請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91056完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇柏青 | zh_TW |
| dc.contributor.advisor | Borching Su | en |
| dc.contributor.author | 吳昱頡 | zh_TW |
| dc.contributor.author | Yu-Chieh Wu | en |
| dc.date.accessioned | 2023-10-24T16:55:15Z | - |
| dc.date.available | 2025-09-01 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Y. Albagory and F. Alraddady. Optimum extrapolation techniques for two-dimensional antenna array tapered beamforming. Electronics, 11(13), 2022.
S. Chen, S. Sun, and S. Kang. System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in b5g and 6g. China Communications, 17(12):156–171, 2020. I. Cohen, J. Benesty, and J. Chen. Differential kronecker product beamforming. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(5):892–902, 2019. J. Dattorro. Convex Optimization and Euclidean Distance Geometry. Meboo Publishing, 2006. I. del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159:123–135, 2019. M. Fazel, C. Fonteneau, M. Crussi‘ere, and B. Jahan. A systematic beam broadening method for large phased arrays. 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pages 7–12, 2021. A. Frank and I. Cohen. Constant-beamwidth kronecker product beamforming with nonuniform planar arrays. Frontiers in Signal Processing, 2, 2022. H. Friis and G. S.V.Kyriacou. A note on a simple transmission formula. Proceedings of the IRE, 34(5):254–256, May 1946. M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, Mar. 2014. A. Guidotti, A. Vanelli-Coralli, A. Mengali, and S. Cioni. Non-terrestrial networks: Link budget analysis. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pages 1–7, 2020. M. Ibarra, M. A. Panduro, Ángel G. Andrade, and A. Reyna. Design of sparse concentric rings array for leo satellites. Journal of Electromagnetic Waves and Applications, 29(15):1983 2001, 2015. O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis. Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys & Tutorials, 23(1):70–109, 2021. S. Lei, W. Yang, Z. Lin, Z. He, H. Hu, Z. Zhao, and Y. Bao. An Excitation-DRR Control Approach for Wide-Beam Power Gain Pattern Synthesis. Signal Processing, 204:108858, 2023. A. Mahanfar. Uni-dimensional steering of phased array antennas. U.S. Patent 10 770 790 B1, September 2020. A. Mahanfar. Uni-dimensional steering of phased array antennas, U.S. Patent 10, 770, 790 B1, Sep. 8, 2020. Z. quan Luo, W. kin Ma, A. M. cho So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20–34, May 2010. M. A. Richards. Fundamentals of Radar Signal Processing, 2nd ed. McGraw-Hill Education, 2014. W. Strickler, P. Correa, and G. Bollendorf. A better approach to measuring gan pa linearity. Microwave Journal, June 2020. Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi. Broadband leo satellite communications: Architectures and key technologies. IEEE Wireless Communications, 26(2):55–61, 2019. G. T. . V15.4.0. Study on new radio (nr) to support non terrestrial networks (release 15). Technical report, Technical Specification Group Radio Access Network, September 2019. G. T. . v16.0.0. Solutions for nr to support non-terrestrial networks (ntn) (release 16). Technical report, Technical Specification Group Radio Access Network, December 2019. W. Wang, L. Gao, R. Ding, J. Lei, L. You, C. A. Chan, and X. Gao. Resource efficiency optimization for robust beamforming in multi-beam satellite communications. IEEE Transactions on Vehicular Technology, 70(7):6958–6968, 2021. J. L. Whitrow. The radiation patterns of circular apertures. Technical report, National Security and ISR Division, Australia, May 2018. E. Yoshimoto and M. V. T. Heckler. Optimization of planar antenna arrays using the firefly algorithm. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18(1):126–140, Jan 2019. C. Zhang, J. Yang, Y. Zhang, Z. Liu, and G. Zhang. Dynamic beam hopping time slots allocation based on genetic algorithm of satellite communication under time-varying rain attenuation. Electronics, 10(23), 2021. X. Zhang, X. Wang, and H. C. So. Linear arbitrary array pattern synthesis with shape constraints and excitation range control. IEEE Antennas and Wireless Propagation Letters, 20(6):1018–1022, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91056 | - |
| dc.description.abstract | 衛星通訊在缺乏基礎通訊設施的偏遠地區因其仍能提供良好的網路連接而擁有優勢,然而因為衛星到地球的距離產生的路徑損耗,我們需要波束成型(beamforming)這個技術達成在特定方向上的接收地區有較高的訊號訊雜比(SNR),就我們所知,這篇論文提出第一個應用於衛星通訊的寬波束設計並使用考慮恆定模量限制的均勻矩形陣列波束成型器,目的是為了可以一次服務較大的地域範圍。在最佳化問題設計中,我們確保每一個在如此寬廣的服務地區內的使用者都可以接收到足夠高的訊雜比,因此獲得良好的衛星通訊品質,在衛星通訊中,為了確保每個服務地區接收到的訊號都能維持在某個強度以上,在波束圖形設計時需要考慮一個等通量模型。在本篇論文中,我們提出應用到不同情境時需考慮的兩個波束成型器設計,第一個設計目標是在恆定模量下壓抑不在服務範圍內的波束強度,在第二個情境中,波束將覆蓋所有和和衛星之間是直線連線的地球表面,並同樣地保持恆定模量,對於這兩個兩個不是凸函數最佳化的問題,我們使用半正定鬆弛技術和Dattorro的疊代演算法來解決,最後,模擬結果顯示我們可成功地在恆定模量下產生這兩個寬波束設計。 | zh_TW |
| dc.description.abstract | Satellite communication (SatComm) holds the advantage of providing Internet connectivity to rural and remote areas lacking communication infrastructures. Beamformer is significant in SatComm since it plays a crucial role in enhancing the transmission signal's direction and increasing the signal-to-noise ratio (SNR) in a specific direction. To our knowledge, the first Uniform Rectangular Array (URA) beamformer for SatCom which ensures PA efficiency that can serve large areas with beam-broadening approach is proposed. The optimization problem is designed to guarantee that user equipment (UEs) can experience sufficient SNR to establish communication link with the SAT transmitter within the SAT service areas. And the isoflux radiation mask guarantees that the transmitted signal maintains nearly equal strength within the SAT service areas, regardless of the SAT elevation angle.
