請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90975
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝宏昀 | zh_TW |
dc.contributor.advisor | Hung-Yun Hsieh | en |
dc.contributor.author | 李妍潔 | zh_TW |
dc.contributor.author | Yen-Chieh Li | en |
dc.date.accessioned | 2023-10-24T16:34:09Z | - |
dc.date.available | 2024-09-01 | - |
dc.date.copyright | 2023-10-24 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | [1] A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen, “Chapter 3 - propagation & channel modeling,” in 5G Physical Layer, A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen, Eds. Academic Press, 2018, pp. 35–85.
[2] R. v. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. USA: Artech House, Inc., 2000. [3] L. Hanzo, W. T. Webb, and T. Keller, “Single- and multi-carrier quadrature amplitude modulation: Principles and applications for personal communications, wlans and broadcasting,” 2000. [4] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005. [5] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005. [6] D. M. Pozar, Microwave Engineering. Wiley, 1998. [7] L. Gui, W. Yuan, and F. Xiao, “Csi-based passive intrusion detection bound estimation in indoor nlos scenario,” Fundamental Research, 2022. [8] C. Van Loan, Computational Frameworks for the Fast Fourier Transform. USA: Society for Industrial and Applied Mathematics, 1992. [9] Q. Cai and J. Aggarwal, “Automatic tracking of human motion in indoor scenes across multiple synchronized video streams,” in Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998, pp. 356– 362. [10] L. Liu, W. Zhang, C. Deng, S. Yin, and S. Wei, “Briguard: a lightweight indoor intrusion detection system based on infrared light spot displacement,” IET Science, Measurement & Technology, vol. 9, no. 3, pp. 306–314, 2015. [11] S. G. Iyengar, P. K. Varshney, and T. Damarla, “On the detection of footsteps based on acoustic and seismic sensing,” in 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007, pp. 2248–2252. [12] R. J. Orr and G. D. Abowd, “The smart floor: a mechanism for natural user identification and tracking,” CHI ’00 Extended Abstracts on Human Factors in Computing Systems, 2000. [13] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 621–632, 2010. [14] J. Wilson and N. Patwari, “See-through walls: Motion tracking using variance-based radio tomography networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 05, pp. 612–621, may 2011. [15] A. E. Kosba, A. Saeed, and M. Youssef, “Rasid: A robust wlan device-free passive motion detection system,” in 2012 IEEE International Conference on Pervasive Computing and Communications, 2012, pp. 180–189. [16] T. Wang, D. Yang, S. Zhang, Y. Wu, and S. Xu, “Wi-alarm: Low-cost passive intrusion detection using wifi,” Sensors, vol. 19, no. 10, 2019. [17] X. Wang, Y. Wang, and D. Wang, “A real-time csi-based passive intrusion detection method,” in 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 2020, pp. 1091–1098. [18] W. Zhuang, Y. Shen, L. Li, C. Gao, and D. Dai, “Develop an adaptive real-time indoor intrusion detection system based on empirical analysis of ofdm subcarriers,” Sensors (Basel, Switzerland), vol. 21, 2021. [19] S. Li, X. Li, K. Niu, H. Wang, Y. Zhang, and D. Zhang, “Ar-alarm: An adaptive and robust intrusion detection system leveraging csi from commodity wi-fi,” in Enhanced Quality of Life and Smart Living, M. Mokhtari, B. Abdulrazak, and H. Aloulou, Eds. Cham: Springer International Publishing, 2017, pp. 211–223. [20] E. Ding, X. Li, T. Zhao, L. Zhang, and Y. Hu, “A robust passive intrusion detection system with commodity wifi devices,” Journal of Sensors, vol. 2018, pp. 1–12, 06 2018. [21] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information: A survey,” ACM Comput. Surv., vol. 52, no. 3, jun 2019. [22] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992. [23] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, 1995, pp. 278–282 vol.1. [24] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, p. 273–297, sep 1995. [25] D. Wu, D. Zhang, C. Xu, Y. Wang, and H. Wang, “Widir: Walking di rection estimation using wireless signals,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 351–362. [26] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-level passive tracking via velocity monitoring with commodity wi-fi,” in Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ser. Mobihoc ’17. New York, NY, USA: Association for Computing Machinery, 2017. [27] Y. Jin, Z. Tian, Y. Li, Z. Li, and Z. Zhang, “A novel device-free tracking system using wifi: Turning fading