d(x) + [a, x] + L(x) + ζ(x)

for all x ∈ R, where d : R → RC is a derivation, a ∈ M2(F ) and L, ζ : M2(F ) → M2(F )

are F -linear maps. Moreover, there exist βi ∈ F , 1 ≤ i ≤ 6, such that

L(x) =

 0 β4x21

β5x12 + β6x21 0


and

ζ(x) =
(
β1(x11 − x22) + β2x12 + β3x21

) 1 0

0 −1


for all x = (xij) ∈ M2(F ). In this case, δ is a derivation if and only if all βi = 0.

(ii) If charR = 2, then

δ(x) = d(x) + ν(x) + [a, x] + L(x) + ζ(x)
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for all x ∈ R, where d : R → RC is a derivation, ν : R → C is an additive map,

a ∈ M2(F ), and L, ζ : M2(F ) → M2(F ) are F -linear maps. Moreover, there exist

βi ∈ F , 1 ≤ i ≤ 6, such that

L(x) =

 0 β4x21

β5x12 + β6x21 0


and

ζ(x) =
(
β1(x11 + x22) + β2x12 + β3x21

)
I2

for all x = (xij) ∈ M2(F ).

Conversely, an additive map δ : R → Qml(R) satisfying (i) or (ii) is a weak Jordan

derivation.

Remark 4.7. The additive maps L and ζ in Theorem 4.6 are weak Jordan derivations.

In fact, they satisfy

L(x2)− xL(x)− L(x)x = −
(
β4x

2
21 + β5x

2
12 + β6x12x21

)
I2

and

ζ(x2)− xζ(x)− ζ(x)x = −
(
β1(x11 − x22) + β2x12 + β3x21

)(
x11 − x22

)
I2
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for all x = (xij) ∈ M2(F ). By substituting some appropriate xij, we will see that L

(resp. ζ) is a Jordan derivation if and only if L = 0 (resp. ζ = 0). Indeed, if L is a

Jordan derivation, then

β4x
2 + β5y

2 + β6xy = 0

for all x, y ∈ F . Substituting (x, y) by (1, 0), (0, 1), and (1, 1), we get β4 = β5 = β6 = 0.

Suppose next that ζ is a Jordan derivation. Then

(
β1(x− y) + β2z + β3w

)(
x− y

)
= 0

for all x, y, z, w ∈ F . Substituting (x, y, z, w) by (1, 0, 0, 0), (1, 0, 1, 0), and (1, 0, 0, 1),

we get β1 = β2 = β3 = 0, as asserted.

A map q : R → RC +C is called a trace of a biadditive map if there is a biadditive

map B : R × R → RC + C such that q(x) = B(x, x) for all x ∈ R. Brešar and Šemrl

characterized commuting traces of biadditive maps when charR 6= 2 (see [5, Theorem

1] and [7, Theorem 3.1]). The following is the conclusion.

Theorem 4.8. Let R be a prime ring with charR 6= 2 and q : R → RC + C be a trace

of a biadditive map such that [q(x), x] = 0 for all x ∈ R. Then there exist λ ∈ C, an
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additive map µ : R → C, and a trace of a biadditive map ν : R → C such that

q(x) = λx2 + µ(x)x+ ν(x)

for all x ∈ R. Moreover, in case dimCRC = 4 one may take λ = 0.

As an application of Theorem 4.5 and Theorem 4.6, the following generalizes Brešar’s

theorem [5, Theorem 4].

Theorem 4.9. Let R be a prime ring with charR 6= 2, and let δ : R → RC + C be an

additive map satisfying

[δ(x2)− xδ(x)− δ(x)x, x] = 0

for all x ∈ R.

(i) If dimCRC > 4, then

δ(x) = γx+ d(x) + µ(x)

for all x ∈ R, where γ ∈ C, d : R → RC + C is a derivation, and µ : R → C is an

additive map.

44



doi:10.6342/NTU202304234

(ii) If dimCRC = 4, then

δ(x) = d(x) + µ(x) + [a, x] + L(x) + ζ(x)

for all x ∈ R, where d : R → RC is a derivation, µ : R → C is an additive map,

a ∈ M2(F ), and L, ζ : M2(F ) → M2(F ) are as in Theorem 4.6 (i).

Proof. We will follow the proof of [5, Theorem 4] and apply Theorem 4.5 and Theorem

4.6. Let q : R → RC+C be the map defined by q(x) = δ(x2)−xδ(x)−δ(x)x for x ∈ R.

Then q is a trace of a biadditive map. According to Theorem 4.8, there exist λ ∈ C,

an additive map µ̃ : R → C, and a trace of a biadditive map ν̃ : R → C such that

δ(x2)− xδ(x)− δ(x)x = λx2 + µ̃(x)x+ ν̃(x)

for all x ∈ R. Note that we may take λ = 0 if dimCRC = 4. Define an additive map

D : R → RC + C by

D(x) = δ(x) + λx+
1

2
µ̃(x), x ∈ R.
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We claim that D is a weak Jordan derivation. Indeed, let x ∈ R. Then

D(x2) = δ(x2) + λx2 +
1

2
µ̃(x2)

= xδ(x) + δ(x)x+ 2λx2 + µ̃(x)x+ ν̃(x) +
1

2
µ̃(x2)

and xD(x) +D(x)x = xδ(x) + δ(x)x+ 2λx2 + µ̃(x)x. Thus

D(x2)− xD(x)−D(x)x = ν̃(x) +
1

2
µ̃(x2) ∈ C

and hence D is a weak Jordan derivation.

