Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author曾品萱zh_TW
dc.contributor.authorPin-Hsuan Tsengen
dc.date.accessioned2023-11-20T16:15:12Z-
dc.date.available2023-11-21-
dc.date.copyright2023-11-20-
dc.date.issued2023-
dc.date.submitted2023-10-25-
dc.identifier.citation李雅雯,利用液相層析串聯高解析質譜法建立人參皂苷及皂苷元分析平台。國立台灣大學食品科技研究所學位論文 2021。臺北,臺灣。
郭英傑,利用酵母菌進行人參皂苷的生物轉化作用。國立台灣大學食品科技研究所學位論文 2015。臺北,臺灣。
Attele, A. S.; Wu, J. A.; Yuan, C. S., Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 1999, 58, 1685-1693.
Baek, S. H.; Bae, O. N.; Park, J. H., Recent methodology in ginseng analysis. J. Ginseng Res. 2012, 36, 119-134.
Biswas, T.; Dwivedi, U. N., Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 2019, 256, 1463-1486.
Botstein, D.; Fink, G. R., Yeast: an experimental organism for modern biology. Science 1988, 240, 1439-1443.
Chen, J. Y.; Chung, T. Y.; Li, F. Y.; Lin, N. H.; Tzen, J. T., Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta. Pharmacol. Sin. 2009, 30, 61-69.
Chen, W.; Balan, P.; Popovich, D. G., Ginsenosides analysis of New Zealand–grown forest Panax ginseng by LC-QTOF-MS/MS. J. Ginseng Res. 2020, 44, 552-562.
Cho, J. G.; Lee, M. K.; Lee, J. W.; Park, H. J.; Lee, D. Y.; Lee, Y. H.; Yang, D. C.; Baek, N. I., Physicochemical characterization and NMR assignments of ginsenosides Rb1, Rb2, Rc, and Rd isolated from Panax ginseng. J. Ginseng Res. 2010, 34, 113-121.
Dong, W. W.; Zhao, J.; Zhong, F. L.; Zhu, W. J.; Jiang, J.; Wu, S.; Yang, D. C.; Li, D.; Quan, L. H., Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry. J. Ginseng Res. 2017, 41, 540-547.
Fuzzati, N., Analysis methods of ginsenosides. J. Chromatogr. B 2004, 812, 119-133.
Ge, Y. W.; Zhu, S.; Yoshimatsu, K.; Komatsu, K., MS/MS similarity networking accelerated target profiling of triterpene saponins in Eleutherococcus senticosus leaves. Food Chem. 2017, 227, 444-452.
Hou, M. Q.; Wang, R. F.; Zhao, S. J.; Wang, Z. T., Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021, 11, 1813-1834.
Huang, X.; Liu, Y.; Zhang, Y.; Li, S.-P.; Yue, H.; Chen, C.-B.; Liu, S.-Y., Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MS(n). J. Ginseng Res. 2019, 43, 27-37.
Irfan, M.; Jeong, D.; Kwon, H. W.; Shin, J. H.; Park, S. J.; Kwak, D.; Kim, T. H.; Lee, D. H.; Park, H. J.; Rhee, M. H., Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc. Pharmacol. 2018, 109, 45-55.
Jang, M.; Min, J. W.; Yang, D. U.; Jung, S. K.; Kim, S. Y.; Yang, D. C., Ethanolic fermentation from red ginseng extract using Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Food Sci. Biotechnol. 2011, 20(1), 131-135.
Jordan, P.; Choe, J. Y.; Boles, E.; Oreb, M., Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci. Rep. 2016, 6, e23502.
Kang, K. S.; Kim, H. Y.; Yamabe, N.; Yokozawa, T., Stereospecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Bioorg. Med. Chem. Lett. 2006, 16, 5028-5031.
Kao, T. H.; Huang, S. C.; Inbaraj, B. S.; Chen, B. H., Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry. Anal. Chim. Acta 2008, 626, 200-211.