channel from foe to friend,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6. [28] D. Wu, Y. Zeng, R. Gao, S. Li, Y. Li, R. C. Shah, H. Lu, and D. Zhang, “Witraj: Robust indoor motion tracking with wifi signals,” IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp. 3062–3078, 2023. [29] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3d tracking via body radio reflections,” in 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX Association, Apr. 2014, pp. 317–329. [30] X. Zuo, Z. Tian, Y. Jin, Z. Li, and M. Zhou, “Passive human tracking based on imm kalman filter using wifi signal,” in 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2022, pp. 1–2. [31] S. Tan, L. Zhang, Z. Wang, and J. Yang, “Multitrack: Multi-user tracking and activity recognition using commodity wifi,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ser. CHI ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 1–12. [32] B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB. USA: CRC Press, Inc., 2000. [33] F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang, and J. Han, “Joint activity recognition and indoor localization with wifi fingerprints,” IEEE Access, vol. 7, pp. 80 058–80 068, 2019. [34] J. Huang, B. Liu, H. Jin, and N. Yu, “Wilay: A two-layer human localization and activity recognition system using wifi,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–6. [35] M. S. Gast, “Chapter 2. the phy,” in 802.11ac: A Survival Guide. O’Reilly Media, Inc., Aug. 2013, online; accessed Dec 2021. [36] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11 packet delivery from wireless channel measurements,” vol. 40, no. 4, p. 159–170, aug 2010. [37] F. R. Hampel, “A General Qualitative Definition of Robustness,” The Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1887 – 1896, 1971. [38] “The influence curve and its role in robust estimation,” Journal of the American Statistical Association, vol. 69, no. 346, pp. 383–393, 1974. [39] L. Davies and U. Gather, “The identification of multiple outliers,” Journal of the American Statistical Association, vol. 88, no. 423, pp. 782–792, 1993. [40] “On-line outlier detection and data cleaning,” Computers and Chemical Engineering, vol. 28, no. 9, pp. 1635–1647, 2004. [41] C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu, “Phaseu: Real-time los identification with wifi,” in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 2038–2046. [42] M. Speth, S. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design for wireless broad-band systems using ofdm. i,” IEEE Transactions on Communications, vol. 47, no. 11, pp. 1668–1677, 1999 [43] J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson, “Phaser: Enabling phased array signal processing on commodity wifi access points,” ser. Mobi Com ’14. New York, NY, USA: Association for Computing Machinery, 2014, p. 153–164. [44] L. Wang, L. Liu, C. Hu, and M. Q. Meng, “A novel RF-based propagation model with tissue absorption for location of the GI tract,” Annu Int Conf IEEE Eng Med Biol Soc, vol. 2010, pp. 654–657, 2010. [45] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. [46] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988. [47] J. M. Bland and D. G. Altman, “Statistics notes: Measurement error proportional to the mean,” BMJ, vol. 313, no. 7049, p. 106, 1996. [48] K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou, “Pads: Passive detection of moving targets with dynamic speed using phy layer information,” in 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2014, pp. 1–8. [49] T. Yoshida and Kindai, “Estimating the number of people using existing wifi access point in indoor environment,” 2015. [50] M. A. A. Al-qaness, F. Li, X. Ma, Y. Zhang, and G. Liu, “Device-free indoor activity recognition system,” Applied Sciences, vol. 6, no. 11, 2016. [51] R. Zhou, X. Lu, P. Zhao, and J. Chen, “Device-free presence detection and localization with svm and csi fingerprinting,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7990–7999, 2017. [52] B. Sch¨olkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method for novelty detection,” in Advances in Neural Information Processing Systems, S. Solla, T. Leen, and K. M¨uller, Eds., vol. 12. MIT Press, 1999. [53] A. V. Oppenheim, Discrete-time signal processing. Pearson Education India, 1999. [54] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wifi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342–1355, 2019. [55] J. Montojo and J. Damnjanovic, Carrier Aggregation. John Wiley and Sons, Ltd, 2011, ch. 28, pp. 623–650. [56] A. Gorokhov, A. Farajidana, K. Bhattad, X. Luo, and