If dimCRC > 4, then it follows from Theorem 4.5 (i) that D is a derivation, and

hence

δ(x) = γx+ d(x) + µ(x),

where γ = −λ, d = D, and µ(x) = −1
2
µ̃(x).

Suppose that dimCRC = 4. Then RC + C = RC and, by Theorem 4.6 (i), D is of

the form

D(x) = d(x) + [a, x] + L(x) + ζ(x),

where d : R → RC is a derivation, a ∈ M2(F ), and L, ζ : M2(F ) → M2(F ) are as in
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Theorem 4.6 (i). Hence

δ(x) = d(x) + µ(x) + [a, x] + L(x) + ζ(x),

where µ(x) = −1
2
µ̃(x).

4.3 Proofs of Theorem 4.5 and 4.6

Let R be a prime ring and let δ : R → Qml(R) be a weak Jordan derivation. Thus,

µ(x) := δ(x2)− xδ(x)− δ(x)x ∈ C (14)

for all x ∈ R. Linearizing it, we get

λ(x, y) := δ(xy + yx)− xδ(y)− yδ(x)− δ(x)y − δ(y)x ∈ C (15)

for all x, y ∈ R.

Proposition 4.10. Let δ : R → Qml(R) be a weak Jordan derivation.

(i) If charR 6= 2 and dimCRC > 16, then δ is a derivation.

(ii) If charR = 2 and dimCRC > 9, then δ = d + ν, where d : R → Qml(R) is a

derivation and ν : R → C is an additive map.
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Proof. We first prove (ii). Since charR = 2, a weak Jordan derivation is also a weak

Lie derivation by (15). Therefore (ii) follows from Theorem 4.4.

We turn to the proof of (i). Suppose that charR 6= 2 and dimCRC > 16. We claim

that there exist additive maps p, q : R → Qml(R) and a bi-additive map ϕ : R2 → C

such that

δ(xy)− δ(x)y = xp(y) + yq(x) + ϕ(x, y) (16)

for all x, y ∈ R. Let B(x, y) := δ(xy + yx). By Lemma 3.11,

B(xw, yz)− B(x,wyz) = B(zxw, y)− B(zx, wy)

for all x, y, z, w ∈ R. It follows from (15) that

(δ(wy)z − δ(wyz))x+ (δ(zx)w − δ(zxw))y

+(δ(xw)y − δ(x)wy)z + (δ(yz)x− δ(y)zx)w

+x(wδ(yz)− δ(wyz)) + y(zδ(xw)− δ(zxw))

+z(xδ(wy)− xwδ(y)) + w(yδ(zx)− yzδ(x)) ∈ C

for all x, y, z, w ∈ R. According to Theorem 2.5, there are bi-additive maps p̃, q̃, s̃ : R2 →
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Qml(R) and a 3-additive map r̃ : R3 → C such that

(δ(xw)− δ(x)w)y = xp̃(y, w) + yq̃(x,w) + ws̃(x, y) + r̃(x, y, w)

for all x, y, w ∈ R. By Theorem 2.5 again, there exist additive maps p, q : R → Qml(R)

and a bi-additive map ϕ : R2 → C such that

δ(xw)− δ(x)w = xp(w) + wq(x) + ϕ(x,w)

for all x,w ∈ R. Hence (16) holds.

Next, let x, y, z ∈ R. By (16), we have

δ
(
x(yz)

)
− δ(x)yz = xp(yz) + yzq(x) + ϕ(x, yz),

δ
(
(xy)z

)
− δ(xy)z = xyp(z) + zq(xy) + ϕ(xy, z).

Thus,

(
δ(xy)− δ(x)y

)
z − x

(
p(yz)− yp(z)

)
− yzq(x) + zq(xy) ∈ C.
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So, by Theorem 2.5, there is an additive map d : R → Qml(R) such that

p(yz)− yp(z) = d(y)z. (17)

By (17) again,

p(xyz)− xp(yz) = d(x)yz,

p(xyz)− xyp(z) = d(xy)z.

Thus,

−xd(y)z = x(yp(z)− p(yz)) = (d(x)y − d(xy))z

and so

(d(xy)− d(x)y − xd(y))z = 0.

This proves that d is a derivation. So, by (17),

(p− d)(yz) = y(p− d)(z).

By [16, Lemma 2.1], there exists a ∈ Qml(R) such that d(x) = p(x)− xa for all x ∈ R.
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So

d(xy)− d(x)y = xd(y) = xp(y)− xya.

Compare it with (16) and let δ̃ = δ − d, and then we have

δ̃(xy)− δ̃(x)y − xya− yq(x) ∈ C. (18)

It follows from (18) that

δ̃(xyz)− δ̃(x)yz − xyza− yzq(x) ∈ C,

δ̃(xyz)− δ̃(xy)z − xyza− zq(xy) ∈ C.

Thus,

(δ̃(xy)− δ̃(x)y)z − yzq(x) + zq(xy) ∈ C.