Kim, B. G.; Choi, S. Y.; Kim, M. R.; Suh, H. J.; Park, H. J.. Changes of ginsenosides in Korean red ginseng (Panax ginseng) fermented by Lactobacillus plantarum M1. Process. Biochem. 2010, 45, 1319-1324.
Kim, Y.-J.; Zhang, D.; Yang, D.-C., Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015, 33, 717-735.
Lee, K. Y.; Lee, Y. H.; Kim, S. I.; Park, J. H.; Lee, S. K., Ginsenoside-Rg5 suppresses cyclin e-dependent protein kinase activity via up-regulating p21 (Cip/WAF1) and down-regulating cyclin E in SK-HEP-1 cells. Anticancer Res. 1997, 17, 1067-1072.
Li, F.; Lv, C. N.; Li, Q.; Wang, J.; Song, D.; Liu, P. P.; Zhang, D. D.; Lu, J. C., Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J. Ginseng Res. 2017, 41, 487-495.
Lim, S. I.; Cho, C. W.; Choi, U. K.; Kim, Y. C., Antioxidant activity and ginsenoside pattern of fermented white ginseng. J. Ginseng Res. 2010, 34, 168-174.
Lin, H. Q.; Zhu, H. L.; Tan, J.; Wang, H.; Dong, Q. G.; Wu, F. L.; Liu, Y. H.; Li, P. Y.; Liu, J. P., Non-targeted metabolomic analysis of methanolic extracts of wild-simulated and field-grown american ginseng. Molecules 2019, 24, e1053.
Liu, J.; Gan, H.; Li, T.; Wang, J.; Du, G.; An, Y.; Yan, X.; Geng, C., The metabolites and biotransformation pathways in vivo after oral administration of ocotillol, RT5, and PF11. Biomed Chromatogr. 2020, 34, e4856.
Lu, J. G.; Zhu, L.; Lo, K. Y. W.; Leung, A. K. M.; Ho, A. H. M.; Zhang, H. Y.; Zhao, Z. Z.; Fong, D. W. F.; Jiang, Z. H., Chemical differentiation of two taste variants of Gynostemma pentaphyllum by using UPLC–Q-TOF-MS and HPLC–ELSD. J. Agric. Food Chem. 2013, 61, 90–97.
Luo, B. Y.; Jiang, J. L.; Fang, Y. F.; Yang, F.; Yin, M. D.; Zhang, B. C.; Zhao, R. R.; Shao, J. W., The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications. Pharmacol. Res. 2020, 159, e105031.
Ma, L.-Y.; Zhang, Y.-B.; Zhou, Q.-L.; Yang, Y.-F.; Yang, X.-W., Simultaneous determination of eight ginsenosides in rat plasma by liquid chromatography–electrospray ionization tandem mass spectrometry: Application to their pharmacokinetics. Molecules 2015, 20, 21597-21608.
Mi, Y. G.; Xu, X. Y.; Hong, L. L.; Jiang, M. T.; Chen, B. X.; Li, X. H.; Wang, H. D.; Zou, Y. D.; Zhao, X.; Li, Z., Comparative characterization of the ginsenosides from six Panax herbal extracts and their In Vitro rat gut microbial metabolites by advanced liquid chromatography–mass spectrometry approaches. J. Agric. Food Chem. 2023, 71, 9391-9403.
Nag, S. A.; Qin, J. J.; Wang, W.; Wang, M. H.; Wang, H.; Zhang, R. W., Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2012, 3, e25.
Park, H.-W.; In, G.; Kim, J.-H.; Cho, B.-G.; Han, G.-H.; Chang, I.-M., Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS. J. Ginseng Res. 2014, 38, 59-65.
Park, I. H.; Han, S. B.; Kim, J. M.; Piao, L.; Kwon, S. W.; Kim, N. Y.; Kang, T. L.; Park, M. K.; Park, J. H., Four new acetylated ginsenosides from processed ginseng (sun ginseng) Arch. Pharm. Res. 2002, 25, e837.