Two scenarios of beam-broadening optimization problems are formulated. In the first scenario, we aim to suppress the maximum signal power in out-of-beam SAT service areas with the required beamwidth under constant modulus constraint (CMC). In the second scenario, we aim to achieve Earth-coverage under CMC. Both of the non-convex problems are solved with semidefinite relaxation (SDR) and Dattorro iterative algorithm. The simulation results illustrate the URA beampattern with a broadened beamwidth, ensuring the minimum received SNR in SAT service areas. Additionally, the derived beamforming coefficients satisfy the CMC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:55:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:55:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Contribution 3 1.3 Notation 4 Chapter 2 System Model 5 2.1 Uniform linear array (ULA) transmit beamformer system model 5 2.2 Uniform Rectangular Array (URA) transmit beamformer system model 10 Chapter 3 Problem Formulation 15 3.1 Field of view (FoV) of a satellite 16 3.2 Link budget analysis for SAT downlink 17 3.2.1 Signal-to-noise ratio (SNR) analysis 18 3.3 Problem formulation 23 3.3.1 Mainlobe lower bound calculation 23 3.3.2 Peak sidelobe level (PSL) suppression 24 3.3.3 Constant modulus constraint (CMC) and dynamic range ratio (DRR) constraint 26 3.3.4 Optimization problem for scenario 1 27 3.3.5 Optimization problem for Scenario 2 28 Chapter 4 Proposed Algorithm 31 4.1 Problem reformulations for scenario 1 32 4.2 Proposed algorithm for scenario 1 41 4.2.1 Initial point selection 44 4.2.2 Update of ρ 44 4.3 Problem algorithm for scenario 2 45 4.4 ULA mainlobe isoflux mask derivation 48 Chapter 5 Simulation 51 5.1 LEO SAT system setups 51 5.1.1 LEO SAT system parameters 52 5.1.2 Mainlobe lower bound 53 5.2 Simulation results 54 5.2.1 Simulation results for scenario 1 54 5.2.1.1 SAT service beamwidth: 2θsvc = 10◦ 55 5.2.1.2 SAT service beamwidth: 2θsvc = 20◦ 56 5.2.1.3 SAT service beamwidth: 2θsvc = 30◦ 57 5.2.1.4 Remarks about simulation results of scenario 1 58 5.2.2 Simulation results for scenario 2 60 5.2.2.1 URA antenna size 10 × 10 60 5.2.2.2 URA antenna size 16 × 16 61 5.2.2.3 URA antenna size 32 × 32 62 5.2.2.4 Remarks about simulation results of scenario 2 63 5.2.3 Comparison with previous works 63 5.3 Channel capacity comparison 64 5.3.1 Mainbeam beamwidth deduction for steering vector array 65 5.3.2 Signal-to-noise ratio comparison 68 5.3.3 Channel capacity comparison result 70 Chapter 6 Conclusion 73 6.1 Conclusion 73 6.2 Future work 74 References 75 Appendix A 79 A.1 Objective function derivation for scenario 2 79 | - |
| dc.language.iso | en | - |
| dc.subject | 衛星通訊 | zh_TW |
| dc.subject | 均勻矩形陣列 | zh_TW |
| dc.subject | 等通量模型 | zh_TW |
| dc.subject | 恆定模量 | zh_TW |
| dc.subject | 波束成型設計 | zh_TW |
| dc.subject | 低軌衛星 | zh_TW |
| dc.subject | constant modulus constraint (CMC) | en |
| dc.subject | beampattern synthesis | en |
| dc.subject | low Earth orbit (LEO) satellite | en |
| dc.subject | Satellite communication (SatCom) | en |
| dc.subject | Uniform Rectangular Array (URA) | en |
| dc.subject | isoflux radiation mask | en |
| dc.title | 在恆定模量限制下應用於低軌衛星通訊的寬主瓣波束成型技術 | zh_TW |
| dc.title | Beampattern Synthesis considering Constant Modulus Constraint for LEO Satellite Communication with Broadened Beam Service Areas | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林源倍;馮世邁 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Pei Lin;See-May Phoong | en |
| dc.subject.keyword | 衛星通訊,低軌衛星,波束成型設計,恆定模量,等通量模型,均勻矩形陣列, | zh_TW |
| dc.subject.keyword | Satellite communication (SatCom),low Earth orbit (LEO) satellite,beampattern synthesis,constant modulus constraint (CMC),isoflux radiation mask,Uniform Rectangular Array (URA), | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202303344 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