By Theorem 2.5, there is an additive map A : R → Qml(R) such that

zq(x) = A(x)z
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and so q(x) ∈ C for all x ∈ R. Let Q = δ̃ + q. Then, by (18), we get

Q(xy)−Q(x)y − xya ∈ C. (19)

Let x, y, z ∈ R. Then, by (19),

Q(xyz)−Q(x)yz − xyza ∈ C,

Q(xyz)−Q(xy)z − xyza ∈ C.

So (Q(xy)−Q(x)y)z ∈ C. Since R is not commutative, we see that Q(xy)−Q(x)y = 0

for all x, y ∈ R. It follows from this and (19) that a = 0, p = d and so p is a derivation.

Furthermore, since Q = δ − d+ q, we have

−xQ(x) = Q(x2)−Q(x)x− xQ(x) = µ(x) + q(x2)− 2q(x)x

and so

x(Q(x)− 2q(x)) ∈ C.

Thus, Q(x) = 2q(x) ∈ C for all x ∈ R, and hence δ = d + ν, where d : R → Qml(R) is

a derivation and ν = q : R → C is an additive map. Since charR 6= 2, ν(x)x ∈ C for

all x ∈ R and thus ν = 0, as desired.
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According to Proposition 4.10, we may assume that R is either charR 6= 2 with

dimCRC ≤ 16 or charR = 2 with dimCRC ≤ 9. In either case, Z(R) is nonzero by

Theorem 2.2. We next claim that δ can be assumed to be Z(R)-linear and δ = 0 on

Z(R).

Lemma 4.11. Assume that dimCRC < ∞. Let δ : R → RC be a weak Jordan deriva-

tion.

(i) If charR 6= 2, then there is a derivation d : R → RC such that δ−d is Z(R)-linear

and δ = d on Z(R).

(ii) If charR = 2, then there exist a derivation d : R → RC and an additive map

ν : R → C such that δ + d+ ν is Z(R)-linear and δ + d+ ν = 0 on Z(R).

Proof. (i) Assume that charR 6= 2. Let β, γ ∈ Z(R) and x ∈ R. Then, by (15),

2δ((βγ)x) = 2βγδ(x) + δ(βγ)x+ xδ(βγ) + λ(βγ, x),

and

2δ(β(γx)) = 2βδ(γx) + δ(β)γx+ γxδ(β) + λ(β, γx)

= β(2γδ(x) + δ(γ)x+ xδ(γ) + λ(γ, x)) + δ(β)γx+ γxδ(β) + λ(β, γx)

= 2βγδ(x) + (βδ(γ) + δ(β)γ)x+ x(βδ(γ) + δ(β)γ) + βλ(γ, x) + λ(β, γx).
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Comparing the two equations, we have

(δ(βγ)− βδ(γ)− δ(β)γ)x+ x(δ(βγ)− βδ(γ)− δ(β)γ) ∈ C.

Thus, δ(βγ) = βδ(γ)+δ(β)γ and so δ|Z(R) : Z(R) → RC is a derivation. Next we claim

that δ(Z(R)) ⊆ C. Let 0 6= β ∈ Z(R) and x ∈ R. Then

2δ(β2x2) = 2β2δ(x2) + x2δ(β2) + δ(β2)x2 + λ(β2, x2)

= 2β2(xδ(x) + δ(x)x+ µ(x)) + 2β(x2δ(β) + δ(β)x2) + λ(β2, x2),

and

2δ((βx)2) = 2βxδ(βx) + 2δ(βx)βx+ 2µ(βx)

= βx(2βδ(x) + xδ(β) + δ(β)x+ λ(β, x))

+(2βδ(x) + xδ(β) + δ(β)x+ λ(β, x))βx+ 2µ(βx)

= 2β2(xδ(x) + δ(x)x) + β(x2δ(β2) + δ(β2)x2)

+2βxδ(β)x+ 2βλ(β, x)x+ 2µ(βx).
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Comparing the two equations, we get

xβ(xδ(β)− δ(β)x− λ(β, x)) + β(xδ(β)− δ(β)x− λ(β, x))x ∈ C

and so

x(xδ(β)− δ(β)x− λ(β, x)) + (xδ(β)− δ(β)x− λ(β, x))x ∈ C

for all x ∈ R. This means

[xδ(β)− δ(β)x− λ(β, x), x2] = 0

for all x ∈ R. Note that the proof of [6, Theorem 1] is also valid when we replace

f : R → R by f : R → RC. Thus, there exist α ∈ C and an additive map ξ : R → C

such that xδ(β)− δ(β)x− λ(β, x) = αx+ ξ(x). So x(δ(β)− α)− δ(β)x ∈ C and hence

δ(β) ∈ C. This proves the claim. Since C is the quotient field of Z(R), δ|Z(R) can

be extended to a derivation from C to C. According to [13, Theorem 6] (also see [27,

Theorem 4.1] and [1]), it can also be extended to a derivation d : RC → RC. Thus,

(δ − d)(Z(R)) = 0. Let J := δ − d, 0 6= β ∈ Z(R), and x ∈ R. Then by (15) we have

J(βx) = βJ(x) +
1

2
λ(β, x).
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Thus,

2J(β2x2) = 2β2J(x2) + λ(β2, x2),

and

2J((βx)2) = 2(βxJ(βx) + J(βx)βx+ µ(βx))

= 2βx
(
βJ(x) +

1

2
λ(β, x)

)
+ 2

(
βJ(x) +

1

2
λ(β, x)

)
βx+ 2µ(βx))

= 2β2(xJ(x) + J(x)x) + 2βλ(β, x)x+ 2µ(βx).