Park, M. K.; Kim, B. K.; Park, J. H.; Shin, Y. G.; Cho, K. H.; Do, Y. M., Photoreactivity of anthraquinones for the analysis of ginsenosides using photoreduction fluorescence detection-HPLC. Arch. Pharm. Res. 1996, 19, 562-565.
Piao, X. M.; Huo, Y.; Kang, J. P.; Mathiyalagan, R.; Zhang, H.; Yang, D. U.; Kim, M.; Yang, D. C.; Kang, S. C.; Wang, Y. P., Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020a, 25, e4390.
Piao, X. M.; Zhang, H.; Kang, J. P.; Yang, D. U.; Li, Y. L.; Pang, S. F.; Jin, Y. P.; Yang, D. C.; Wang, Y. P., Advances in saponin diversity of Panax ginseng. Molecules 2020b, 25, e3452.
Qi, L. W.; Wang, C. Z.; Yuan, C. S., American ginseng: Potential structure-function relationship in cancer chemoprevention. Biochem. Pharmacol. 2010, 80, 947-954.
Qi, L. W.; Wang, C. Z.; Yuan, C. S., Isolation and analysis of ginseng: advances and challenges. Nat. Prod. Rep. 2011, 28, 467-495.
Qi, L. W.; Wang, H. Y.; Zhang, H.; Wang, C. Z.; Li, P.; Yuan, C. S., Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1230, 93-99.
Quan, K.; Liu, Q.; Wan, J.-Y.; Zhao, Y.-J.; Guo, R.-Z.; Alolga, R. N.; Li, P.; Qi, L.-W., Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep 2015, 5, 8598.
Ratan, Z. A.; Haidere, M. F.; Hong, Y. H.; Park, S. H.; Lee, J. O.; Lee, J.; Cho, J. Y., Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199-210.
Rauniyar, N., Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int. J. Mol. Sci. 2015, 16, 28566-28581.
Shangguan, D.; Han, H. W.; Zhao, R.; Zhao, Y. X.; Xiong, S. X.; Liu, G. Q., New method for high-performance liquid chromatographic separation and fluorescence detection of ginsenosides. J. Chromatogr. A 2001, 910, 367-372.
Shin, C. K.; Oh, D. K., Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit. Rev. Biotechnol. 2016, 36, 1036-1049.
Shin, J. H.; Kwon, H. W.; Cho, H. J.; Rhee, M. H.; Park, H. J., Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+](i) mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets. J. Ginseng Res. 2015, 39, 354-364.
Shin, Y. W.; Bae, E. A.; Han, M. J.; Kim, D. H., Metabolism of ginsenoside Rg5, a main constituent isolated from red ginseng, by human intestinal microflora and their antiallergic effect. J. Microbiol. Biotechnol. 2006, 16, 1791-1798.
Simon, J. A.; Bedalov, A., Yeast as a model system for anticancer drug discovery. Nat. Rev. Cancer 2004, 4, 481-492.
Son, Y. M.; Jeong, D. H.; Park, H. J.; Rhee, M. H., The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation. J. Ginseng Res. 2017, 41, 96-102.
Song, F.; Liu, Z.; Liu, S.; Cai, Z., Differentiation and identification of ginsenoside isomers by electrospray ionization tandem mass spectrometry. Anal. Chim. Acta 2005, 531, 69-77.
Sun, B. S.; Gu, L. J.; Fang, Z. M.; Wang, C. Y.; Wang, Z.; Lee, M. R.; Li, Z.; Li, J. J.; Sung, C. K., Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. J. Pharm. Biomed. Anal. 2009, 50, 15-22.
Sun, S.; Qi, L. W.; Du, G. J.; Mehendale, S. R.; Wang, C. Z.; Yuan, C. S. Red notoginseng: Higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food Chem. 2011, 125, 1299-1305.