S. Geirhofer, Multiple Antenna Techniques for LTE-Advanced. John Wiley and Sons, Ltd, 2011, ch. 29, pp. 651–672. [57] “Chapter 4 - the mathematics of failure and reliability,” in Reliability and Failure of Electronic Materials and Devices, M. Ohring, Ed. San Diego: Academic Press, 1998, pp. 175–236. [58] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill Education, 2001. [59] G. Casella and R. L. Berger, Statistical Inference, 2/e. Duxbury, 2001. [60] E. Meijering, “A chronology of interpolation: From ancient astronomy to modern signal and image processing,” Proceedings of the IEEE, vol. 90, no. 3, pp. 319–342, 2002. [61] L. Yang and Z. Huiyan, “Shape preserving piecewise cubic interpolation,” Applied Mathematics, vol. 11, no. 4, pp. 419–424, Dec 1996. [62] C. A. Hall and W. Meyer, “Optimal error bounds for cubic spline interpolation,” Journal of Approximation Theory, vol. 16, no. 2, pp. 105–122, 1976. [63] I. The MathWorks, Antenna Toolbox, Natick, Massachusetts, United State, 2023. [64] “Ray tracing for radio propagation modeling: Principles and applications,” IEEE Access, vol. 3, pp. 1089–1100, 2015. [65] K. Schaubach, N. Davis, and T. Rappaport, “A ray tracing method for predicting path loss and delay spread in microcellular environments,” 06 1992, pp. 932 – 935 vol.2. [66] I. The MathWorks, Communications Toolbox, Natick, Massachusetts, United State, 2023. [67] C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour, “The kit whole-body human motion database,” in International Conference on Advanced Robotics (ICAR), 2015, pp. 329–336. [68] R. Zajicek and J. Vrba, “Broadband complex permittivity determination for biomedical applications,” in Advanced Microwave Circuits and Systems, V. Zhurbenko, Ed. Rijeka: IntechOpen, 2010, ch. 17. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90975 | - |
dc.description.abstract | 基於通道狀態信息(CSI)的入侵偵測系統至今已有許多發展。然而,以往的相關研究在入侵者被阻擋或僅於小範圍內活動時會讓表現變差,並且大多數研究僅偵測入侵者的存在。我們認為一個完善的入侵檢測系統應該足夠穩健、對入侵者敏感,並且能夠在一定程度上追蹤入侵者所在的區域。功率延遲特徵(PDP)根據每條路徑的延遲提供近似路徑分量的資訊。眾所周知,當信號向四面八方傳播時,不同的傳播路徑會不同程度地受到入侵者的影響。基於以上觀點,我們設計了一種演算法能夠尋找最能反映入侵者活動的路徑分量以增加檢測概率,並同時利用PDP提供的延遲資訊來追蹤入侵者位置。首先,我們必須構建一個入侵檢測系統來評估演算法的性能。在以往研究的基礎上,我們設計了一個基礎系統,並在實驗室和教室進行了測試,其平均偵測率能夠達到93.69%。然而,對於一些入侵者被遮擋或遠離檢測設備的位置,偵測率僅為60.77%。經過演算法的增強,遮擋區域的偵測率可以提高到94.44%,整個系統的平均偵測率也提高到98.98%。另外,為了驗證PDP能否達到追蹤的目的,我們還在模擬器上模擬了實驗室環境。我們控制空間中唯一變量為入侵者,在理想環境下使用320MHz頻寬,可以使追蹤誤差小至0.45m。 | zh_TW |
dc.description.abstract | There have been many developments in intrusion detection systems based on Channel State Information (CSI). However, previous related research performances are limited when intruders are blocked or only move in a small area, and most studies only detect intruders' existence. A sound intrusion detection system should be robust enough, sensitive to intruders, and able to track the area where the intruder is located to a certain extent. Power Delay Profile (PDP) provides approximate path component information based on the delay of each path. It is known that when the signal spreads in all directions, different propagation paths are affected to varying degrees by intruders. Based on the above point of view, we designed an algorithm to find the path component that best reflects the intruder's activities to increase the probability of detection, and at the same time use the delay information provided by the PDP to track the intruder's position. First, we must construct an intrusion detection system to evaluate the algorithm's performance. Based on previous research, we built a basic system and tested it in actual laboratories and classrooms, and its average detection rate has reached 93.69%. However, the detection rate was only 60.77% for some positions where the intruder was obstructed or moved away from the detection devices. After the enhancement of our algorithm, the detection rate of blocked areas could increase to 94.44%, and the average detection rate of the overall system has also risen to 98.98%. Additionally, to verify that PDP can achieve the purpose of tracking, we also simulated the laboratory environment on the simulator. We control the only change in the space is the intruder so that the tracking accuracy can be as small as 0.45m. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:34:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-24T16:34:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 3 2.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Multipath Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Orthogonal Frequency Division Multiplexing (OFDM) . . . 