Comparing the two equations, we have 2βλ(β, x)x ∈ C and so λ(β, x) = 0. Therefore

(i) has been proved.

(ii) Assume that charR = 2. Let 0 6= β ∈ Z(R). Then, by (15), we have [δ(β), x] ∈

C for all x ∈ R. Thus, δ(Z(R)) ⊆ C. Also, by letting y = βx in (15), we get

[δ(βx) + βδ(x), x] ∈ C for all x ∈ R. According to [15, Theorem 2], there exist

d : Z(R) → C and ψ : Z(R)×R → C such that

δ(βx) = βδ(x) + d(β)x+ ψ(β, x) (20)

for all x ∈ R and β ∈ Z(R). We will show that d : Z(R) → C is a derivation. Let
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β, γ ∈ Z(R) and x ∈ R. Then

δ((βγ)x) + βγδ(x) + d(βγ)x ∈ C,

δ(β(γx)) + βδ(γx) + d(β)γx ∈ C,

βδ(γx) + βγδ(x) + βd(γ)x ∈ C.

Considering the sum of the above three equations, we have

(d(βγ) + βd(γ) + d(β)γ)x ∈ C

for β, γ ∈ Z(R) and x ∈ R. This implies that d(βγ) = βd(γ)+d(β)γ for all β, γ ∈ Z(R),

that is, d is a derivation. Since C is the quotient field of Z(R), d can be uniquely

extended to a derivation from C to itself. By [13, Theorem 6], it can be extended to a

derivation from RC to itself, say the same d. Let J := δ + d. Then, by (20), we have

J(βx) + βJ(x) ∈ C,

J(Z(R)) ⊆ Z(R),

and

J(x2) + [x, J(x)] ∈ C,
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for β ∈ Z(R) and x ∈ R. Choose a C-subspace V of RC such that RC = V ⊕ C as

vector spaces over C. Let π1 : RC → V and π2 : RC → C be the induced projections.

Let J̃ := π1 ◦ J and ν := π2 ◦ J . Then J̃ = δ + d+ ν and

J̃(βx) = βJ̃(x),

J̃(Z(R)) = 0,

and

J̃(x2) + [x, J̃(x)] ∈ C,

for β ∈ Z(R) and x ∈ R, as desired. Hence (ii) is proved.

Now we assume that δ is Z(R)-linear and δ(Z(R)) = 0. Since C is the quotient field

of Z(R), the map δ can be uniquely extended to a map from RC into itself (denoted

by δ also) satisfying


δ(x2)− xδ(x)− δ(x)x ∈ C

δ(cx) = cδ(x)

δ(C) = 0

for all x ∈ RC and c ∈ C. Since δ : RC → RC is C-linear, by the universal property

of tensor product, there is a unique additive map δ from RC ⊗C F into itself which
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maps x ⊗ β to δ(x) ⊗ β for all x ∈ RC and β ∈ F . Since RC ⊗C F ∼= Mn(F ) where

n =
√

dimCRC > 1, we can view δ as a map from Mn(F ) to Mn(F ). By a direct

calculation, we have


δ(x2)− xδ(x)− δ(x)x ∈ F

δ(cx) = cδ(x)

δ(F ) = 0

for all x ∈ Mn(F ) and c ∈ F . Now we will determine the map δ. Let eij’s, 1 ≤ i, j ≤ n,

be the standard matrix units of Mn(F ). It suffices to determine δ(eij) for all i, j because

δ is F -linear. For convenience, we set

δ(eij) = (αij
kl) :=

n∑
k, l=1

αij
klekl.

Lemma 4.12. Let F be a field with charF 6= 2 and δ : M4(F ) → M4(F ) be an F -linear

weak Jordan derivation such that δ(F ) = 0. Then δ is an inner derivation.

Proof. We will compute αij
kl by the following steps.
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Step 1. Calculate (14) for x = eii, i = 1, ..., 4. For x = e11,

δ(e211)− e11δ(e11)− δ(e11)e11 =



−α11
11 0 0 0

0 α11
22 α11

23 α11
24

0 α11
32 α11

33 α11
34

0 α11
42 α11

43 α11
44


∈ F

implies

α11
22 = α11

33 = α11
44 = −α11

11

and

α11
23 = α11

24 = α11
32 = α11

34 = α11
42 = α11

43 = 0.

So

δ(e11) =



α11
11 α11

12 α11
13 α11

14

α11
21 −α11

11 0 0

α11
31 0 −α11

11 0

α11
41 0 0 −α11

11


.
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Similarly, we have

δ(e22) =



α22
11 α22

12 0 0

α22
21 −α22

11 α22
23 α22

24

0 α22
32 α11

11 0

0 α22
42 0 α22

11


,

δ(e33) =



α33
11 0 α33

13 0

0 α33
11 α33

23 0

α33
31 α33

32 −α33
11 α33

34

0 0 α33
43 α33

11


,

and

δ(e44) =



α44
11 0 0 α44

14

0 α44
11 0 α44

24

0 0 α44
11 α44

34

α44
41 α44

42 α44
43 −α44

11


.
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Step 2. Since δ(I4) = 0, we have

α11
11 = α22

11 = α33
11 = α44

11 = 0,

α44
41 = −α11

41, α
44
42 = −α22

42, α
44
43 = −α33

43,

α44
14 = −α11

14, α
44
24 = −α22

24, α
44
34 = −α33

34,

α22
21 = −α11

21, α
22
12 = −α11

12,

α33
31 = −α11

31, α
33
13 = −α11

13,

α33
23 = −α22

23, α
33
32 = −α22

32.