Wan, J. Y.; Wang, C. Z.; Zhang, Q. H.; Much, W. M.; Bissonnette, M.; Chang, B. E.; Li, P.; Qi, L. W.; Yuan, C. S., Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Chromatogr. B 2016, 1015, 62-73.
Wang, H. Y.; Hua, H. Y.; Liu, X. Y.; Liu, J. H.; Yu, B. Y., In vitro biotransformation of red ginseng extract by human intestinal microflora: Metabolites identification and metabolic profile elucidation using LC–Q-TOF/MS. J. Pharm. Biomed. Anal. 2014a, 98, 296-306.
Wang, J. R.; Yau, L. F.; Gao, W. N.; Liu, Y.; Yick, P. W.; Liu, L.; Jiang, Z. H., Quantitative comparison and metabolite profiling of saponins in different parts of the root of panax notoginseng. J. Agri. Food Chem. 2014b, 62, 9024-9034.
Wang, W.; Zhao, Y. Q.; Rayburn, E. R.; Hill, D. L.; Wang, H.; Zhang, R. W., In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother. Pharmacol. 2007, 59, 589-601.
Wang, Y. Z.; Xu, Q.; Wu, W.; Liu, Y.; Jiang, Y.; Cai, Q. Q.; Lv, Q. Z.; Li, X. Y., Brain transport profiles of ginsenoside Rb1 by glucose transporter 1: In Vitro and in Vivo. Front. Pharmacol. 2018, 9, e398.
Xiong, J.; Sun, M.; Guo, J.; Huang, L.; Wang, S.; Meng, B.; Ping, Q., Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1. J. Pharm. Pharmacol. 2009, 61, 381–386.
Xiu, Y.; Zhao, H. X.; Gao, Y.; Liu, W. L.; Liu, S. Y., Chemical transformation of ginsenoside Re by a heteropoly acid investigated using HPLC-MSn/HRMS. New J. Chem. 2016, 40, 9073-9080.
Yang, W. Z.; Hu, Y.; Wu, W. Y.; Ye, M.; Guo, D. A., Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 2014, 106, 7-24.
Yang, W.; Qiao, X.; Li, K.; Fan, J.; Bo, T.; Guo, D. A.; Ye, M., Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm. Sin. B 2016, 6, 568-575.
Yao, C. L.; Pan, H. Q.; Wang, H.; Yao, S. A.; Yang, W. Z.; Hou, J. J.; Jin, Q. H.; Wu, W. Y.; Guo, D. A., Global profiling combined with predicted metabolites screening for discovery of natural compounds: Characterization of ginsenosides in the leaves of Panax notoginseng as a case study. J. Chromatogr. A 2018, 1538, 34-44.
Zhang, G. H.; Ma, C. H.; Zhang, J. J.; Chen, J. W.; Tang, Q. Y.; He, M. H.; Xu, X. Z.; Jiang, N. H.; Yang, S. C., Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 2015, 16, e159.
Zhou, Q. L.; Zhu, D. N.; Yang, Y. F.; Xu, W.; Yang, X. W., Simultaneous quantification of twenty-one ginsenosides and their three aglycones in rat plasma by a developed UFLC-MS/MS assay: Application to a pharmacokinetic study of red ginseng. J. Pharm. Biomed. Anal. 2017, 137, 1-12.