4 2.2.2 Channel Impulse Response (CIR) . . . . . . . . . . . . . . 5 2.2.3 Channel State Information (CSI) . . . . . . . . . . . . . . . 6 2.3 Overview of Intrution Detection . . . . . . . . . . . . . . . . . . . 7 2.3.1 Passive Intrusion Detection . . . . . . . . . . . . . . . . . . 7 2.3.2 RSS-based Methods . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 CSI-based Methods . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Overview of Intruder Tracking . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Signal Feature Extraction . . . . . . . . . . . . . . . . . . . 12 2.4.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 13 CHAPTER 3 INTRUSION DETECTION SYSTEM . . . . . . . . 14 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Signal Analysis and Preprocessing . . . . . . . . . . . . . . . . . . 15 3.3.1 Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Phase Difference . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Data Propagation . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Model Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.1 Support Vector Machine (SVM) . . . . . . . . . . . . . . . 31 3.5.2 One Class Support Vector Machine (OCSVM) . . . . . . . 32 3.5.3 Vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 CHAPTER 4 PRELIMINARY PERFORMANCE OF INTRUSION DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.1 Equipments and Collection Parameters . . . . . . . . . . . 35 4.1.2 Environment and Experimental Scenarios . . . . . . . . . . 36 4.1.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 41 4.2 Perfoemance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CHAPTER 5 POWER DELAY PROFILE ANALYSIS . . . . . . 46 5.1 Power Delay Profile (PDP) . . . . . . . . . . . . . . . . . . . . . . 46 5.1.1 Propagation of Signals . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Channel Response . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Intrusion Information Enhancement . . . . . . . . . . . . . . . . . 53 5.2.1 Path Component Selection . . . . . . . . . . . . . . . . . . 53 5.2.2 Weight Changing . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.3 Performance Overview . . . . . . . . . . . . . . . . . . . . 56 5.3 Intruder Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.1 Power Delay Profile Difference . . . . . . . . . . . . . . . . 57 5.3.2 Normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Intruder Tracking Map . . . . . . . . . . . . . . . . . . . . 62 5.3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CHAPTER 6 PERFORMANCE EVALUATION . . . . . . . . . . 65 6.1 Intrusion Information Enhancement Performance . . . . . . . . . . 65 6.1.1 Feature Enhancement . . . . . . . . . . . . . . . . . . . . . 66 6.1.2 System Performance . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.1 RayTracing Model . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 Environment and Intruders . . . . . . . . . . . . . . . . . . 69 6.2.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Intrusion Detection in Simulated Environment . . . . . . . . . . . 74 6.3.1 Score Perfoemance . . . . . . . . . . . . . . . . . . . . . . . 74 6.4 Intruder Tracking Performance . . . . . . . . . . . . . . . . . . . . 75 6.4.1 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4.2 Intruder Position . . . . . . . . . . . . . . . . . . . . . . . 78 6.4.3 Walking Intruder . . . . . . . . . . . . . . . . . . . . . . . 79 6.4.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 83 7.1 Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . 83 7.2 Intruder Tracking Map . . . . . . . . . . . . . . . . . . . . . . . . 84 7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.3.1 Intrusion Detection and Identification . . . . . . . . . . . . 85 7.3.2 Combination of Intruder Tracking and Detection . . . . . . 85 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | - |
dc.language.iso | en | - |
dc.title | 基於WiFi通道狀態資訊與功率延遲特徵之入侵偵測與追蹤技術 | zh_TW |
dc.title | Intruder Detection and Tracking Based on Power Delay Profile from WiFi CSI | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 曾柏軒;方凱田 | zh_TW |
dc.contributor.oralexamcommittee | Po-Hsuan Tseng;Kai-Ten Feng | en |
dc.subject.keyword | 通道狀態資訊,功率延遲特徵,入侵偵測,入侵者追蹤, | zh_TW |
dc.subject.keyword | channel state information,power delay profile,intrusion detection,intruder tracking, | en |
dc.relation.page | 91 | - |
dc.identifier.doi | 10.6342/NTU202303843 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
dc.date.embargo-lift | 2024-09-01 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 18.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。