Thus,

δ(e11) =



0 α11
12 α11

13 α11
14

α11
21 0 0 0

α11
31 0 0 0

α11
41 0 0 0


,

δ(e22) =



0 −α11
12 0 0

−α11
21 0 α22

23 α22
24

0 α22
32 0 0

0 α22
42 0 0


,
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δ(e33) =



0 0 −α11
13 0

0 0 −α22
23 0

−α11
31 −α22

32 0 α33
34

0 0 α33
43 0


,

and

δ(e44) =



0 0 0 −α11
14

0 0 0 −α22
24

0 0 0 −α33
34

−α11
41 −α22

42 −α33
43 0


.

Step 3. For each x = eij, i 6= j, calculate (14), and then calculate (15) for y = ekk,

k = 1, 2, 3. For example, by (14), we have

e12δ(e12) + δ(e12)e12 =



α12
21 α12

22 α12
23 α12

24

0 0 0 0

0 0 0 0

0 0 0 0


+



0 α12
11 0 0

0 α12
21 0 0

0 α12
31 0 0

0 α12
41 0 0


∈ F.
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Thus,

α12
21 = α12

23 = α12
24 = α12

31 = α12
41 = 0,

α12
22 = −α12

11,

and so

δ(e12) =



α12
11 α12

12 α12
13 α12

14

0 −α12
11 0 0

0 α12
32 α12

33 α12
34

0 α12
42 α12

43 α12
44


.
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Let x = e12 and y = e33. By (15), we get

e12δ(e33) + δ(e33)e12 + e33δ(e12) + δ(e12)e33

=



0 0 −α22
23 0

0 0 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

0 0 0 0

0 −α11
31 0 0

0 0 0 0



+



0 0 0 0

0 0 0 0

0 α12
32 α12

33 α12
34

0 0 0 0


+



0 0 α12
13 0

0 0 0 0

0 0 α12
33 0

0 0 α12
43 0


∈ F,

and so

α12
13 = α22

23,

α12
32 = α11

31,

α12
33 = α12

34 = α12
43 = 0.
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These give

δ(e12) =



α12
11 α12

12 α22
23 α12

14

0 −α12
11 0 0

0 α11
31 0 0

0 α12
42 0 α12

44


.

Let x = e12 and y = e22, and compute (15). Then

α12
11 = −α11

21,

α12
44 = 0,

α12
14 = α22

24.

These give

δ(e12) =



−α11
21 α12

12 α22
23 α22

24

0 α11
21 0 0

0 α11
31 0 0

0 α12
42 0 0


.
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Again, let x = e12 and y = e11, and compute (15). Then α12
42 = α11

41 and so

δ(e12) =



−α11
21 α12

12 α22
23 α22

24

0 α11
21 0 0

0 α11
31 0 0

0 α11
41 0 0


.

Similarly, we have

δ(e21) =



−α11
12 0 0 0

α21
21 α11

12 α11
13 α11

14

α22
32 0 0 0

α22
42 0 0 0


,

δ(e13) =



−α11
31 −α22

32 α13
13 α33

34

0 0 α11
21 0

0 0 α11
31 0

0 0 α11
41 0


, δ(e31) =



−α11
13 0 0 0

−α22
23 0 0 0

α31
31 α11

12 α11
13 α11

14

α33
43 0 0 0


,
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δ(e14) =



−α11
41 −α22

42 −α33
43 α14

14

0 0 0 α11
21

0 0 0 α11
31

0 0 0 α11
41


, δ(e41) =



−α11
14 0 0 0

−α22
24 0 0 0

−α33
34 0 0 0

α41
41 α11

12 α11
13 α11

14


,

δ(e23) =



0 0 −α11
12 0

−α11
31 −α22

32 α23
23 α33

34

0 0 α22
32 0

0 0 α22
42 0


, δ(e32) =



0 −α11
13 0 0

0 −α22
23 0 0

−α11
21 α32

32 α22
23 α22

24

0 α33
43 0 0


,

δ(e24) =



0 0 0 −α11
12

−α11
41 −α22

42 −α33
43 α24

24

0 0 0 α22
32

0 0 0 α22
42


, δ(e42) =



0 −α11
14 0 0

0 −α22
24 0 0

0 −α33
34 0 0

−α11
21 α42

42 α22
23 α22

24


,

δ(e34) =



0 0 0 −α11
13

0 0 0 −α22
23

−α11
41 −α22

42 −α33
43 α34

34

0 0 0 α33
43


, δ(e43) =



0 0 −α11
14 0

0 0 −α22
24 0

0 0 −α33
34 0

−α11
31 −α22

32 α43
43 α33

34


.

Step 4. Calculate (15) for x = eij and y = eji, i < j. For example, if x = e12 and
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y = e21, then

δ(e11 + e22)− e12δ(e21)− δ(e21)e12 − e21δ(e12)− δ(e12)e21

=



0 0 α11
13 α11

14

0 0 α22
23 α22

24

α11
31 α22

32 0 0

α11
41 α22

42 0 0


−



α21
21 α11

12 α11
13 α11

14

0 0 0 0

0 0 0 0

0 0 0 0


−



0 −α11
12 0 0

0 α21
21 0 0

0 α22
32 0 0

0 α22
42 0 0



−



0 0 0 0

−α11
21 α12

12 α22
23 α22

24

0 0 0 0

0 0 0 0


−



α12
12 0 0 0

α11
21 0 0 0

α11
31 0 0 0

α11
41 0 0 0


∈ F

giving α21
21 = −α12

12. Hence, we get a new

δ(e21) =



−α11
12 0 0 0

−α12
12 α11

12 α11
13 α11

14

α22
32 0 0 0

α22
42 0 0 0


.
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Similarly, we have new

δ(e31) =



−α11
13 0 0 0

−α22
23 0 0 0

−α13
13 α11

12 α11
13 α11

14

α33
43 0 0 0


,

δ(e41) =



−α11
14 0 0 0

−α22
24 0 0 0

−α33
34 0 0 0

−α14
14 α11

12 α11
13 α11

14


,

δ(e32) =



0 −α11
13 0 0

0 −α22
23 0 0

−α11
21 −α23

23 α22
23 α22

24

0 α33
43 0 0


,

δ(e42) =



0 −α11
14 0 0

0 −α22
24 0 0

0 −α33
34 0 0

−α11
21 −α24

24 α22
23 α22

24


,
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and

δ(e43) =



0 0 −α11
14 0

0 0 −α22
24 0

0 0 −α33
34 0

−α11
31 −α22

32 −α34
34 α33

34


.

Step 5. Calculate (15) for (x, y) ∈ {(e12, e31), (e12, e41), (e13, e41)}. For example, if

(x, y) = (e12, e31), then (15) gives

δ(e32)− e12δ(e31)− δ(e31)e12 − e31δ(e12)− δ(e12)e31

=



0 −α11
13 0 0

0 −α22
23 0 0

−α11
21 −α23

23 α22
23 α22

24

0 α33
43 0 0


−



−α22
23 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


−



0 −α11
13 0 0

0 −α22
23 0 0

0 −α13
13 0 0

0 α33
43 0 0



−



0 0 0 0

0 0 0 0

−α11
21 α12

12 α22
23 α22

24

0 0 0 0


−



α22
23 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


∈ F.

Thus, we have α23
23 = −α12

12 + α13
13. Similarly, α24

24 = −α12
12 + α14

14 and α34
34 = −α13

13 + α14
14.
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Step 6. As a result, we get

δ(e11) =



0 α11
12 α11

13 α11
14

α11
21 0 0 0

α11
31 0 0 0

α11
41 0 0 0


,

δ(e22) =



0 −α11
12 0 0

−α11
21 0 α22

23 α22
24

0 α22
32 0 0

0 α22
42 0 0


,

δ(e33) =



0 0 −α11
13 0

0 0 −α22
23 0

−α11
31 −α22

32 0 α33
34

0 0 α33
43 0


,

δ(e44) =



0 0 0 −α11
14

0 0 0 −α22
24

0 0 0 −α33
34

−α11
41 −α22

42 −α33
43 0


,
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δ(e12) =



−α11
21 α12

12 α22
23 α22

24

0 α11
21 0 0

0 α11
31 0 0

0 α11
41 0 0


, δ(e21) =



−α11
12 0 0 0

−α12
12 α11

12 α11
13 α11

14

α22
32 0 0 0

α22
42 0 0 0


,

δ(e13) =



−α11
31 −α22

32 α13
13 α33

34

0 0 α11
21 0

0 0 α11
31 0

0 0 α11
41 0


, δ(e31) =



−α11
13 0 0 0

−α22
23 0 0 0

−α13
13 α11

12 α11
13 α11

14

α33
43 0 0 0


,

δ(e14) =



−α11
41 −α22

42 −α33
43 α14

14

0 0 0 α11
21

0 0 0 α11
31

0 0 0 α11
41


, δ(e41) =



−α11
14 0 0 0

−α22
24 0 0 0

−α33
34 0 0 0

−α14
14 α11

12 α11
13 α11

14


,

δ(e23) =



0 0 −α11
12 0

−α11
31 −α22

32 −α12
12 + α13

13 α33
34

0 0 α22
32 0

0 0 α22
42 0


, δ(e32) =



0 −α11
13 0 0

0 −α22
23 0 0

−α11
21 α12

12 − α13
13 α22

23 α22
24

0 α33
43 0 0


,
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δ(e24) =



0 0 0 −α11
12

−α11
41 −α22

42 −α33
43 −α12

12 + α14
14

0 0 0 α22
32

0 0 0 α22
42


, δ(e42) =



0 −α11
14 0 0

0 −α22
24 0 0

0 −α33
34 0 0

−α11
21 α12

12 − α14
14 α22

23 α22
24


,

δ(e34) =



0 0 0 −α11
13

0 0 0 −α22
23

−α11
41 −α22

42 −α33
43 −α13

13 + α14
14

0 0 0 α33
43


, δ(e43) =



0 0 −α11
14 0

0 0 −α22
24 0

0 0 −α33
34 0

−α11
31 −α22

32 α13
13 − α14

14 α33
34


.