Zhu, D.; Zhou, Q.; Li, H.; Li, S.; Dong, Z.; Li, D.; Zhang, W., Pharmacokinetic characteristics of steamed notoginseng by an efficient LC–MS/MS method for simultaneously quantifying twenty-three triterpenoids. J. Agric. Food Chem. 2018, 66, 8187-8198.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91171-
dc.description.abstract人參皂苷 (ginsenosides) 為包含人參屬 (Panax) 之多種植物具生理活性成分。人參皂苷具有多元結構,活性與結構息息相關,且成分受到植物來源與加工的改變。因此可鑑別其組成的分析平臺是重要的品質管制工作。本研究使用液相層析串聯高解析度軌道阱質譜儀 (ultra-high performance liquid chromatography coupled to (Orbitrap) high resolution mass spectrometry, UHPLC-HRMS) 建立鑑別79種皂苷與5種皂苷元之方法。高解析質譜分析平台藉由化合物層析性質、精確分子量、同位素分佈與分子斷裂模式可以鑑別出4種齊墩果烷酸型 (oleanolic acid type, OA)、7種奧克梯隆型 (ocotillol type, OT)、30種原人參三醇 (protopanaxatriol, PPT)、43種原人參二醇 (protopanaxadiol, PPD) 人參皂苷。其中包含6種乙醯化 (acetyl-) 、8種丙二醯化 (malonyl-)、1種丁烯醯化 (butenoyl-) 及1種辛烯醯化 (octenoyl-) 人參皂苷,還有8對鏡相異構物,分別是24(S)/(R)-Pseudoginsenoside F11、20(S)/(R)-notoginsenoside R2、20(S)/(R)-ginsenoside Rh1、20(S)/(R)-ginsenoside Rg2、20(S)/(R)-ginsenoside Rg3、20(S)/(R)-ginsenoside Rs3、20(S)/(R)-protopanaxatriol、20(S)/(R)-protopanaxadiol。使用此分析平台對各種類人參與其商業產物進行分析,結果顯示所分析之亞洲參、三七、西洋參、絞股藍之人參皂苷以PPT型及PPD型人參皂苷為主要型態,但刺五加只有OA型皂苷。紅參中低極性人參皂苷含量比例較高。經酵母菌 (Saccharomyces cerevisiae) 發酵的人參皂苷,ginsenoside Rd含量增加。將酵母菌破菌後發現有23種人參皂苷出現在細胞內。此分析平台可有效辨識人參皂苷及皂苷元指紋圖譜及應用於人參原料和相關產品進行品質管制及加工監控指標,還可以用來分析微生物對人參皂苷的轉換。zh_TW
dc.description.abstractGinsenosides are the major bioactive ingredients in ginseng. Ginsenosides have structure reldiversity. Composition and the potential pharmacological activities have altered by biotaic sources and processing. It is necessary to establish an analytical platform to identify their composition. In this study, an ultra-high performance liquid chromatography coupled to high resolution (Orbitrap) mass spectrometry (UHPLC-HRMS/MS) was used to establish a method for the identification of 79 saponins and 5 sapogenins. The high-resolution mass spectrometry platform can identify 4 oleanolic acid type (OA), 7 ocotillol type (OT), 30 protopanaxatriol type (PPT), and 43 protopanaxadiol type (PPD) saponins based on compound chromatographic properties, precise molecular weight, isotope distribution and molecular fragmentation patterns. There were 6 acetyl-ginsenosides, 8 malonyl-ginsenosides, 1 butenoyl- ginsenosides, 1 octenoyl-ginsenosides, and 8 pairs of isomers that can be identified. PPD and PPT type saponins were the major components in Panax ginseng, Panax notoginseng, P. quinquefolium, and Gymnostemma pentaphyllum. At the same time, Eleutherococcus senticosus only had OA type saponins. The relative content of low polarity ginsenosides in red ginsengs is higher than that in Panax ginseng. The content