Now, let

a =



0 −α11
12 −α11

13 −α11
14

α11
21 −α12

12 −α22
23 −α22

24

α11
31 α22

32 −α13
13 −α33

34

α11
41 α22

42 α33
43 −α14

14


∈ M4(F ).

Therefore, by a direct computation, we have δ(x) = [a, x], for all x ∈ M4(F ), as

desired.

Lemma 4.13. Let F be a field and δ : M3(F ) → M3(F ) an F -linear weak Jordan

derivation such that δ(F ) = 0.

(i) If charF 6= 2, then δ is an inner derivation.
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(ii) If charF = 2, then there exist an inner derivation d : M3(F ) → M3(F ) and an

F -linear map ν : M3(F ) → F such that δ = d+ ν.

Proof. For (i), assume that charF 6= 2. Then, by following the same process given in

the proof of Lemma 4.12, we have

δ(e11) =


0 α11

12 α11
13

α11
21 0 0

α11
31 0 0

 ,

δ(e22) =


0 −α11

12 0

−α11
21 0 α22

23

0 α22
32 0

 ,

δ(e33) =


0 0 −α11

13

0 0 −α22
23

−α11
31 −α22

32 0

 ,

δ(e12) =


−α11

21 α12
12 α22

23

0 α11
21 0

0 α11
31 0

 , δ(e21) =


−α11

12 0 0

−α12
12 α11

12 α11
13

α22
32 0 0

 ,
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δ(e13) =


−α11

31 −α22
32 α13

13

0 0 α11
21

0 0 α11
31

 , δ(e31) =


−α11

13 0 0

−α22
23 0 0

−α13
13 α11

12 α11
13

 ,

δ(e23) =


0 0 −α11

12

−α11
31 −α22

32 −α12
12 + α13

13

0 0 α22
32

 , δ(e32) =


0 −α11

13 0

0 −α22
23 0

−α11
21 α12

12 − α13
13 α22

23

 .

Let

a =


0 −α11

12 −α11
13

α11
21 −α12

12 −α22
23

α11
31 α22

32 −α13
13

 ∈ M3(F ).

Then δ(x) = [a, x], for all x ∈ M3(F ), as desired.

For (ii), assume that charF = 2. Then, by following the same process given in the

proof of Lemma 4.12, we have

δ(e11) =


0 α11

12 α11
13

α11
21 0 0

α11
31 0 0

+ α11
11I3,

76



doi:10.6342/NTU202304234

δ(e22) =


0 α11

12 0

α11
21 0 α22

23

0 α22
32 0

+ α22
11I3,

δ(e33) =


0 0 α11

13

0 0 α22
23

α11
31 α22

32 0

+ (α11
11 + α22

11)I3,

δ(e12) =


α11
21 α12

12 α22
23

0 α11
21 0

0 α11
31 0

+ (α12
11 + α11

21)I3,

δ(e21) =


α11
12 0 0

α12
12 α11

12 α11
13

α22
32 0 0

+ (α21
11 + α11

12)I3,
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δ(e13) =


α11
31 α22

32 α13
13

0 0 α11
21

0 0 α11
31

+ (α13
11 + α11

31)I3,

δ(e31) =


α11
13 0 0

α22
23 0 0

α13
13 α11

12 α11
13

+ (α31
11 + α11

13)I3.

δ(e23) =


0 0 α11

12

α11
31 α22

32 α12
12 + α13

13

0 0 α22
32

+ (α23
22 + α22

32)I3,

δ(e32) =


0 α11

13 0

0 α22
23 0

α11
21 α12

12 + α13
13 α22

23

+ (α32
22 + α22

23)I3.
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Let

a =


0 α11

12 α11
13

α11
21 α12

12 α22
23

α11
31 α22

32 α13
13

 ∈ M3(F ).

Then δ = d+ ν, where d(x) = [a, x] and

ν(x) =
(
α11
11x11 + α22

11x22 + (α11
11 + α22

11)x33 + (α12
11 + α11

21)x12 + (α21
11 + α11

12)x21

+(α13
11 + α11

31)x13 + (α31
11 + α11

13)x31 + (α23
22 + α22

32)x23 + (α32
22 + α22

23)x32
)
I3,

for all x = (xij) ∈ M3(F ), as asserted.

Lemma 4.14. Let F be a field and δ : M2(F ) → M2(F ) be an F -linear weak Jordan

derivation such that δ(F ) = 0. Then δ = d+L+ζ for some inner derivation d : M2(F ) →

M2(F ) and F -linear maps L, ζ : M2(F ) → M2(F ). The F -linear maps L and ζ are of

the forms

L(x) =

 0 β4x21

β5x12 + β6x21 0


and

ζ(x) = (β1(x11 − x22) + β2x12 + β3x21)

 1 0

0 −1
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for all x = (xij) ∈ M2(F ), where

β1 = α11
11, β2 = α12

11 + α11
21, β3 = α21

11 + α11
12,

β4 = α21
12, β5 = α12

21, β6 = α12
12 + α21

21.

Moreover, δ is a derivation if and only if βi = 0 for all i = 1, ..., 6.

Proof. We follow the same process step by step as given in the proof of Lemma 4.12.

Step 1. Calculate (14) for x = eii, i = 1, 2. For x = e11,

δ(e211)− e11δ(e11)− δ(e11)e11 =

 −α11
11 0

0 α11
22

 ∈ F

implies −α11
11 = α11

22. Similarly, for x = e22, we have −α22
11 = α22

22. Thus

δ(e11) =

 α11
11 α11

12

α11
21 −α11

11

 , δ(e22) =

 α22
11 α22

12

α22
21 −α22

11

 .

Step 2. Since δ(I2) = 0, we have α11
11 + α22

11 = 0, α11
12 + α22

12 = 0, and α11
21 + α22

21 = 0.

From these, we have

δ(e22) =

 −α11
11 −α11

12

−α11
21 α11

11

 .
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Step 3. For each x = eij, i 6= j, calculate (14), and then calculate (15) for y = e11.

For x = e12,

e12δ(e12) + δ(e12)e12 =

 α12
21 α12

22 + α12
11

0 α12
21

 ∈ F

implies α12
22 = −α12

11. Thus

δ(e12) =

 α12
11 α12

12

α12
21 −α12

11

 .

Similarly, for x = e21, we have α21
22 = −α21

11 and so

δ(e21) =

 α21
11 α21

12

α21
21 −α21

11

 .

Note that

δ(e12)− e12δ(e11)− δ(e11)e12 − e11δ(e12)− δ(e12)e11 = −(α12
11 + α11

21)I2

and

δ(e21)− e21δ(e11)− δ(e11)e21 − e11δ(e21)− δ(e21)e11 = −(α21
11 + α11

12)I2.
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Step 4. Calculate (15) for x = e12 and y = e21. We have

e12δ(e21) + δ(e21)e12 + e21δ(e12) + δ(e12)e21 = (α12
12 + α21

21)I2.

Step 5. In M2(F ) case, this step does not exist.

Step 6. As a result, we get

δ(e11) =

 0 α11
12

α11
21 0

+ α11
11

 1 0

0 −1

 ,

δ(e22) =

 0 −α11
12

−α11
21 0

+ (−α11
11)

 1 0

0 −1

 ,

δ(e12) =

 −α11
21 α12

12

0 α11
21

+

 0 0

α12
21 0

+ (α12
11 + α11

21)

 1 0

0 −1

 ,

δ(e21) =

 −α11
12 0

−α12
12 α11

12

+

 0 α21
12

α12
12 + α21

21 0

+ (α21
11 + α11

12)

 1 0

0 −1

 .
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Let

a =

 0 −α11
12

α11
21 −α12

12

 ∈ M2(F )

and d(x) = [a, x] for x ∈ M2(F ). Then δ = d + L + ζ, where L and ζ are of the forms

as in the description of this Lemma.

Finally we show the last statement. If βi = 0 for all i = 1, ..., 6, then δ = d is

a derivation. Conversely, assume that δ is a derivation. In particular, it is a Jordan

derivation. Note that δ is a Jordan derivation if and only if

δ(x2)− xδ(x)− δ(x)x = 0

and

δ(xy + yx)− xδ(y)− yδ(x)− δ(x)y − δ(y)x = 0

for all x, y ∈ {eij}i,j=1,2. From the above computations, we see that βi = 0 for all

i = 1, ..., 6. Hence the last statement holds.

Proof of Theorem 4.5. Recall that, by Proposition 4.10, we can assume that dimCRC ≤

16 if charR 6= 2, and dimCRC ≤ 9 if charR = 2. Also, it follows from Lemma 4.11 that

we can assume that δ is Z(R)-linear and δ(Z(R)) = 0, and let δ : Mn(F ) → Mn(F ) be an

extension of δ as above, where n =
√

dimCRC > 2. For (i), suppose that dimCRC ≤ 16
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and charR 6= 2. Then, by Lemma 4.12 and Lemma 4.13, δ is a derivation, and so is δ.

Hence (i) holds.

Now we turn to prove (ii). Assume that dimCRC = 9 and charR = 2. It follows

from Lemma 4.13 that there exist an a ∈ RC⊗CF and an F -linear map ν : RC⊗CF →

F such that δ(x) = [a, x] + ν(x) for all x ∈ RC ⊗C F . If F = C, then a ∈ RC and ν

maps R into C, as asserted. Suppose that dimCF = 3. Let {1, w2, w3} be a basis of F

over C. Then

a = a1 ⊗ 1 + a2 ⊗ w2 + a3 ⊗ w3,

for some a1, a2, a3 ∈ RC. Thus,

[a, x] = [a1, x]⊗ 1 + [a2, x]⊗ w2 + [a3, x]⊗ w3

for all x ∈ R. Also, we write

ν(x) = ν1(x)⊗ 1 + ν2(x)⊗ w2 + ν3(x)⊗ w3

for all x ∈ R, where νi : RC → C. Thus, we have

δ(x)⊗ 1 = ([a1, x] + ν1(x))⊗ 1 + ([a2, x] + ν2(x))⊗ w2 + ([a3, x] + ν3(x))⊗ w3
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for all x ∈ R. This means δ(x) = [a1, x] + ν(x) for x ∈ R, where ν = ν1|R : R → C, as

desired. □

Proof of Theorem 4.6. By Lemma 4.11, we can assume that δ is Z(R)-linear and

δ(Z(R)) = 0, and let δ : M2(F ) → M2(F ) be an extension of δ as above. Hence

Theorem 4.6 follows directly from Lemma 4.14. □
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