of ginsenoside Rd increased after fermentation by Saccharomyces cerevisiae. Moreover, there were 23 ginsenosides in the intracellular space. The analytical platform established can be an effective tool to obtain the fingerprint of ginsenosides and sapogenins for quality control of ginseng raw material and products and indices of process monitoring. It can also be used to analyze the bioconversion of ginsenosides by yeast.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:15:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-20T16:15:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XIX
第一章、前言 1
第二章、文獻回顧 2
2.1人參皂苷 2
2.1.1人參皂苷的化學結構 2
2.1.2人參皂苷的合成 4
2.1.3人參皂苷結構與生理活性關聯性 5
2.1.4人參皂苷結構與吸收代謝速率關聯性 7
2.2人參皂苷的分布 7
2.2.1植物來源 7
2.2.2人參皂苷加工過程的轉變 8
2.2.3人參皂苷生物轉換 9
2.3人參皂苷之吸收評估 10
2.4人參皂苷結構分析 12
2.4.1高效液相層析 12
2.4.2質譜結構分析 13
2.4.3核磁共振 14
第三章、研究目的及架構 16
第四章、材料與方法 17
4.1實驗材料 17
4.1.1植物樣品 17
4.1.2菌株 17
4.2實驗藥品 18
4.2.1標準品 18
4.2.2化學藥品 18
4.3實驗儀器及數據處理軟體 18
4.3.1前處理儀器設備 19
4.3.2超高效液相層析串聯質譜儀 19
4.3.3數據處理軟體 19
4.4實驗方法 20
4.4.1植物樣品前處理 20
4.4.2酸水解 20
4.4.3酵母菌對人參皂苷的轉換與吸收實驗 20
4.4.4層析儀的移動相配製與相關參數設定 21
4.4.5質譜儀參數設定 21
第五章、結果與討論 23
5.1人參皂苷皂苷分離條件優化 23
5.1.1人參皂苷以超高效能液相層析儀分離 23
5.1.2人參皂苷以高解析質譜儀解析結構 28
5.2人參皂苷在植物來源樣品中的分布 30
5.2.1人參皂苷在亞洲參、三七、西洋參、絞股藍及刺五加的分布 30
5.2.2人參皂苷在亞洲參葉、根、花與莖的分布 35
5.2.3人參皂苷在白參與紅參的分布 39
5.3酵母菌對人參皂苷的轉換與吸收 41
5.3.1酵母菌細胞外人參皂苷的轉換 41
5.3.2酵母菌能吸收的人參皂苷 45
第六章、結論 48
第七章、參考文獻 49
第八章、附錄 55
-
dc.language.isozh_TW-
dc.subject液相層析串聯高解析度質譜法zh_TW
dc.subject生物轉換zh_TW
dc.subject人參皂苷zh_TW
dc.subject三萜類皂素zh_TW
dc.subject譜型分析zh_TW
dc.subject液相層析串聯高解析度質譜法zh_TW
dc.subject三萜類皂素zh_TW
dc.subject人參皂苷zh_TW
dc.subject生物轉換zh_TW
dc.subject譜型分析zh_TW
dc.subjectbioconversionen
dc.subjectGinsenosideen
dc.subjecttriterpeneoid saponinen
dc.subjectUHPLC-HRMS/MSen
dc.subjectprofiling platformen
dc.subjectbioconversionen
dc.subjectGinsenosideen
dc.subjecttriterpeneoid saponinen
dc.subjectUHPLC-HRMS/MSen
dc.subjectprofiling platformen
dc.title人參皂苷譜型分析平台與其生物轉換應用zh_TW
dc.titleProfiling platform for ginsenosides and its bioconversion applicationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor陳宏彰zh_TW
dc.contributor.coadvisorHong-Jhang Chenen
dc.contributor.oralexamcommittee羅翊禎;方銘志;張永和;王惠珠zh_TW
dc.contributor.oralexamcommitteeYi-Chen Lo;Ming-Chih Fang;Yung-Ho Chang;Huei-Ju Wangen
dc.subject.keyword人參皂苷,三萜類皂素,液相層析串聯高解析度質譜法,譜型分析,生物轉換,zh_TW
dc.subject.keywordGinsenoside,triterpeneoid saponin,UHPLC-HRMS/MS,profiling platform,bioconversion,en
dc.relation.page208-
dc.identifier.doi10.6342/NTU202304205-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-10-25-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
23.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved